51
|
Salata C, Calistri A, Alvisi G, Celestino M, Parolin C, Palù G. Ebola Virus Entry: From Molecular Characterization to Drug Discovery. Viruses 2019; 11:v11030274. [PMID: 30893774 PMCID: PMC6466262 DOI: 10.3390/v11030274] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola Virus Disease (EVD) is one of the most lethal transmissible infections, characterized by a high fatality rate, and caused by a member of the Filoviridae family. The recent large outbreak of EVD in Western Africa (2013–2016) highlighted the worldwide threat represented by the disease and its impact on global public health and the economy. The development of highly needed anti-Ebola virus antivirals has been so far hampered by the shortage of tools to study their life cycle in vitro, allowing to screen for potential active compounds outside a biosafety level-4 (BSL-4) containment. Importantly, the development of surrogate models to study Ebola virus entry in a BSL-2 setting, such as viral pseudotypes and Ebola virus-like particles, tremendously boosted both our knowledge of the viral life cycle and the identification of promising antiviral compounds interfering with viral entry. In this context, the combination of such surrogate systems with large-scale small molecule compounds and haploid genetic screenings, as well as rational drug design and drug repurposing approaches will prove priceless in our quest for the development of a treatment for EVD.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Michele Celestino
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| |
Collapse
|
52
|
Schneider-Futschik EK, Hoyer D, Khromykh AA, Baell JB, Marsh GA, Baker MA, Li J, Velkov T. Contemporary Anti-Ebola Drug Discovery Approaches and Platforms. ACS Infect Dis 2019; 5:35-48. [PMID: 30516045 DOI: 10.1021/acsinfecdis.8b00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ebola virus has a grave potential to destabilize civil society as we know it. The past few deadly Ebola outbreaks were unprecedented in size: The 2014-15 Ebola West Africa outbreak saw the virus spread from the epicenter through to Guinea, Sierra Leone, Nigeria, Congo, and Liberia. The 2014-15 Ebola West Africa outbreak was associated with almost 30,000 suspected or confirmed cases and over 11,000 documented deaths. The more recent 2018 outbreak in the Democratic Republic of Congo has so far resulted in 216 suspected or confirmed cases and 139 deaths. There is a general acceptance within the World Health Organization (WHO) and the Ebola outbreak response community that future outbreaks will become increasingly more frequent and more likely to involve intercontinental transmission. The magnitude of the recent outbreaks demonstrated in dramatic fashion the shortcomings of our mass casualty disease response capabilities and lack of therapeutic modalities for supporting Ebola outbreak prevention and control. Currently, there are no approved drugs although vaccines for human Ebola virus infection are in the trial phases and some potential treatments have been field tested most recently in the Congo Ebola outbreak. Treatment is limited to pain management and supportive care to counter dehydration and lack of oxygen. This underscores the critical need for effective antiviral drugs that specifically target this deadly disease. This review examines the current approaches for the discovery of anti-Ebola small molecule or biological therapeutics, their viral targets, mode of action, and contemporary platforms, which collectively form the backbone of the anti-Ebola drug discovery pipeline.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alexander A. Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, Jiangsu 211816, People’s Republic of China
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Glenn A. Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
53
|
Martins DP, Barros MT, Pierobon M, Kandhavelu M, Lio' P, Balasubramaniam S. Computational Models for Trapping Ebola Virus Using Engineered Bacteria. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:2017-2027. [PMID: 29994771 DOI: 10.1109/tcbb.2018.2836430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The outbreak of the Ebola virus in recent years has resulted in numerous research initiatives to seek new solutions to contain the virus. A number of approaches that have been investigated include new vaccines to boost the immune system. An alternative post-exposure treatment is presented in this paper. The proposed approach for clearing the Ebola virus can be developed through a microfluidic attenuator, which contains the engineered bacteria that traps Ebola flowing through the blood onto its membrane. The paper presents the analysis of the chemical binding force between the virus and a genetically engineered bacterium considering the opposing forces acting on the attachment point, including hydrodynamic tension and drag force. To test the efficacy of the technique, simulations of bacterial motility within a confined area to trap the virus were performed. More than 60 percent of the displaced virus could be collected within 15 minutes. While the proposed approach currently focuses on in vitro environments for trapping the virus, the system can be further developed into a future treatment system whereby blood can be cycled out of the body into a microfluidic device that contains the engineered bacteria to trap viruses.
Collapse
|
54
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
55
|
Drug Repurposing for Ebola Virus Disease: Principles of Consideration and the Animal Rule. J Pharm Sci 2018; 108:798-806. [PMID: 30244014 DOI: 10.1016/j.xphs.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022]
Abstract
There are no approved drugs or biologics to treat Ebola virus disease (EVD). Literature reviews identified a list of 141 drugs with reports of preliminary in vitro potency and in vivo effectiveness in animals or with reports of clinical use/trials in EVD patients. The majority of these drugs have been individually approved by the U.S. Food and Drug Administration for treating various non-EVD diseases. The anti-Ebola potency data of these drugs were curated from literature and publicly accessible databases, along with their individual biopharmaceutical and pharmacokinetic characteristics. To facilitate the development of antiviral drugs including anti-EVD drugs, highlights include optimization of the exposure-response relationship, design of a safe and effective clinical dosing regimen to achieve an adequate high ratio of clinical Cmin to a plasma protein binding-adjusted EC95, and the pharmacokinetic studies needed in animal models (healthy and affected) and in healthy volunteers. The exposure/response relationship for human dose selection is summarized, as described in the U.S. Food and Drug Administration "Animal Rule'' guidance when human efficacy studies are not ethical or feasible.
Collapse
|
56
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
57
|
NAADP-dependent Ca 2+ signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium 2018; 75:30-41. [PMID: 30121440 PMCID: PMC6251489 DOI: 10.1016/j.ceca.2018.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 11/09/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from acidic organelles. Middle East Respiratory Syndrome coronavirus (MERS-CoV) traffics through host-cell acidic organelles. Blockers of NAADP action inhibited pseudotyped MERS-CoV infectivity. Knockdown of two-pore channels (TPCs), a target of NAADP, also blocked MERS-CoV infectivity.
Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections are associated with a significant mortality rate, and existing drugs show poor efficacy. Identifying novel targets/pathways required for MERS infectivity is therefore important for developing novel therapeutics. As an enveloped virus, translocation through the endolysosomal system provides one pathway for cellular entry of MERS-CoV. In this context, Ca2+-permeable channels within the endolysosomal system regulate both the luminal environment and trafficking events, meriting investigation of their role in regulating processing and trafficking of MERS-CoV. Knockdown of endogenous two-pore channels (TPCs), targets for the Ca2+ mobilizing second messenger NAADP, impaired infectivity in a MERS-CoV spike pseudovirus particle translocation assay. This effect was selective as knockdown of the lysosomal cation channel mucolipin-1 (TRPML1) was without effect. Pharmacological inhibition of NAADP-evoked Ca2+ release using several bisbenzylisoquinoline alkaloids also blocked MERS pseudovirus translocation. Knockdown of TPC1 (biased endosomally) or TPC2 (biased lysosomally) decreased the activity of furin, a protease which facilitates MERS fusion with cellular membranes. Pharmacological or genetic inhibition of TPC1 activity also inhibited endosomal motility impairing pseudovirus progression through the endolysosomal system. Overall, these data support a selective, spatially autonomous role for TPCs within acidic organelles to support MERS-CoV translocation.
Collapse
|
58
|
Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein. J Virol 2018; 92:JVI.00941-17. [PMID: 29212933 PMCID: PMC5790926 DOI: 10.1128/jvi.00941-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 01/25/2023] Open
Abstract
We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC1280; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory containment to study the biology of the virus and screen for inhibitors. Here we characterized a new surrogate, named E-S-FLU virus, that is based on a disabled influenza virus core coated with the Ebola virus surface protein but does not contain any genetic information from the Ebola virus itself. We show that E-S-FLU virus uses the same cell entry pathway as wild-type Ebola virus. As an example of the ease of use of E-S-FLU virus in biosafety level 1/2 containment, we showed that a single production batch could provide enough surrogate virus to screen a standard small-molecule library of 1,280 candidates for inhibitors of viral entry.
Collapse
|
59
|
|
60
|
Ren J, Zhao Y, Fry EE, Stuart DI. Target Identification and Mode of Action of Four Chemically Divergent Drugs against Ebolavirus Infection. J Med Chem 2018; 61:724-733. [PMID: 29272110 PMCID: PMC5808380 DOI: 10.1021/acs.jmedchem.7b01249] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we show that four chemically divergent approved drugs reported to inhibit Ebolavirus infection, benztropine, bepridil, paroxetine and sertraline, directly interact with the Ebolavirus glycoprotein. Binding of these drugs destabilizes the protein, suggesting that this may be the mechanism of inhibition, as reported for the anticancer drug toremifene and the painkiller ibuprofen, which bind in the same large cavity on the glycoprotein. Crystal structures show that the position of binding and the mode of interaction within the pocket vary significantly between these compounds. The binding constants (Kd) determined by thermal shift assay correlate with the protein-inhibitor interactions as well as with the antiviral activities determined by virus cell entry assays, supporting the hypothesis that these drugs inhibit viral entry by binding the glycoprotein and destabilizing the prefusion conformation. Details of the protein-inhibitor interactions of these complexes and their relation with binding affinity may facilitate the design of more potent inhibitors.
Collapse
Affiliation(s)
- Jingshan Ren
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K
| | - Yuguang Zhao
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K
| | - David I Stuart
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K.,Diamond Light Source Ltd. , Harwell Science & Innovation Campus, Didcot, OX11 0DE, U.K
| |
Collapse
|
61
|
Kononova AA, Sokolova AS, Cheresiz SV, Yarovaya OI, Nikitina RA, Chepurnov AA, Pokrovsky AG, Salakhutdinov NF. N-Heterocyclic borneol derivatives as inhibitors of Marburg virus glycoprotein-mediated VSIV pseudotype entry. MEDCHEMCOMM 2017; 8:2233-2237. [PMID: 30108738 PMCID: PMC6072471 DOI: 10.1039/c7md00424a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
There is currently no approved antiviral therapy for treatment of Marburg virus disease (MVD). Although filovirus infection outbreaks are quite rare, the high mortality rates in such outbreaks make the development of anti-filoviral drugs an important goal of medical chemistry and virology. Here, we performed screening of a large library of natural derivatives for their virus entry inhibition activity using pseudotype systems. The bornyl ester derivatives containing saturated N-heterocycles exhibited the highest antiviral activity. It is supposed that compounds with specific inhibitory activity toward MarV-GP-dependent virus entry will inhibit the rVSIV-ΔG-MarV-GP pseudotype much more efficiently than the control rVSIV-ΔG-G pseudotype. At the same time, the compounds similarly inhibiting both pseudotypes will likely affect rVSIV capsid replication or the cellular mechanisms common to the entry of both viruses. Borneol itself is not active against both pseudotypes and is nontoxic, whereas its derivatives have varying toxicity and antiviral activity. Among low-toxic borneol derivatives, six compounds turned out to be relatively specific inhibitors of MarV-GP-mediated infection (SC > 10). Of them, compound 6 containing a methylpiperidine moiety exhibited the highest virus-specific activity. Notably, the virus-specific activity of this compound is twice as high as that of the reference.
Collapse
Affiliation(s)
- A A Kononova
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
| | - A S Sokolova
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 , Novosibirsk , Russia
| | - S V Cheresiz
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- Novosibirsk Tuberculosis Research Institute , Ohotskaya St. 81a , 630040 , Novosibirsk , Russia
| | - O I Yarovaya
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 , Novosibirsk , Russia
| | - R A Nikitina
- Scientific Research Institute of Clinical Immunology, Siberian Branch , Academy of Medical Sciences of Russia , Yadrintsevskaya St. 14 , 630099 , Novosibirsk , Russia
- Research Institute of Experimental and Clinical Medicine , Timakova St. 2 , 630117 , Novosibirsk , Russia
| | - A A Chepurnov
- Scientific Research Institute of Clinical Immunology, Siberian Branch , Academy of Medical Sciences of Russia , Yadrintsevskaya St. 14 , 630099 , Novosibirsk , Russia
- Research Institute of Experimental and Clinical Medicine , Timakova St. 2 , 630117 , Novosibirsk , Russia
| | - A G Pokrovsky
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
| | - N F Salakhutdinov
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 , Novosibirsk , Russia
| |
Collapse
|
62
|
Singh RK, Dhama K, Malik YS, Ramakrishnan MA, Karthik K, Khandia R, Tiwari R, Munjal A, Saminathan M, Sachan S, Desingu PA, Kattoor JJ, Iqbal HMN, Joshi SK. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Vet Q 2017; 37:98-135. [PMID: 28317453 DOI: 10.1080/01652176.2017.1309474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Yashpal Singh Malik
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Kumaragurubaran Karthik
- e Divison of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ruchi Tiwari
- g Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Mani Saminathan
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Swati Sachan
- h Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Jobin Jose Kattoor
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Hafiz M N Iqbal
- i School of Engineering and Science, Tecnologico de Monterrey , Monterrey , Mexico
| | - Sunil Kumar Joshi
- j Cellular Immunology Lab , Frank Reidy Research Center for Bioelectrics , School of Medical Diagnostics & Translational Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
63
|
Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection. Antiviral Res 2017; 149:154-163. [PMID: 29175127 DOI: 10.1016/j.antiviral.2017.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
Abstract
Members of the family Filoviridae cause severe, often fatal disease in humans, for which there are no approved vaccines and only a few experimental drugs tested in animal models. Retro-2, a small molecule that inhibits retrograde trafficking of bacterial and plant toxins inside host cells, has been demonstrated to be effective against a range of bacterial and virus pathogens, both in vitro and in animal models. Here, we demonstrated that Retro-2 and its derivatives, Retro-2.1 and compound 25, blocked infection by Ebola virus and Marburg virus in vitro. We show that the derivatives were more potent inhibitors of infection as compared to the parent compound. Pseudotyped virus assays indicated that the compounds affected virus entry into cells while virus particle localization to Niemann-Pick C1-positive compartments showed that they acted at a late step in virus entry. Our work demonstrates a potential for Retro-type drugs to be developed into anti-filoviral therapeutics.
Collapse
|
64
|
Bixler SL, Duplantier AJ, Bavari S. Discovering Drugs for the Treatment of Ebola Virus. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017; 9:299-317. [PMID: 28890666 PMCID: PMC5570806 DOI: 10.1007/s40506-017-0130-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of review Ebola virus, a member of the Filoviridae family, is a causative agent of severe viral hemorrhagic fever in humans. Over the past 40 years, the virus has been linked to several high mortality outbreaks in Africa with the recent West African outbreak resulting in over 11,000 deaths. This review provides a summary of the status of the drug discovery and development process for therapeutics for Ebola virus disease, with a focus on the strategies being used and the challenges facing each stage of the process. Recent findings Despite the wealth of in vitro efficacy data, preclinical data in animal models, and human clinical data, no therapeutics have been approved for the treatment of Ebola virus disease. However, several promising candidates, such as ZMapp and GS-5734, have advanced into ongoing clinical trials. Summary The gravity of the 2014-2016 outbreak spurred a heightened effort to identify and develop new treatments for Ebola virus disease, including small molecules, immunotherapeutics, host factors, and clinical disease management options. Disclaimer Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endoresed by the U.S. Army.
Collapse
Affiliation(s)
- Sandra L Bixler
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Allen J Duplantier
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| |
Collapse
|
65
|
Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol 2017; 98:345-351. [PMID: 28113044 DOI: 10.1099/jgv.0.000712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Becky Foster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
66
|
Salata C, Calistri A, Parolin C, Baritussio A, Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther 2017; 15:483-492. [PMID: 28286997 PMCID: PMC7103695 DOI: 10.1080/14787210.2017.1305888] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Emerging and reemerging viral infections represent a major concern for human and veterinary public health and there is an urgent need for the development of broad-spectrum antivirals. Areas covered: A recent strategy in antiviral research is based on the identification of molecules targeting host functions required for infection of multiple viruses. A number of FDA-approved drugs used to treat several human diseases are cationic amphiphilic drugs (CADs) that have the ability to accumulate inside cells affecting several structures/functions hijacked by viruses during infection. In this review we summarized the CADs’ chemical properties and effects on the cells and reported the main FDA-approved CADs that have been identified so far as potential antivirals in drug repurposing studies. Expert commentary: Although there have been concerns regarding the efficacy and the possible side effects of the off-label use of CADs as antivirals, they seem to represent a promising starting point for the development of broad-spectrum antiviral strategies. Further knowledge about their mechanism of action is required to improve their antiviral activity and to reduce the risk of side effects.
Collapse
Affiliation(s)
- Cristiano Salata
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Arianna Calistri
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Cristina Parolin
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Aldo Baritussio
- b Clinica Medica 1, Department of Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
67
|
Liang J, Jangra RK, Bollinger L, Wada J, Radoshitzky SR, Chandran K, Jahrling PB, Kuhn JH, Jensen KS. Candidate medical countermeasures targeting Ebola virus cell entry. Future Virol 2017. [DOI: 10.2217/fvl-2016-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical countermeasures (MCMs) against virus infections ideally prevent the adsorption or entry of virions into target cells, thereby circumventing infection. Recent significant advances in elucidating the mechanism of Ebola virus (EBOV) host-cell penetration include the involvement of two-pore channels at the early stage of entry, and identification of cellular proteases for EBOV spike glycoprotein maturation and the intracellular EBOV receptor, Niemann–Pick type C1. This improved understanding of the initial steps of EBOV infection is now increasingly applied to rapid development of candidate MCMs, some of which have already entered the clinic. Candidate MCMs discussed include antibodies, small molecules and peptides that target various stages of the described EBOV cell-entry pathway. In this review, we summarize the currently known spectrum of EBOV cell-entry inhibitors, describe their mechanism of action and evaluate their potential for future development.
Collapse
Affiliation(s)
- Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kenneth S Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
68
|
Chan JFW, Chik KKH, Yuan S, Yip CCY, Zhu Z, Tee KM, Tsang JOL, Chan CCS, Poon VKM, Lu G, Zhang AJ, Lai KK, Chan KH, Kao RYT, Yuen KY. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141:29-37. [PMID: 28185815 DOI: 10.1016/j.antiviral.2017.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/05/2017] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) infection is associated with congenital malformations in infected fetuses and severe neurological and other systemic complications in adults. There are currently limited anti-ZIKV treatment options that are readily available and safe for use in pregnancy. In this drug repurposing study, bromocriptine was found to have inhibitory effects on ZIKV replication in cytopathic effect inhibition, virus yield reduction, and plaque reduction assays. Time-of-drug-addition assay showed that bromocriptine exerted anti-ZIKV activity between 0 and 12 h post-ZIKV inoculation, corroborating with post-entry events in the virus replication cycle prior to budding. Our docking model showed that bromocriptine interacted with several active site residues of the proteolytic cavity involving H51 and S135 in the ZIKV-NS2B-NS3 protease protein, and might occupy the active site and inhibit the protease activity of the ZIKV-NS2B-NS3 protein. A fluorescence-based protease inhibition assay confirmed that bromocriptine inhibited ZIKV protease activity. Moreover, bromocriptine exhibited synergistic effect with interferon-α2b against ZIKV replication in cytopathic effect inhibition assay. The availability of per vagina administration of bromocriptine as suppositories or vaginoadhesive discs and the synergistic anti-ZIKV activity between bromocriptine and type I interferon may make bromocriptine a potentially useful and readily available treatment option for ZIKV infection. The anti-ZIKV effects of bromocriptine should be evaluated in a suitable animal model.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.
| | - Kenn Ka-Heng Chik
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Shuofeng Yuan
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Zheng Zhu
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kah-Meng Tee
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jessica Oi-Ling Tsang
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chris Chung-Sing Chan
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, Hong Kong, China
| | - Anna Jinxia Zhang
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kin-Kui Lai
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Richard Yi-Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
69
|
Sweiti H, Ekwunife O, Jaschinski T, Lhachimi SK. Repurposed Therapeutic Agents Targeting the Ebola Virus: A Systematic Review. CURRENT THERAPEUTIC RESEARCH 2017; 84:10-21. [PMID: 28761574 PMCID: PMC5522984 DOI: 10.1016/j.curtheres.2017.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The Ebola virus has been responsible for numerous outbreaks since the 1970s, with the most recent outbreak taking place between 2014 and 2016 and causing an international public health emergency. Ebola virus disease (EVD) has a high mortality rate and no approved targeted treatment exists to date. A number of established drugs are being considered as potential therapeutic agents for the treatment of EVD. OBJECTIVE We aimed to identify potential drug repositioning candidates and to assess the scientific evidence available on their efficacy. METHODS We conducted a systematic literature search in MEDLINE, Embase, and other relevant trial registry platforms for studies published between January 1976 and January 2017. We included drug screening, preclinical studies, and clinical studies on repurposed drugs for the treatment of EVD. The risk of bias for animal studies and nonrandomized clinical studies was assessed. The quality of reporting for case series and case reports was evaluated. Finally, we selected drugs approved by established regulatory authorities, which have positive in vitro study outcomes and at least one additional animal or clinical trial. RESULTS We identified 3301 publications, of which 37 studies fulfilled our inclusion criteria. Studies were highly heterogeneous in terms of study type, methodology, and intervention. The risk of bias was high for 13 out of 14 animal studies. We selected 11 drugs with potential anti-EVD therapeutic effects and summarized their evidence. CONCLUSIONS Several established drugs may have therapeutic effects on EVD, but the quality and quantity of current scientific evidence is lacking. This review highlights the need for well-designed and conducted preclinical and clinical research to establish the efficacy of potential repurposed drugs against EVD.
Collapse
Affiliation(s)
- Hussein Sweiti
- Institute of Health Services Research and Health Economics, School of Medicine, Heinrich-Heine University Dû¥sseldorf, Dû¥sseldorf, Germany
- Surgical Department, Klinikum Frankfurt HûÑchst, Frankfurt, Germany
| | - Obinna Ekwunife
- Cooperative Research Group for Evidence-Based Public Health, Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Department of Clinical Pharmacy and Pharmacy Management, Nnamdi Azikiwe University, Awka, Nigeria
| | - Thomas Jaschinski
- Department for Evidence-based Health Services Research, Institute for Research in Operative Medicine, Witten/Herdecke University, Witten, Germany
| | - Stefan K. Lhachimi
- Institute of Health Services Research and Health Economics, School of Medicine, Heinrich-Heine University Dû¥sseldorf, Dû¥sseldorf, Germany
- Cooperative Research Group for Evidence-Based Public Health, Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Institute for Public Health, Health Sciences Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
70
|
González-González E, Alvarez MM, Márquez-Ipiña AR, Santiago GTD, Rodríguez-Martínez LM, Annabi N, Khademhosseini A. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Crit Rev Biotechnol 2017; 37:53-68. [PMID: 26611830 PMCID: PMC5568563 DOI: 10.3109/07388551.2015.1114465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
Collapse
Affiliation(s)
- E González-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - MM Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - AR Márquez-Ipiña
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - G Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - LM Rodríguez-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - N Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | - A Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
71
|
Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017; 411:323-352. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Filovirus entry into cells is complex, perhaps as complex as any viral entry mechanism identified to date. However, over the past 10 years, the important events required for filoviruses to enter into the endosomal compartment and fuse with vesicular membranes have been elucidated (Fig. 1). Here, we highlight the important steps that are required for productive entry of filoviruses into mammalian cells.
Collapse
Affiliation(s)
- R A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - O Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - M Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Maury
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
72
|
Cardile AP, Warren TK, Martins KA, Reisler RB, Bavari S. Will There Be a Cure for Ebola? Annu Rev Pharmacol Toxicol 2016; 57:329-348. [PMID: 27959624 DOI: 10.1146/annurev-pharmtox-010716-105055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the unprecedented Ebola virus outbreak response in West Africa, no Ebola medical countermeasures have been approved by the US Food and Drug Administration. However, multiple valuable lessons have been learned about the conduct of clinical research in a resource-poor, high risk-pathogen setting. Numerous therapeutics were explored or developed during the outbreak, including repurposed drugs, nucleoside and nucleotide analogues (BCX4430, brincidofovir, favipiravir, and GS-5734), nucleic acid-based drugs (TKM-Ebola and AVI-7537), and immunotherapeutics (convalescent plasma and ZMapp). We review Ebola therapeutics progress in the aftermath of the West Africa Ebola virus outbreak and attempt to offer a glimpse of a path forward.
Collapse
Affiliation(s)
- Anthony P Cardile
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Travis K Warren
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Karen A Martins
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Ronald B Reisler
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| |
Collapse
|
73
|
Balmith M, Faya M, Soliman MES. Ebola virus: A gap in drug design and discovery - experimental and computational perspective. Chem Biol Drug Des 2016; 89:297-308. [PMID: 27637475 DOI: 10.1111/cbdd.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus.
Collapse
Affiliation(s)
- Marissa Balmith
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mbuso Faya
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
74
|
Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135:1-14. [PMID: 27640102 PMCID: PMC7113884 DOI: 10.1016/j.antiviral.2016.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
This review focuses on the recent progress in our understanding of filovirus protein structure/function and its impact on antiviral research. Here we focus on the surface glycoprotein GP1,2 and its different roles in filovirus entry. We first describe the latest advances on the characterization of GP gene-overlapping proteins sGP, ssGP and Δ-peptide. Then, we compare filovirus surface GP1,2 proteins in terms of structure, synthesis and function. As they bear potential in drug-design, the discovery of small organic compounds inhibiting filovirus entry is a currently very active field. Although it is at an early stage, the development of antiviral drugs against Ebola and Marburg virus entry might prove essential to reduce outbreak-associated fatality rates through post-exposure treatment of both suspected and confirmed cases. The filovirus surface glycoprotein is the key player protein responsible for viral entry. Secreted forms of the glycoprotein have been suggested to participate to filovirus virus pathogenicity. Recent structural insights of the filovirus surface glycoprotein highlight new antiviral perspectives. Interesting compounds and innovative antiviral strategies emerge from research and development to inhibit filovirus entry.
Collapse
|
75
|
Henß L, Beck S, Weidner T, Biedenkopf N, Sliva K, Weber C, Becker S, Schnierle BS. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virol J 2016; 13:149. [PMID: 27581733 PMCID: PMC5007819 DOI: 10.1186/s12985-016-0607-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. METHODS We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. RESULTS Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. CONCLUSION Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.
Collapse
Affiliation(s)
- Lisa Henß
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Simon Beck
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Tatjana Weidner
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany.,German Center for Infection Research (DZIF) at the Philipps University Marburg, partner site, Gießen-Marburg-Langen, Germany
| | - Katja Sliva
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Christopher Weber
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany.,German Center for Infection Research (DZIF) at the Philipps University Marburg, partner site, Gießen-Marburg-Langen, Germany
| | - Barbara S Schnierle
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
76
|
Madelain V, Nguyen THT, Olivo A, de Lamballerie X, Guedj J, Taburet AM, Mentré F. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin Pharmacokinet 2016; 55:907-23. [PMID: 26798032 PMCID: PMC5680399 DOI: 10.1007/s40262-015-0364-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 2014-2015 outbreak of Ebola virus disease is the largest epidemic to date in terms of the number of cases, deaths, and affected areas. In October 2015, no antiviral agents had proven antiviral efficacy in patients. However, in September 2014, the World Health Organization inventoried and has since regularly updated a list of potential drug candidates with demonstrated antiviral efficacy in in vitro or animal models. This includes agents belonging to various therapeutic classes, namely direct antiviral agents (favipiravir and BCX4430), a combination of antibodies (ZMapp), type I interferons, RNA interference-based drugs (TKM-Ebola and AVI-7537), and anticoagulant drugs (rNAPc2). Here, we review the pharmacokinetic and pharmacodynamic information presently available for these drugs, using data obtained in healthy volunteers for pharmacokinetics and data obtained in human clinical trials or animal models for pharmacodynamics. Future studies evaluating these drugs in clinical trials are critical to confirm their efficacy in humans, propose appropriate doses, and evaluate the possibility of treatment combinations.
Collapse
Affiliation(s)
- Vincent Madelain
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Thi Huyen Tram Nguyen
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Anaelle Olivo
- Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Sud, Kremlin Bicêtre, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jérémie Guedj
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Anne-Marie Taburet
- Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Sud, Kremlin Bicêtre, France
| | | |
Collapse
|
77
|
Sivanandy P, Sin SH, Ching OY, Rajasekar D, Woon GS, Chiew HH, Ee-Yenn CN, Wei KX, Leng YW. Current trends in the management of Ebola virus disease-an updated systematic review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61091-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
78
|
Leligdowicz A, Fischer WA, Uyeki TM, Fletcher TE, Adhikari NKJ, Portella G, Lamontagne F, Clement C, Jacob ST, Rubinson L, Vanderschuren A, Hajek J, Murthy S, Ferri M, Crozier I, Ibrahima E, Lamah MC, Schieffelin JS, Brett-Major D, Bausch DG, Shindo N, Chan AK, O'Dempsey T, Mishra S, Jacobs M, Dickson S, Lyon GM, Fowler RA. Ebola virus disease and critical illness. Crit Care 2016; 20:217. [PMID: 27468829 PMCID: PMC4965892 DOI: 10.1186/s13054-016-1325-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022] Open
Abstract
As of 20 May 2016 there have been 28,646 cases and 11,323 deaths resulting from the West African Ebola virus disease (EVD) outbreak reported to the World Health Organization. There continue to be sporadic flare-ups of EVD cases in West Africa.EVD presentation is nonspecific and characterized initially by onset of fatigue, myalgias, arthralgias, headache, and fever; this is followed several days later by anorexia, nausea, vomiting, diarrhea, and abdominal pain. Anorexia and gastrointestinal losses lead to dehydration, electrolyte abnormalities, and metabolic acidosis, and, in some patients, acute kidney injury. Hypoxia and ventilation failure occurs most often with severe illness and may be exacerbated by substantial fluid requirements for intravascular volume repletion and some degree of systemic capillary leak. Although minor bleeding manifestations are common, hypovolemic and septic shock complicated by multisystem organ dysfunction appear the most frequent causes of death.Males and females have been equally affected, with children (0-14 years of age) accounting for 19 %, young adults (15-44 years) 58 %, and older adults (≥45 years) 23 % of reported cases. While the current case fatality proportion in West Africa is approximately 40 %, it has varied substantially over time (highest near the outbreak onset) according to available resources (40-90 % mortality in West Africa compared to under 20 % in Western Europe and the USA), by age (near universal among neonates and high among older adults), and by Ebola viral load at admission.While there is no Ebola virus-specific therapy proven to be effective in clinical trials, mortality has been dramatically lower among EVD patients managed with supportive intensive care in highly resourced settings, allowing for the avoidance of hypovolemia, correction of electrolyte and metabolic abnormalities, and the provision of oxygen, ventilation, vasopressors, and dialysis when indicated. This experience emphasizes that, in addition to evaluating specific medical treatments, improving the global capacity to provide supportive critical care to patients with EVD may be the greatest opportunity to improve patient outcomes.
Collapse
Affiliation(s)
| | - William A Fischer
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy M Uyeki
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Thomas E Fletcher
- Defence Medical Services, Whittington Barracks, Lichfield, UK
- Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Neill K J Adhikari
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Francois Lamontagne
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Shevin T Jacob
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lewis Rubinson
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Abel Vanderschuren
- Centre de recherche de l'institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Jan Hajek
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Srinivas Murthy
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
| | | | - Ian Crozier
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Elhadj Ibrahima
- Department of Infectious and Parasitic Diseases, Donka Hospital, Conakry, Guinea
| | - Marie-Claire Lamah
- Department of Infectious and Parasitic Diseases, Donka Hospital, Conakry, Guinea
| | - John S Schieffelin
- Department of Pediatrics, School of Medicine and School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - David Brett-Major
- Department of Preventive Medicine and Biometrics, Uniformed Services University, Bethesda, MD, USA
| | - Daniel G Bausch
- Department of Pandemic and Epidemic Diseases, World Health Organization, Geneva, Switzerland
| | - Nikki Shindo
- Department of Pandemic and Epidemic Diseases, World Health Organization, Geneva, Switzerland
| | - Adrienne K Chan
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tim O'Dempsey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Michael Jacobs
- Department of Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Stuart Dickson
- Acute Medicine and Intensive Care, Derriford Hospital, Plymouth, UK
| | - G Marshall Lyon
- Department of Infectious Diseases, Emory University Hospital, Atlanta, Georgia, USA
| | - Robert A Fowler
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada.
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
79
|
Van ND, Falk CS, Sandmann L, Vondran FWR, Helfritz F, Wedemeyer H, Manns MP, Ciesek S, von Hahn T. Modulation of HCV reinfection after orthotopic liver transplantation by fibroblast growth factor-2 and other non-interferon mediators. Gut 2016; 65:1015-23. [PMID: 25800783 PMCID: PMC4893125 DOI: 10.1136/gutjnl-2014-308003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/12/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE In HCV infected individuals graft infection occurs shortly after orthotopic liver transplantation (OLT). We aimed to describe the composition of the inflammatory response at this time, how it affects the HCV replication cycle and identify novel proviral and antiviral factors. DESIGN We used a Luminex assay to quantify 50 inflammatory mediators in sera before and shortly after OLT. In vitro grown HCV based on the JFH-1 isolate were used to characterise the effects of patient sera and individual mediators on HCV. RESULTS Although the mediator composition is highly variable between individuals, sera drawn immediately post-OLT significantly enhance HCV infectivity compared with control sera from before OLT in about half of the cases. Among 27 non-interferon inflammatory mediators fibroblast growth factor (FGF)-2 stood out as it enhanced HCV RNA replication and release of infectious particles. The effect was concentration-dependent and detectable in dividing and non-dividing cells. Moreover, pharmacological inhibition of FGF-2 receptor signalling abrogated the enhancing effect of FGF-2 and inhibited HCV replication in the absence of serum FGF-2 suggesting that HCV replication is dependent on basal activation of the FGF-2 triggered signalling pathway. Finally, in individuals with chronic HCV infection with high viral load, serum FGF-2 was significantly higher compared with those with low viral load. CONCLUSIONS Although no single mediator may account for this effect, serum shortly post-OLT enhances HCV infection. FGF-2 is a novel endogenous driver of HCV replication and a potential therapeutic target.
Collapse
Affiliation(s)
- Nguyen Dinh Van
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany,German Center for Infection Research (DZIF), Hannover, Germany,Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lisa Sandmann
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian W R Vondran
- German Center for Infection Research (DZIF), Hannover, Germany,Department of General, Visceral and Transplantation Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Fabian Helfritz
- German Center for Infection Research (DZIF), Hannover, Germany,Department of General, Visceral and Transplantation Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany,German Center for Infection Research (DZIF), Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany,German Center for Infection Research (DZIF), Hannover, Germany
| | - Sandra Ciesek
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany,German Center for Infection Research (DZIF), Hannover, Germany
| | - Thomas von Hahn
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany,German Center for Infection Research (DZIF), Hannover, Germany,Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
80
|
Beck S, Henß L, Weidner T, Herrmann J, Müller R, Chao YK, Grimm C, Weber C, Sliva K, Schnierle BS. Identification of entry inhibitors of Ebola virus pseudotyped vectors from a myxobacterial compound library. Antiviral Res 2016; 132:85-91. [PMID: 27241689 DOI: 10.1016/j.antiviral.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Abstract
Myxobacteria produce secondary metabolites many of which were described to have various biological effects including anti-fungal, anti-bacterial and anti-viral activity. The majority of these metabolites are novel scaffolds with unique modes-of-action and hence might be potential leads for drug discovery. Here, we tested a myxobacterial natural product library for compounds with inhibitory activity against Ebola virus (EBOV). The assay was performed with a surrogate system using Ebola envelope glycoprotein (GP) pseudotyped lentiviral vectors. EBOV specificity was proven by counter-screening with vesicular stomatitis virus G protein pseudotyped vectors. Two compounds were identified that preferentially inhibited EBOV GP mediated cell entry: Chondramides that act on the actin skeleton but might be too toxic and noricumazole A, a potassium channel inhibitor, which might constitute a novel pathway to inhibit Ebola virus cell entry.
Collapse
Affiliation(s)
- Simon Beck
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Lisa Henß
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Tatjana Weidner
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Microbial Natural Products, Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Microbial Natural Products, Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Yu-Kai Chao
- Department of Pharmacy - Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Germany
| | - Christian Grimm
- Department of Pharmacy - Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Germany
| | - Christopher Weber
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Katja Sliva
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany.
| |
Collapse
|
81
|
Bhagya N, Chandrashekar KR. Tetrandrine--A molecule of wide bioactivity. PHYTOCHEMISTRY 2016; 125:5-13. [PMID: 26899361 DOI: 10.1016/j.phytochem.2016.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Stephania tetrandra and other related species of Menispermaceae form the major source of the bisbenzylisoquinoline alkaloid - tetrandrine. The plant is extensively referenced in the Chinese Pharmacopoeia for its use in the Chinese medicinal system as an analgesic and diuretic agent and also in the treatment of hypertension and various other ailments, including asthma, tuberculosis, dysentery, hyperglycemia, malaria, cancer and fever. Tetrandrine, well-known to act as a calcium channel blocker, has been tested in clinical trials and found effective against silicosis, hypertension, inflammation and lung cancer without any toxicity. Recently, the efficacy of tetrandrine was tested against Mycobaterium tuberculosis, Candida albicans, Plasmodium falciparum and Ebola virus. Tetrandrine's pharmacological property has been proved to be through its action on different signalling pathways like reactive oxygen species, enhanced autophagic flux, reversal of multi drug resistance, caspase pathway, cell cycle arrest and by modification of calcium channels. The present review summarises current knowledge on the synthesis, distribution, extraction, structural elucidation, pharmacological properties and the mechanism of action of tetrandrine. Future perspectives in the clinical use of tetrandrine as a drug are also considered.
Collapse
Affiliation(s)
- N Bhagya
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - K R Chandrashekar
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India.
| |
Collapse
|
82
|
Clay KA, Henning JD, Horne S. Op GRITROCK ethics; the way of things to come? J ROY ARMY MED CORPS 2016; 162:150-5. [PMID: 27009319 DOI: 10.1136/jramc-2015-000617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/10/2016] [Indexed: 11/04/2022]
Abstract
The Defence Medical Services (DMS) deployed on Op GRITROCK to Sierra Leone in support of the Ebola outbreak. This operation was the first large-scale DMS deployment since operations in Afghanistan ceased at the end of 2014. This type of operation revealed a number of ethical issues and challenges that the DMS had not faced for a long time. The ethical issues identified during the deployment are discussed in this article using the principalism approach of Beauchamp and Childress. Many of these issues were not identified prior to deployment, and troops were not adequately prepared. The article will outline the difficulties of using the principles of autonomy, beneficence, non-maleficence and justice during a public health emergency, and conclude with recommendations for ethical considerations that should be identified and mitigated against for future deployments to a public health emergency.
Collapse
Affiliation(s)
| | - J D Henning
- Academic Department of Anaesthesia, Pain and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK
| | - S Horne
- Academic Department of Military Emergency Medicine, Birmingham, UK
| |
Collapse
|
83
|
Zhou N, Pan T, Zhang J, Li Q, Zhang X, Bai C, Huang F, Peng T, Zhang J, Liu C, Tao L, Zhang H. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem 2016; 291:9218-32. [PMID: 26953343 PMCID: PMC4861487 DOI: 10.1074/jbc.m116.716100] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 01/18/2023] Open
Abstract
Ebola virus infection can cause severe hemorrhagic fever with a high mortality in
humans. The outbreaks of Ebola viruses in 2014 represented the most serious
Ebola epidemics in history and greatly threatened public health worldwide. The
development of additional effective anti-Ebola therapeutic agents is therefore
quite urgent. In this study, via high throughput screening of Food and Drug
Administration-approved drugs, we identified that teicoplanin, a glycopeptide
antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses
into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on
transcription- and replication-competent virus-like particles, with an
IC50 as low as 330 nm. Comparative analysis further
demonstrated that teicoplanin is able to block the entry of Middle East
respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS)
envelope pseudotyped viruses as well. Teicoplanin derivatives such as
dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola,
MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola
virus entry by specifically inhibiting the activity of cathepsin L, opening a
novel avenue for the development of additional glycopeptides as potential
inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has
routinely been used in the clinic with low toxicity, our work provides a
promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS
virus infection.
Collapse
Affiliation(s)
- Nan Zhou
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Ting Pan
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Junsong Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Qianwen Li
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Xue Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Chuan Bai
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Feng Huang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Tao Peng
- the Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510182, Guangdong, and
| | - Jianhua Zhang
- the CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine
| | - Hui Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong,
| |
Collapse
|
84
|
Johansen LM, DeWald LE, Shoemaker CJ, Hoffstrom BG, Lear-Rooney CM, Stossel A, Nelson E, Delos SE, Simmons JA, Grenier JM, Pierce LT, Pajouhesh H, Lehár J, Hensley LE, Glass PJ, White JM, Olinger GG. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci Transl Med 2016; 7:290ra89. [PMID: 26041706 DOI: 10.1126/scitranslmed.aaa5597] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections.
Collapse
Affiliation(s)
- Lisa M Johansen
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Lisa Evans DeWald
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Charles J Shoemaker
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | - Calli M Lear-Rooney
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Andrea Stossel
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Elizabeth Nelson
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sue E Delos
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - James A Simmons
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Jill M Grenier
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Laura T Pierce
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Hassan Pajouhesh
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Joseph Lehár
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA. Bioinformatics Program, Boston University, 20 Cummington Street, Boston, MA 02215, USA
| | - Lisa E Hensley
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Pamela J Glass
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Judith M White
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Gene G Olinger
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| |
Collapse
|
85
|
Mendoza EJ, Qiu X, Kobinger GP. Progression of Ebola Therapeutics During the 2014–2015 Outbreak. Trends Mol Med 2016; 22:164-173. [DOI: 10.1016/j.molmed.2015.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 11/27/2022]
|
86
|
Investigation of Calcium Channel Blockers as Antiprotozoal Agents and Their Interference in the Metabolism of Leishmania (L.) infantum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1523691. [PMID: 26941821 PMCID: PMC4749844 DOI: 10.1155/2016/1523691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 01/20/2023]
Abstract
Leishmaniasis and Chagas disease are neglected parasitic diseases endemic in developing countries; efforts to find new therapies remain a priority. Calcium channel blockers (CCBs) are drugs in clinical use for hypertension and other heart pathologies. Based on previous reports about the antileishmanial activity of dihydropyridine-CCBs, this work aimed to investigate whether the in vitro anti-Leishmania infantum and anti-Trypanosoma cruzi activities of this therapeutic class would be shared by other non-dihydropyridine-CCBs. Except for amrinone, our results demonstrated antiprotozoal activity for fendiline, mibefradil, and lidoflazine, with IC50 values in a range between 2 and 16 μM and Selectivity Index between 4 and 10. Fendiline demonstrated depolarization of mitochondrial membrane potential, with increased reactive oxygen species production in amlodipine and fendiline treated Leishmania, but without plasma membrane disruption. Finally, in vitro combinations of amphotericin B, miltefosine, and pentamidine against L. infantum showed in isobolograms an additive interaction when these drugs were combined with fendiline, resulting in overall mean sum of fractional inhibitory concentrations between 0.99 and 1.10. These data demonstrated that non-dihydropyridine-CCBs present antiprotozoal activity and could be useful candidates for future in vivo efficacy studies against Leishmaniasis and Chagas' disease.
Collapse
|
87
|
Zhang X, Ao Z, Bello A, Ran X, Liu S, Wigle J, Kobinger G, Yao X. Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antiviral Res 2016; 127:20-31. [PMID: 26778707 PMCID: PMC7113790 DOI: 10.1016/j.antiviral.2016.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/25/2022]
Abstract
Currently, no approved antiviral therapeutic is available for treatment or prevention of Ebola virus (EBOV) infection. In this study, we characterized an EBOV-glycoprotein (GP) pseudotyped HIV-1-based vector system in different cell cultures, including human umbilical vein endothelial cells (HUVECs) and human macrophages, for the screening of anti-EBOV-GP agent(s). Based on this system, we demonstrated that an aqueous extract (CHPV) from the Chinese herb Prunella vulgaris displayed a potent inhibitory effect on EBOV-GP pseudotyped virus (EBOV-GP-V)-mediated infection in various cell lines, including HUVEC and macrophage. In addition, our results indicated that CHPV was able to block an eGFP-expressing Zaire ebola virus (eGFP-ZEBOV) infection in VeroE6 cells. The anti-EBOV activity of CHPV was exhibited in a dose-dependent manner. At a 12.5 μg/ml concentration, the CHPV showed a greater than 80% inhibition of EBOV-GP-V and eGFP-EBOV infections. Likewise, our studies suggested that the inhibitory effect of CHPV occurred by binding directly to EBOV-GP-Vs and blocking the early viral events. Interestingly, our results have shown that CHPV was able to enhance the anti-EBOV activity of the monoclonal antibody MAb 2G4 against EBOV-GP. Overall, this study provides evidence that CHPV has anti-EBOV activity and may be developed as a novel antiviral approach against EBOV infection.
Collapse
Affiliation(s)
- Xu Zhang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada; Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China
| | - Alexander Bello
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Xiaozhuo Ran
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China
| | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Canada
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada; Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
88
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2016; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA
- Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA
- Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
89
|
Wang Y, Cui R, Li G, Gao Q, Yuan S, Altmeyer R, Zou G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res 2015; 125:1-7. [PMID: 26585243 PMCID: PMC7113690 DOI: 10.1016/j.antiviral.2015.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
There is currently no approved antiviral therapy for treatment of Ebola virus disease. To discover readily available approved drugs that can be rapidly repurposed for treatment of Ebola virus infections, we screened 1280 FDA-approved drugs and identified glycopeptide antibiotic teicoplanin inhibiting Ebola pseudovirus infection by blocking virus entry in the low micromolar range. Teicoplanin could be evaluated further and incorporated into ongoing clinical studies.
Collapse
Affiliation(s)
- Yizhuo Wang
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Cui
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guiming Li
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qianqian Gao
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shilin Yuan
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ralf Altmeyer
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Gang Zou
- Unit of Anti-infective Research, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
90
|
Cationic amphiphilic drugs enhance entry of lentiviral particles pseudotyped with rabies virus glycoprotein into non-neuronal cells. Antiviral Res 2015; 124:122-31. [PMID: 26542648 DOI: 10.1016/j.antiviral.2015.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/08/2023]
Abstract
Amiodarone and other cationic amphiphilic drugs (CADs) inhibit cell entry by diverse human pathogenic viruses including Filoviruses, Dengue virus and Japanese encephalitis virus. They are thus considered potential broad spectrum antiviral agents. Here we report the unexpected finding that amiodarone and other CADs markedly enhance rabies virus (RABV) glycoprotein- (GP-) mediated cell entry of pseudotyped lentiviruses into non-neuronal cells but not in neuronal cells. Increased cell entry can also be elicited when CADs are added several hours after pseudoviral attachment. Perturbing endosomal processing with phosphoinosite-3-kinase inhibitors wortmannin and LY294002 mimics the effects of CADs on RABV GP-mediated cell entry. Thus, CADs may enhance RABV GP-mediated cell entry of pseudotyped lentiviruses by promoting a late step of the pseudoviral cell entry process, possibly release from an endosomal compartment into the cytosol. In contrast to the pseudotyped lentiviruses, infection by fully infectious RABV was not enhanced by CADs, indicating, that the observed stimulation of RABV GP mediated lentivirus entry also depended on the used lentivirus vector backbone. In conclusion, we show that while CADs inhibit cell entry of diverse viruses they can also have a paradoxical enhancing effect on the ability of a viral glycoprotein to mediate cell entry depending on the cellular and viral context. Although, we show CAD-mediated enhancement of entry only for pseudoviruses, but not fully infectious RABV, the potential to unexpectedly enhance viral entry should be taken into account when considering use of CADs as antiviral agents.
Collapse
|
91
|
Krishnasamy L, Saikumar C. Updates on Treatment of Ebola Virus Disease. Malays J Med Sci 2015; 22:54-57. [PMID: 28223886 PMCID: PMC5295760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/04/2015] [Indexed: 06/06/2023] Open
Abstract
Ebola viral disease is one of the major threats world wide. But the treatment option is merely supportive and symptomatic therapy. Vaccination and drug therapies are still under trial. This article throws light into the various emerging treatment options for the Ebola viral disease.
Collapse
Affiliation(s)
- Lakshmi Krishnasamy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chrompet, Chennai, Tamil Nadu, 600044, India
| | - Chitralekha Saikumar
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chrompet, Chennai, Tamil nadu, 600044, India
| |
Collapse
|
92
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/23/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
93
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 PMCID: PMC4706063 DOI: 10.12688/f1000research.7217.3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity
in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested
in vitro and had EC
50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors
in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
94
|
Salata C, Munegato D, Piccoli E, Calistri A, Parolin C, Mirazimi A, Baritussio A, Palù G. Amiodarone increases positive-strand RNA virus replication in vitro: implications for its use in patients with viral infections. J Antimicrob Chemother 2015; 71:280-1. [PMID: 26429565 DOI: 10.1093/jac/dkv305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elena Piccoli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ali Mirazimi
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden Department for Laboratory Medicine, Karolinska Institute, Huddinge/Stockholm, Sweden National Veterinary Institute, Uppsala, Sweden
| | - Aldo Baritussio
- Clinica Medica 1, Department of Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
95
|
Ebola Virus Infection: Overview and Update on Prevention and Treatment. Infect Dis Ther 2015; 4:365-90. [PMID: 26363787 PMCID: PMC4675769 DOI: 10.1007/s40121-015-0079-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/08/2022] Open
Abstract
In 2014 and 2015, the largest Ebola virus disease (EVD) outbreak in history affected large populations across West Africa. The goal of this report is to provide an update on the epidemic and review current progress in the development,
evaluation and deployment of prevention and treatment strategies for EVD. Relevant information was identified through a comprehensive literature search using Medline, PubMed and CINAHL Complete and using the search terms Ebola, Ebola virus disease, Ebola hemorrhagic fever, West Africa outbreak, Ebola transmission, Ebola symptoms and signs, Ebola diagnosis, Ebola treatment, vaccines for Ebola and clinical trials on Ebola. Through 22 July 2015, a total of 27,741 EVD cases and 11,284 deaths were reported from all affected countries. Several therapeutic agents and novel vaccines for EVD have been developed and are now undergoing evaluation. Concurrent with active case investigation, contact tracing, surveillance and supportive care to patients and communities, there has been rapid progress in the development of new therapies and vaccines against EVD. Continued focus on strengthening clinical and public health infrastructure will have direct benefits in controlling the spread of EVD and will provide a strong foundation for deployment of new drugs and vaccines to affected countries when they become available. The unprecedented West Africa Ebola outbreak, response measures, and ensuing drug and vaccine development suggest that new tools for Ebola control may be available in the near future.
Collapse
|
96
|
Rhein BA, Maury WJ. Ebola virus entry into host cells: identifying therapeutic strategies. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:115-124. [PMID: 26509109 PMCID: PMC4617201 DOI: 10.1007/s40588-015-0021-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Filoviruses cause severe hemorrhagic fever in humans. The archetypal virus of this group, Ebola virus, is responsible for the current filovirus epidemic in West Africa. Filoviruses infect most mammalian cells, resulting in broad species tropism and likely contributing to rapid spread of virus throughout the body. A thorough understanding of filovirus entry events will facilitate the development of therapeutics against these critical steps in the viral life cycle. This review summarizes the current understanding of filovirus entry and discusses some of the recent advancements in therapeutic strategies that target entry.
Collapse
Affiliation(s)
- Bethany A. Rhein
- Department of Microbiology, University of Iowa, 3-701 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242 USA
| | - Wendy J. Maury
- Department of Microbiology, University of Iowa, 3-701 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242 USA
| |
Collapse
|
97
|
Heller JA, DeMaria S, Levine A, Heller BJ, Augoustides JG, Stone M, Silvay G, Goldberg A. Cardiovascular and Pulmonary Impact of the Ebola Virus: A Review of Current Literature and Practices. J Cardiothorac Vasc Anesth 2015; 29:1672-6. [PMID: 26706795 DOI: 10.1053/j.jvca.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Joshua A Heller
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Samuel DeMaria
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adam Levine
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benjamin J Heller
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John G Augoustides
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Marc Stone
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George Silvay
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew Goldberg
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
98
|
Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks. Antimicrob Agents Chemother 2015; 59:5892-902. [PMID: 26248374 DOI: 10.1128/aac.01105-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients.
Collapse
|
99
|
Janeba Z. Development of Small-Molecule Antivirals for Ebola. Med Res Rev 2015; 35:1175-94. [PMID: 26172225 PMCID: PMC7168439 DOI: 10.1002/med.21355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/05/2023]
Abstract
Ebola hemorrhagic fever is a deadly disease caused by infection with one of the Ebola virus species. Although a significant progress has recently been made in understanding of Ebola virus biology and pathogenesis, development of effective anti-Ebola treatments has not been very productive, compared to other areas of antiviral research (e.g., HIV and HCV infections). No approved vaccine or medicine is available for Ebola but several are currently under development. This review summarises attempts in identification, evaluation, and development of small-molecule candidates for treatment of Ebola viral disease, including the most promising experimental drugs brincidofovir (CMX001), BCX4430, and favipiravir (T-705).
Collapse
Affiliation(s)
- Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
100
|
Madrid PB, Panchal RG, Warren TK, Shurtleff AC, Endsley AN, Green CE, Kolokoltsov A, Davey R, Manger ID, Gilfillan L, Bavari S, Tanga MJ. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect Dis 2015; 1:317-26. [PMID: 27622822 DOI: 10.1021/acsinfecdis.5b00030] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A systematic screen of FDA-approved drugs was performed to identify compounds with in vitro antiviral activities against Ebola virus (EBOV). Compounds active (>50% viral inhibition and <30% cellular toxicity) at a single concentration were tested in dose-response assays to quantitate the antiviral activities in replication and viral entry assays as well as cytotoxicity in the Vero cell line used to conduct these assays. On the basis of the approved human dosing, toxicity/tolerability, and pharmacokinetic data, seven of these in vitro hits from different pharmacological classes (chloroquine (CQ), amiodarone, prochlorperazine, benztropine, azithromycin, chlortetracycline, and clomiphene) were evaluated for their in vivo efficacy at a single dose and were administered via either intraperitoneal (ip) or oral route. Initially, azithromycin (100 mg/kg, twice daily, ip), CQ (90 mg/kg, twice daily, ip), and amiodarone (60 mg/kg, twice daily, ip) demonstrated significant increases in survival in the mouse model. After repeat evaluation, only CQ was found to reproducibly give significant efficacy in the mouse model with this dosing regimen. Azithromycin and CQ were also tested in a guinea pig model of EBOV infection over a range of doses, but none of the doses increased survival, and drug-related toxicity was observed at lower doses than in the mouse. These results show the benefits and specific challenges associated with drug repurposing and highlight the need for careful evaluation of approved drugs as rapidly deployable countermeasures against future pandemics.
Collapse
Affiliation(s)
- Peter B. Madrid
- Biosciences
Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rekha G. Panchal
- U.S.
Army Medical Research Institute of Infectious Diseases, Fort Detrick, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Travis K. Warren
- U.S.
Army Medical Research Institute of Infectious Diseases, Fort Detrick, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Amy C. Shurtleff
- U.S.
Army Medical Research Institute of Infectious Diseases, Fort Detrick, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Aaron N. Endsley
- Biosciences
Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Carol E. Green
- Biosciences
Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Andrey Kolokoltsov
- University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Robert Davey
- University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Ian D. Manger
- Biosciences
Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Lynne Gilfillan
- Biosciences
Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sina Bavari
- U.S.
Army Medical Research Institute of Infectious Diseases, Fort Detrick, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Mary J. Tanga
- Biosciences
Division, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| |
Collapse
|