51
|
Dong W, Xu C, Wu P, Cheng T, Yu J, Zhou S, Hong DY. Resolving the systematic positions of enigmatic taxa: Manipulating the chloroplast genome data of Saxifragales. Mol Phylogenet Evol 2018; 126:321-330. [PMID: 29702217 DOI: 10.1016/j.ympev.2018.04.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/30/2023]
Abstract
Accurately resolving the phylogeny of enigmatic taxa is always a challenge in phylogenetic inference. Such uncertainties could be due to systematic errors or model violations. Here, we provide an example demonstrating how these factors affect the positioning of Paeoniaceae within Saxifragales based on chloroplast genome data. We newly assembled 14 chloroplast genomes from Saxifragales, and by combining these genomes with those of 63 other angiosperms, three datasets were assembled to test different hypotheses proposed by recent studies. These datasets were subjected to maximum parsimony, maximum likelihood and Bayesian analyses with site-homogeneous/heterogeneous models, different data partitioning strategies, and the inclusion/exclusion of weak phylogenetic signals. Three datasets exhibited remarkable heterogeneity among sites and among taxa of Saxifragales. Phylogenetic analyses under homogeneous models or maximum parsimony showed a closer relationship of Paeoniaceae with herbaceous families in the order. Data partitioning strategies did not change the general tree topology. However, PhyloBayes analysis under the CAT+GTR model resulted in a relationship closer to woody families. We conclude that although genomic data significantly increase the phylogenetic resolution of enigmatic taxa with high support, the phylogenetic results inferred from such data might be analysis or signal dependent. The analytical pipeline outlined here combines phylogenomic inference methods with evaluation of lineage-specific rates of substitution, model selection, and assessment of systematic error. These methods would be applicable to resolve similar difficult questions in the tree of life.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - De-Yuan Hong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
52
|
Yang H, Li T, Dang K, Bu W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics 2018; 19:264. [PMID: 29669515 PMCID: PMC5907366 DOI: 10.1186/s12864-018-4650-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 04/08/2018] [Indexed: 01/24/2023] Open
Abstract
Background Mitochondrial genome (mt-genome) data can potentially return artefactual relationships in the higher-level phylogenetic inference of insects due to the biases of accelerated substitution rates and compositional heterogeneity. Previous studies based on mt-genome data alone showed a paraphyly of Cimicomorpha (Insecta, Hemiptera) due to the positions of the families Tingidae and Reduviidae rather than the monophyly that was supported based on morphological characters, morphological and molecular combined data and large scale molecular datasets. Various strategies have been proposed to ameliorate the effects of potential mt-genome biases, including dense taxon sampling, removal of third codon positions or purine-pyrimidine coding and the use of site-heterogeneous models. In this study, we sequenced the mt-genomes of five additional Tingidae species and discussed the compositional and mutational rate heterogeneity in mt-genomes and its effect on the phylogenetic inferences of Cimicomorpha by implementing the bias-reduction strategies mentioned above. Results Heterogeneity in nucleotide composition and mutational biases were found in mt protein-coding genes, and the third codon exhibited high levels of saturation. Dense taxon sampling of Tingidae and Reduviidae and the other common strategies mentioned above were insufficient to recover the monophyly of the well-established group Cimicomorpha. When the sites with weak phylogenetic signals in the dataset were removed, the remaining dataset of mt-genomes can support the monophyly of Cimicomorpha; this support demonstrates that mt-genomes possess strong phylogenetic signals for the inference of higher-level phylogeny of this group. Comparison of the ratio of the removal of amino acids for each PCG showed that ATP8 has the highest ratio while CO1 has the lowest. This pattern is largely congruent with the evolutionary rate of 13 PCGs that ATP8 represents the highest evolutionary rate, whereas CO1 appears to be the lowest. Notably, the value of Ka/Ks ratios of all PCGs is less than 1, indicating that these genes are likely evolving under purifying selection. Conclusions Our results demonstrate that mt-genomes have sites with strong phylogenetic signals for the inference of higher-level phylogeny of Cimicomorpha. Consequently, bioinformatic approaches to removing sites with weak phylogenetic signals in mt-genome without relying on an a priori tree topology would greatly improve this field. Electronic supplementary material The online version of this article (10.1186/s12864-018-4650-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huanhuan Yang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Teng Li
- Institute of Zoology and Developmental Biology, College of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Kai Dang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
53
|
Knowles LL, Huang H, Sukumaran J, Smith SA. A matter of phylogenetic scale: Distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene tree discord in recent versus deep diversification histories. AMERICAN JOURNAL OF BOTANY 2018; 105:376-384. [PMID: 29710372 DOI: 10.1002/ajb2.1064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Discordant gene trees are commonly encountered when sequences from thousands of loci are applied to estimate phylogenetic relationships. Several processes contribute to this discord. Yet, we have no methods that jointly model different sources of conflict when estimating phylogenies. An alternative to analyzing entire genomes or all the sequenced loci is to identify a subset of loci for phylogenetic analysis. If we can identify data partitions that are most likely to reflect descent from a common ancestor (i.e., discordant loci that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such as lateral gene transfer [LGT]), we can analyze this subset using powerful coalescent-based species-tree approaches. METHODS Test data sets were simulated where discord among loci could arise from ILS and LGT. Data sets where analyzed using the newly developed program CLASSIPHY (Huang et al., ) to assess whether our ability to distinguish the cause of discord among loci varied when ILS and LGT occurred in the recent versus deep past and whether the accuracy of these inferences were affected by the mutational process. KEY RESULTS We show that accuracy of probabilistic classification of individual loci by the cause of discord differed when ILS and LGT events occurred more recently compared with the distant past and that the signal-to-noise ratio arising from the mutational process contributes to difficulties in inferring LGT data partitions. CONCLUSIONS We discuss our findings in terms of the promise and limitations of identifying subsets of loci for species-tree inference that will not violate the underlying coalescent model (i.e., data partitions in which ILS, and not LGT, contributes to discord). We also discuss the empirical implications of our work given the many recalcitrant nodes in the tree of life (e.g., origins of angiosperms, amniotes, or Neoaves), and recent arguments for concatenating loci.
Collapse
Affiliation(s)
- L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI, 48109-1079, USA
| | - Huateng Huang
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI, 48109-1079, USA
| | - Jeet Sukumaran
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI, 48109-1079, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI, 48109-1079, USA
| |
Collapse
|
54
|
Smith SA, Pease JB. Heterogeneous molecular processes among the causes of how sequence similarity scores can fail to recapitulate phylogeny. Brief Bioinform 2017; 18:451-457. [PMID: 27103098 PMCID: PMC5429007 DOI: 10.1093/bib/bbw034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 11/24/2022] Open
Abstract
Sequence similarity tools like Basic Local Alignment Search Tool (BLAST) are essential components of many functional genetic, genomic, phylogenetic and bioinformatic studies. Many modern analysis pipelines use significant sequence similarity scores (p- or E-values) and the ranked order of BLAST matches to test a wide range of hypotheses concerning homology, orthology, the timing of de novo gene birth/death and gene family expansion/contraction. Despite significant contrary findings, many of these tests still implicitly assume that stronger or higher-ranked E-value scores imply closer phylogenetic relationships between sequences. Here, we demonstrate that even though a general relationship does exist between the phylogenetic distance of two sequences and their E-value, significant and misleading errors occur in both the completeness and the order of results under realistic evolutionary scenarios. These results provide additional details to past evidence showing that studies should avoid drawing direct inferences of evolutionary relatedness from measures of sequence similarity alone, and should instead, where possible, use more rigorous phylogeny-based methods.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Corresponding author: Stephen A. Smith, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA. E-mail:
| | - James B Pease
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
55
|
Liu Y, Song F, Jiang P, Wilson JJ, Cai W, Li H. Compositional heterogeneity in true bug mitochondrial phylogenomics. Mol Phylogenet Evol 2017; 118:135-144. [PMID: 28986237 DOI: 10.1016/j.ympev.2017.09.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/28/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023]
Abstract
Mitochondrial phylogenomics is often controversial, in particular for inferring deep relationships. The recent rapid increase of mitochondrial genome data provides opportunities for better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and mutation rates. Here, we gathered 76 mitochondrial genome sequences for Heteroptera representing all seven infraorders, including 17 newly sequenced mitochondrial genomes. We found strong heterogeneity in base composition and contrasting evolutionary rates among heteropteran mitochondrial genomes, which affected analyses with various datasets and partitioning schemes under site-homogeneous models and produced false groupings of unrelated taxa exhibiting similar base composition and accelerated evolutionary rates. Bayesian analyses using a site-heterogeneous mixture CAT+GTR model showed high congruence of topologies with the currently accepted phylogeny of Heteroptera. The results confirm the monophyly of the six infraorders within Heteroptera, except for Cimicomorpha which was recovered as two paraphyletic clades. The monophyly of Terheteroptera (Cimicomorpha and Pentatomomorpha) and Panheteroptera (Nepomorpha, Leptopodomorpha and Terheteroptera) was recovered demonstrating a significant improvement over previous studies using mitochondrial genome data. Our study shows the power of the site-heterogeneous mixture models for resolving phylogenetic relationships with Heteroptera and provides one more case showing that model adequacy is critical for accurate tree reconstruction in mitochondrial phylogenomics.
Collapse
Affiliation(s)
- Yingqi Liu
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Jiang
- National Agro-Technical Extension and Service Centre, Ministry of Agriculture, Beijing 100125, China
| | - John-James Wilson
- International College Beijing, China Agricultural University, Beijing 100083, China
| | - Wanzhi Cai
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
56
|
Li H, Leavengood JM, Chapman EG, Burkhardt D, Song F, Jiang P, Liu J, Zhou X, Cai W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc Biol Sci 2017; 284:20171223. [PMID: 28878063 PMCID: PMC5597834 DOI: 10.1098/rspb.2017.1223] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/27/2023] Open
Abstract
Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character state reconstruction and divergence time estimation suggest that the success of true bugs (Heteroptera) is probably due to angiosperm coevolution, but key adaptive innovations (e.g. prognathous mouthpart, predatory behaviour, and haemelytron) facilitated multiple independent shifts among diverse feeding habits and multiple independent colonizations of aquatic habitats.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - John M Leavengood
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Eric G Chapman
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Daniel Burkhardt
- Naturhistorisches Museum, Augustinergasse 2, 4001 Basel, Switzerland
| | - Fan Song
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pei Jiang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Wanzhi Cai
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
57
|
Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements. Genome Biol Evol 2017; 9:2308-2321. [PMID: 28934378 PMCID: PMC5604124 DOI: 10.1093/gbe/evx168] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element loci from 72 published genomes and invitro enrichment and sequencing of ultraconserved elements from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.
Collapse
Affiliation(s)
- Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Carl H. Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Mark T. Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Brant C. Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
58
|
Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements. Genome Biol Evol 2017. [PMID: 28934378 DOI: 10.1093/gbe/evx168)] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element loci from 72 published genomes and invitro enrichment and sequencing of ultraconserved elements from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.
Collapse
Affiliation(s)
- Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Carl H Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Mark T Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
59
|
Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire JY, Kupfer A, Petersen J, Jarek M, Meyer A, Vences M, Philippe H. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol 2017; 1:1370-1378. [PMID: 28890940 PMCID: PMC5584656 DOI: 10.1038/s41559-017-0240-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.
Collapse
Affiliation(s)
- Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78464, Germany. .,Systematic Biology Program, Department of Organismal Biology, Univeristy of Uppsala, Norbyvägen 18D, Uppsala, 75236, Sweden.
| | - Denis Baurain
- InBioS-Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège, Liège, 4000, Belgium
| | - Henner Brinkmann
- Leibniz-Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, 38124, Germany
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, 34095, France
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, UMR7138, Sorbonne Universities, Paris, 75005, France
| | - Alexander Kupfer
- Department of Zoology, Stuttgart State Museum of Natural History, Stuttgart, 70191, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, 38124, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78464, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, 38106, Germany
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, Moulis, 09200, France. .,Departement de Biochimie, Université de Montréal, Montréal, QC, H3C3J7, Canada.
| |
Collapse
|
60
|
Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, Ettema TJG, Embley TM. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci U S A 2017; 114:E4602-E4611. [PMID: 28533395 PMCID: PMC5468678 DOI: 10.1073/pnas.1618463114] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood-Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.
Collapse
Affiliation(s)
- Tom A Williams
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Gergely J Szöllősi
- MTA-ELTE Lendület Evolutionary Genomics Research Group, 1117 Budapest, Hungary
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Sarah E Heaps
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Bastien Boussau
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
61
|
Scholl B, Rylee J, Luci JJ, Priebe NJ, Padberg J. Orientation selectivity in the visual cortex of the nine-banded armadillo. J Neurophysiol 2017; 117:1395-1406. [PMID: 28053246 DOI: 10.1152/jn.00851.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/28/2022] Open
Abstract
Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals.NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials.
Collapse
Affiliation(s)
| | - Johnathan Rylee
- Department of Biology, University of Central Arkansas, Conway, Arkansas
| | - Jeffrey J Luci
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas; and
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas; and.,Center for Learning and Memory, Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas
| | - Jeffrey Padberg
- Department of Biology, University of Central Arkansas, Conway, Arkansas;
| |
Collapse
|
62
|
Dornburg A, Townsend JP, Brooks W, Spriggs E, Eytan RI, Moore JA, Wainwright PC, Lemmon A, Lemmon EM, Near TJ. New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Mol Phylogenet Evol 2017; 110:27-38. [PMID: 28254474 DOI: 10.1016/j.ympev.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/17/2022]
Abstract
Percomorph fishes represent over 17,100 species, including several model organisms and species of economic importance. Despite continuous advances in the resolution of the percomorph Tree of Life, resolution of the sister lineage to Percomorpha remains inconsistent but restricted to a small number of candidate lineages. Here we use an anchored hybrid enrichment (AHE) dataset of 132 loci with over 99,000 base pairs to identify the sister lineage of percomorph fishes. Initial analyses of this dataset failed to recover a strongly supported sister clade to Percomorpha, however, scrutiny of the AHE dataset revealed a bias towards high GC content at fast-evolving codon partitions (GC bias). By combining several existing approaches aimed at mitigating the impacts of convergence in GC bias, including RY coding and analyses of amino acids, we consistently recovered a strongly supported clade comprised of Holocentridae (squirrelfishes), Berycidae (Alfonsinos), Melamphaidae (bigscale fishes), Cetomimidae (flabby whalefishes), and Rondeletiidae (redmouth whalefishes) as the sister lineage to Percomorpha. Additionally, implementing phylogenetic informativeness (PI) based metrics as a filtration method yielded this same topology, suggesting PI based approaches will preferentially filter these fast-evolving regions and act in a manner consistent with other phylogenetic approaches aimed at mitigating GC bias. Our results provide a new perspective on a key issue for studies investigating the evolutionary history of more than one quarter of all living species of vertebrates.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
| | - Jeffrey P Townsend
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Biostatistics, Yale University, New Haven, CT 06510, USA
| | - Willa Brooks
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Elizabeth Spriggs
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Ron I Eytan
- Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jon A Moore
- Florida Atlantic University, Wilkes Honors College, Jupiter, FL 33458, USA; Florida Atlantic University, Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, CA 95616, USA
| | - Alan Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
63
|
The genomic landscape of evolutionary convergence in mammals, birds and reptiles. Nat Ecol Evol 2017; 1:41. [PMID: 28812724 DOI: 10.1038/s41559-016-0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023]
Abstract
Many lineage-defining (nodal) mutations possess high functionality. However, differentiating adaptive nodal mutations from those that are functionally compensated remains challenging. To address this challenge, we identified functional nodal mutations (fNMs) in ~3,400 nuclear DNA (nDNA) and 4 mitochondrial DNA (mtDNA) protein structures from 91 and 1,003 species, respectively, representing the entire mammalian, bird and reptile phylogeny. A screen for candidate compensatory mutations among co-occurring amino acid changes in close structural proximity revealed that such compensated fNMs encompass 37% and 27% of the mtDNA and nDNA datasets, respectively. Analysis of the remaining (non-compensated) mutations, which are enriched for adaptive mutations, showed that birds and mammals share most such recurrent fNMs (N = 51). Among the latter, we discovered mutations in thermoregulation-related genes. These represent the best candidates to explain the molecular basis of convergent body thermoregulation in birds and mammals. Our analysis reveals the landscape of possible mutational compensation and convergence in amniote phylogeny.
Collapse
|
64
|
Halliday TJD, Upchurch P, Goswami A. Resolving the relationships of Paleocene placental mammals. Biol Rev Camb Philos Soc 2017; 92:521-550. [PMID: 28075073 PMCID: PMC6849585 DOI: 10.1111/brv.12242] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023]
Abstract
The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.
Collapse
Affiliation(s)
- Thomas J. D. Halliday
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Paul Upchurch
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Anjali Goswami
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| |
Collapse
|
65
|
Suh A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. ZOOL SCR 2016. [DOI: 10.1111/zsc.12213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University SE ‐ 752 36 Uppsala Sweden
| |
Collapse
|
66
|
Shen XX, Salichos L, Rokas A. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference. Genome Biol Evol 2016; 8:2565-80. [PMID: 27492233 PMCID: PMC5010910 DOI: 10.1093/gbe/evw179] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/13/2022] Open
Abstract
Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University
| | - Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University Department of Molecular Biophysics and Biochemistry, Yale University
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
| |
Collapse
|
67
|
O'Connor A, Wills MA. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time. Syst Biol 2016; 65:792-811. [PMID: 27155010 PMCID: PMC4997008 DOI: 10.1093/sysbio/syw039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/03/2016] [Indexed: 11/30/2022] Open
Abstract
The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence-however measured-also varied throughout the Phanerozoic, reflecting the taxonomic composition of our sample. Notably, periods containing a high proportion of arthropods had poorer congruence overall than those with higher proportions of tetrapods. [Fossil calibration; gap excess ratio; manhattan stratigraphic metric; molecular clocks; stratigraphic congruence.].
Collapse
Affiliation(s)
- Anne O'Connor
- Milner Centre for Evolution, The University of Bath, The Avenue, Claverton Down, Bath BA2 7AY, UK
| | - Matthew A Wills
- Milner Centre for Evolution, The University of Bath, The Avenue, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
68
|
Gatesy J, Meredith RW, Janecka JE, Simmons MP, Murphy WJ, Springer MS. Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family‐level tree for Mammalia. Cladistics 2016; 33:295-332. [DOI: 10.1111/cla.12170] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
- John Gatesy
- Department of Biology University of California Riverside CA 92521 USA
| | - Robert W. Meredith
- Department of Biology and Molecular Biology Montclair State University Montclair NJ 07043 USA
| | - Jan E. Janecka
- Department of Biological Sciences Duquesne University Pittsburgh PA 15282 USA
| | - Mark P. Simmons
- Department of Biology Colorado State University Fort Collins CO 80523 USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences Texas A&M University College Station TX 77843 USA
| | - Mark S. Springer
- Department of Biology University of California Riverside CA 92521 USA
| |
Collapse
|
69
|
Prudent X, Parra G, Schwede P, Roscito JG, Hiller M. Controlling for Phylogenetic Relatedness and Evolutionary Rates Improves the Discovery of Associations Between Species' Phenotypic and Genomic Differences. Mol Biol Evol 2016; 33:2135-50. [PMID: 27222536 PMCID: PMC4948712 DOI: 10.1093/molbev/msw098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The growing number of sequenced genomes allows us now to address a key question in genetics and evolutionary biology: which genomic changes underlie particular phenotypic changes between species? Previously, we developed a computational framework called Forward Genomics that associates phenotypic to genomic differences by focusing on phenotypes that are independently lost in different lineages. However, our previous implementation had three main limitations. Here, we present two new Forward Genomics methods that overcome these limitations by (1) directly controlling for phylogenetic relatedness, (2) controlling for differences in evolutionary rates, and (3) computing a statistical significance. We demonstrate on large-scale simulated data and on real data that both new methods substantially improve the sensitivity to detect associations between phenotypic and genomic differences. We applied these new methods to detect genomic differences involved in the loss of vision in the blind mole rat and the cape golden mole, two independent subterranean mammals. Forward Genomics identified several genes that are enriched in functions related to eye development and the perception of light, as well as genes involved in the circadian rhythm. These new Forward Genomics methods represent a significant advance in our ability to discover the genomic basis underlying phenotypic differences between species. Source code: https://github.com/hillerlab/ForwardGenomics/.
Collapse
Affiliation(s)
- Xavier Prudent
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Genis Parra
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Peter Schwede
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
70
|
Foley NM, Springer MS, Teeling EC. Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150140. [PMID: 27325836 PMCID: PMC4920340 DOI: 10.1098/rstb.2015.0140] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Most molecular phylogenetic studies place all placental mammals into four superordinal groups, Laurasiatheria (e.g. dogs, bats, whales), Euarchontoglires (e.g. humans, rodents, colugos), Xenarthra (e.g. armadillos, anteaters) and Afrotheria (e.g. elephants, sea cows, tenrecs), and estimate that these clades last shared a common ancestor 90-110 million years ago. This phylogeny has provided a framework for numerous functional and comparative studies. Despite the high level of congruence among most molecular studies, questions still remain regarding the position and divergence time of the root of placental mammals, and certain 'hard nodes' such as the Laurasiatheria polytomy and Paenungulata that seem impossible to resolve. Here, we explore recent consensus and conflict among mammalian phylogenetic studies and explore the reasons for the remaining conflicts. The question of whether the mammal tree of life is or can be ever resolved is also addressed.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Nicole M Foley
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| | - Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
71
|
Irisarri I, Meyer A. The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes. Syst Biol 2016; 65:1057-1075. [PMID: 27425642 DOI: 10.1093/sysbio/syw057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Identifying the closest living relative(s) of tetrapods is an important, yet still contested question in vertebrate phylogenetics. Three hypotheses are possible and ruling out alternatives has proven difficult even with large molecular data sets due to weak phylogenetic signal coupled nonphylogenetic noise resulting from relatively rapid speciation events that occurred a long time ago ([Formula: see text]400 Ma). Here, we revisit the identity of the closest living relative of land vertebrates from a phylogenomic perspective and include new genomic data for all extant lungfish genera. RNA-seq proves to be a great alternative to genomic sequencing, which currently is technically not feasible in lungfishes due to their huge (50-130 Gb) and repetitive genomes. We examined the most important sources of systematic error, namely long-branch attraction (LBA), compositional heterogeneity and distribution of missing data and applied different correction techniques. A multispecies coalescent approach is used to account for deep coalescence that might come from the short and deep internodes separating early sarcopterygian splits. Concatenation methods favored lungfishes as the closest living relatives of tetrapods with strong statistical support. Amino acid profile mixture models can unambiguously resolve this difficult internode thanks to their ability to avoid systematic error. We assessed the performance of different site-heterogeneous models and data partitioning and compared the ability of different strategies designed to overcome LBA, including taxon manipulation, reduction of among-lineage rate heterogeneity and removal of fast-evolving or compositionally heterogeneous positions. The identification of lungfish as sister group of tetrapods is robust regarding the effects of nonstationary composition and distribution of missing data. The multispecies coalescent method reconstructed strongly supported topologies that were congruent with concatenation, despite pervasive gene tree heterogeneity. We reject alternative topologies for early sarcopterygian relationships by increasing the signal-to-noise ratio in our alignments. The analytical pipeline outlined here combines probabilistic phylogenomic inference with methods for evaluating data quality, model adequacy, and assessing systematic error, and thus is likely to help resolve similarly difficult internodes in the tree of life. [Coalescence; coelacanth; compositional heterogeneity; gene tree; long-branch attraction; lungfish; missing data; model misspecification; phylogenomic; species tree; systematic error.].
Collapse
Affiliation(s)
- Iker Irisarri
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Axel Meyer
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
72
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
73
|
Edmunds SC, Li P, Hunter CI, Xiao SZ, Davidson RL, Nogoy N, Goodman L. Experiences in integrated data and research object publishing using GigaDB. INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES 2016. [DOI: 10.1007/s00799-016-0174-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Song F, Li H, Jiang P, Zhou X, Liu J, Sun C, Vogler AP, Cai W. Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models. Genome Biol Evol 2016; 8:1411-26. [PMID: 27189999 PMCID: PMC4898802 DOI: 10.1093/gbe/evw086] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mitochondrial genome data. The main reasons have been the absence of sufficient data in several orders and lack of appropriate phylogenetic methods that avoid the systematic errors from compositional and mutational biases in insect mitochondrial genomes. In this study, we assembled the richest taxon sampling of Holometabola to date (199 species in 11 orders), and analyzed both nucleotide and amino acid data sets using several methods. We find the standard Bayesian inference and maximum-likelihood analyses were strongly affected by systematic biases, but the site-heterogeneous mixture model implemented in PhyloBayes avoided the false grouping of unrelated taxa exhibiting similar base composition and accelerated evolutionary rate. The inclusion of rRNA genes and removal of fast-evolving sites with the observed variability sorting method for identifying sites deviating from the mean rates improved the phylogenetic inferences under a site-heterogeneous model, correctly recovering most deep branches of the Holometabola phylogeny. We suggest that the use of mitochondrial genome data for resolving deep phylogenetic relationships requires an assessment of the potential impact of substitutional saturation and compositional biases through data deletion strategies and by using site-heterogeneous mixture models. Our study suggests a practical approach for how to use densely sampled mitochondrial genome data in phylogenetic analyses.
Collapse
Affiliation(s)
- Fan Song
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pei Jiang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington
| | - Changhai Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alfried P Vogler
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
Ball SG, Bhattacharya D, Qiu H, Weber APM. Commentary: Plastid establishment did not require a chlamydial partner. Front Cell Infect Microbiol 2016; 6:43. [PMID: 27148492 PMCID: PMC4829877 DOI: 10.3389/fcimb.2016.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/27/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique-Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey , New Brunswick, NJ, USA
| | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey , New Brunswick, NJ, USA
| | - Andreas P M Weber
- Center of Excellence on Plant Sciences, Institute for Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
76
|
Tarver JE, Dos Reis M, Mirarab S, Moran RJ, Parker S, O'Reilly JE, King BL, O'Connell MJ, Asher RJ, Warnow T, Peterson KJ, Donoghue PCJ, Pisani D. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biol Evol 2016; 8:330-44. [PMID: 26733575 PMCID: PMC4779606 DOI: 10.1093/gbe/evv261] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean.
Collapse
Affiliation(s)
- James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Ireland School of Earth Sciences, University of Bristol, United Kingdom
| | - Mario Dos Reis
- Department of Genetics, Evolution and Environment, University College London, United Kingdom School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Siavash Mirarab
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego
| | - Raymond J Moran
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Sean Parker
- School of Earth Sciences, University of Bristol, United Kingdom
| | | | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Robert J Asher
- Museum of Zoology, University of Cambridge, United Kingdom
| | - Tandy Warnow
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, United Kingdom School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
77
|
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol 2016; 94:1-33. [DOI: 10.1016/j.ympev.2015.07.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
78
|
Teeling EC, Jones G, Rossiter SJ. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. BAT BIOACOUSTICS 2016. [DOI: 10.1007/978-1-4939-3527-7_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
79
|
Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van Dam S, Brawand D, Marques PI, Michalak P, Kang L, Bhak J, Yim HS, Grishin NV, Nielsen NH, Heide-Jørgensen MP, Oziolor EM, Matson CW, Church GM, Stuart GW, Patton JC, George JC, Suydam R, Larsen K, López-Otín C, O'Connell MJ, Bickham JW, Thomsen B, de Magalhães JP. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 2015; 10:112-22. [PMID: 25565328 PMCID: PMC4536333 DOI: 10.1016/j.celrep.2014.12.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023] Open
Abstract
The bowhead whale (Balaena mysticetus) is estimated to live over 200 years and is possibly the longest-living mammal. These animals should possess protective molecular adaptations relevant to age-related diseases, particularly cancer. Here, we report the sequencing and comparative analysis of the bowhead whale genome and two transcriptomes from different populations. Our analysis identifies genes under positive selection and bowhead-specific mutations in genes linked to cancer and aging. In addition, we identify gene gain and loss involving genes associated with DNA repair, cell-cycle regulation, cancer, and aging. Our results expand our understanding of the evolution of mammalian longevity and suggest possible players involved in adaptive genetic changes conferring cancer resistance. We also found potentially relevant changes in genes related to additional processes, including thermoregulation, sensory perception, dietary adaptations, and immune response. Our data are made available online (http://www.bowhead-whale.org) to facilitate research in this long-lived species.
Collapse
Affiliation(s)
- Michael Keane
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy Semeiks
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Yang I Li
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Thomas Craig
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lone Bruhn Madsen
- Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Sipko van Dam
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David Brawand
- MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK
| | - Patrícia I Marques
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lin Kang
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Hyung-Soon Yim
- KIOST, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | - Nick V Grishin
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | | | | | - Elias M Oziolor
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research (CRASR) and Institute for Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Cole W Matson
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research (CRASR) and Institute for Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gary W Stuart
- The Center for Genomic Advocacy (TCGA) and Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - John C Patton
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - J Craig George
- North Slope Borough, Department of Wildlife Management, Barrow, AK 99723, USA
| | - Robert Suydam
- North Slope Borough, Department of Wildlife Management, Barrow, AK 99723, USA
| | - Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - John W Bickham
- Battelle Memorial Institute, Houston, TX 77079, USA; Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
80
|
Chen MY, Liang D, Zhang P. Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny. Syst Biol 2015; 64:1104-20. [PMID: 26276158 DOI: 10.1093/sysbio/syv059] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes.
Collapse
Affiliation(s)
- Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
81
|
Abstract
Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.
Collapse
|
82
|
Schwartz RS, Harkins KM, Stone AC, Cartwright RA. A composite genome approach to identify phylogenetically informative data from next-generation sequencing. BMC Bioinformatics 2015; 16:193. [PMID: 26062548 PMCID: PMC4464851 DOI: 10.1186/s12859-015-0632-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/29/2015] [Indexed: 11/16/2022] Open
Abstract
Background Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation. Results For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets. Conclusions SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0632-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Kelly M Harkins
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA. .,Department of Anthropology, University of California - Santa Cruz, Santa Cruz, CA, USA.
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
83
|
Moraes-Barros N, Arteaga MC. Genetic diversity in Xenarthra and its relevance to patterns of neotropical biodiversity. J Mammal 2015. [DOI: 10.1093/jmammal/gyv077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
84
|
Hughes L, Carton R, Minguzzi S, McEntee G, Deinum EE, O'Connell MJ, Parle-McDermott A. An active second dihydrofolate reductase enzyme is not a feature of rat and mouse, but they do have activity in their mitochondria. FEBS Lett 2015; 589:1855-62. [PMID: 25980602 DOI: 10.1016/j.febslet.2015.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
The identification of a second functional dihydrofolate reductase enzyme in humans, DHFRL1, led us to consider whether this is also a feature of rodents. We demonstrate that dihydrofolate reductase activity is also a feature of the mitochondria in both rat and mouse but this is not due to a second enzyme. While our phylogenetic analysis revealed that RNA-mediated DHFR duplication events did occur across the mammal tree, the duplicates in brown rat and mouse are likely to be processed pseudogenes. Humans have evolved the need for two separate enzymes while laboratory rats and mice have just one.
Collapse
Affiliation(s)
- Linda Hughes
- Nutritional Genomics Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert Carton
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland; Centre for Scientific Computing and Complex Systems Modelling (SCI-SYM), Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Stefano Minguzzi
- Nutritional Genomics Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Gráinne McEntee
- Nutritional Genomics Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Eva E Deinum
- Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland; Centre for Scientific Computing and Complex Systems Modelling (SCI-SYM), Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Anne Parle-McDermott
- Nutritional Genomics Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
85
|
Rosenkranz D, Rudloff S, Bastuck K, Ketting RF, Zischler H. Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals. RNA (NEW YORK, N.Y.) 2015; 21:911-22. [PMID: 25802409 PMCID: PMC4408798 DOI: 10.1261/rna.048603.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/10/2015] [Indexed: 05/25/2023]
Abstract
Argonaute proteins comprising Piwi-like and Argonaute-like proteins and their guiding small RNAs combat mobile DNA on the transcriptional and post-transcriptional level. While Piwi-like proteins and associated piRNAs are generally restricted to the germline, Argonaute-like proteins and siRNAs have been linked with transposon control in the germline as well as in the soma. Intriguingly, evolution has realized distinct Argonaute subfunctionalization patterns in different species but our knowledge about mammalian RNA interference pathways relies mainly on findings from the mouse model. However, mice differ from other mammals by absence of functional Piwil3 and expression of an oocyte-specific Dicer isoform. Thus, studies beyond the mouse model are required for a thorough understanding of function and evolution of mammalian RNA interference pathways. We high-throughput sequenced small RNAs from the male Tupaia belangeri germline, which represents a close outgroup to primates, hence phylogenetically links mice with humans. We identified transposon-derived piRNAs as well as siRNAs clearly contrasting the separation of piRNA- and siRNA-pathways into male and female germline as seen in mice. Genome-wide analysis of tree shrew transposons reveal that putative siRNAs map to transposon sites that form foldback secondary structures thus representing suitable Dicer substrates. In contrast piRNAs target transposon sites that remain accessible. With this we provide a basic mechanistic explanation how secondary structure of transposon transcripts influences piRNA- and siRNA-pathway utilization. Finally, our analyses of tree shrew piRNA clusters indicate A-Myb and the testis-expressed transcription factor RFX4 to be involved in the transcriptional regulation of mammalian piRNA clusters.
Collapse
Affiliation(s)
- David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - Stefanie Rudloff
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - Katharina Bastuck
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - René F Ketting
- Institute of Molecular Biology, IMB. Mainz, Rheinland-Pfalz 55128, Germany
| | - Hans Zischler
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
86
|
A Guide to Phylogenetic Reconstruction Using Heterogeneous Models—A Case Study from the Root of the Placental Mammal Tree. COMPUTATION 2015. [DOI: 10.3390/computation3020177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
87
|
Luo H. The use of evolutionary approaches to understand single cell genomes. Front Microbiol 2015; 6:174. [PMID: 25806025 PMCID: PMC4354383 DOI: 10.3389/fmicb.2015.00191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/20/2015] [Indexed: 11/13/2022] Open
Abstract
The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.
Collapse
Affiliation(s)
- Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
88
|
Li H, Shao R, Song N, Song F, Jiang P, Li Z, Cai W. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Sci Rep 2015; 5:8527. [PMID: 25704094 PMCID: PMC4336943 DOI: 10.1038/srep08527] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera.
Collapse
Affiliation(s)
- Hu Li
- Department of Entomology, China Agricultural University, Beijing. 100193, China
- Department of Ornamental Horticulture, China Agricultural University, Beijing. 100193, China
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nan Song
- Department of Entomology, China Agricultural University, Beijing. 100193, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan. 450002, China
| | - Fan Song
- Department of Entomology, China Agricultural University, Beijing. 100193, China
| | - Pei Jiang
- Department of Entomology, China Agricultural University, Beijing. 100193, China
| | - Zhihong Li
- Department of Entomology, China Agricultural University, Beijing. 100193, China
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing. 100193, China
| |
Collapse
|
89
|
Irwin DM. Genomic organization and evolution of ruminant lysozyme c genes. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:1-17. [PMID: 25730456 PMCID: PMC4821171 DOI: 10.13918/j.issn.2095-8137.2015.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/02/2014] [Indexed: 11/01/2022]
Abstract
Ruminant stomach lysozyme is a long established model of adaptive gene evolution. Evolution of stomach lysozyme function required changes in the site of expression of the lysozyme c gene and changes in the enzymatic properties of the enzyme. In ruminant mammals, these changes were associated with a change in the size of the lysozyme c gene family. The recent release of near complete genome sequences from several ruminant species allows a more complete examination of the evolution and diversification of the lysozyme c gene family. Here we characterize the size of the lysozyme c gene family in extant ruminants and demonstrate that their pecoran ruminant ancestor had a family of at least 10 lysozyme c genes, which included at least two pseudogenes. Evolutionary analysis of the ruminant lysozyme c gene sequences demonstrate that each of the four exons of the lysozyme c gene has a unique evolutionary history, indicating that they participated independently in concerted evolution. These analyses also show that episodic changes in the evolutionary constraints on the protein sequences occurred, with lysozyme c genes expressed in the abomasum of the stomach of extant ruminant species showing the greatest levels of selective constraints.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
90
|
Abstract
The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.
Collapse
Affiliation(s)
- Frederick A Matsen
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 91802, USA
| |
Collapse
|
91
|
Affiliation(s)
- Philip S. Ward
- Department of Entomology & Nematology, and Center for Population Biology, University of California, Davis, California 95616;
| |
Collapse
|
92
|
Gatesy J, Springer MS. Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenet Evol 2014; 80:231-66. [DOI: 10.1016/j.ympev.2014.08.013] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/26/2014] [Accepted: 08/10/2014] [Indexed: 11/16/2022]
|
93
|
Placental Evolution within the Supraordinal Clades of Eutheria with the Perspective of Alternative Animal Models for Human Placentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/639274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system.
Collapse
|
94
|
Morgan CC, Creevey CJ, O'Connell MJ. Mitochondrial data are not suitable for resolving placental mammal phylogeny. Mamm Genome 2014; 25:636-47. [PMID: 25239304 DOI: 10.1007/s00335-014-9544-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/01/2014] [Indexed: 02/01/2023]
Abstract
Mitochondrial data have traditionally been used in reconstructing a variety of species phylogenies. The low rates of recombination and thorough characterization of mitochondrial data across vertebrate species make it a particularly attractive phylogenetic marker. The relatively low number of fully sequenced mammal genomes and the lack of extensive sampling within Superorders have posed a serious problem for reaching agreement on the placement mammal species. The use of mitochondrial data sequences from large numbers of mammals could serve to circumvent the taxon-sampling deficit. Here we assess the suitability of mitochondrial data as a phylogenetic marker in mammal phylogenetics. MtDNA datasets of mammal origin have been filtered as follows: (i) we have sampled sparsely across the phylogenetic tree, (ii) we have constrained our sampling to genes with high taxon coverage, (iii) we have categorised rates across sites in a phylogeny independent manner and have removed fast evolving sites, and (iv), we have sampled from very shallow divergence times to reduce phylogenetic conflict. However, topologies obtained using these filters are not consistent with previous studies and are discordant across different genes. Individual mitochondrial genes, and indeed all mitochondrial genes analysed as a supermatrix, resulted in poor resolution of the species phylogeny. Overall, our study highlights the limitations of mitochondrial data, not only for resolving deep divergences and but also for shallow divergences in the mammal phylogeny.
Collapse
Affiliation(s)
- Claire C Morgan
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland,
| | | | | |
Collapse
|
95
|
Akanni WA, Creevey CJ, Wilkinson M, Pisani D. L.U.St: a tool for approximated maximum likelihood supertree reconstruction. BMC Bioinformatics 2014; 15:183. [PMID: 24925766 PMCID: PMC4073192 DOI: 10.1186/1471-2105-15-183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/02/2014] [Indexed: 12/29/2022] Open
Abstract
Background Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees have found applications in phylogenomics where they are used to combine gene trees and recover species phylogenies based on genome-scale data sets. Results Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests). Conclusion This is the first fully parametric implementation of a supertree method, it has clearly understood properties, and provides several advantages over currently available supertree approaches. It is easy to implement and works on any platform that has python installed. Availability: bitBucket page - https://afro-juju@bitbucket.org/afro-juju/l.u.st.git. Contact: Davide.Pisani@bristol.ac.uk.
Collapse
Affiliation(s)
| | | | | | - Davide Pisani
- Department of Biology, The National University of Ireland, Maynooth, Maynooth, Kildare, Ireland.
| |
Collapse
|
96
|
Hautier L, Billet G, Eastwood B, Lane J. Patterns of Morphological Variation of Extant Sloth Skulls and their Implication for Future Conservation Efforts. Anat Rec (Hoboken) 2014; 297:979-1008. [DOI: 10.1002/ar.22916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/18/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Lionel Hautier
- Laboratoire de Paléontologie; Institut des Sciences de l'Evolution de Montpellier, UMR-CNRS 5554, Cc 064, Université de Montpellier 2, place Eugène Bataillon; Montpellier Cedex France
- Museum of Zoology; University of Cambridge; Cambridge UK
| | - Guillaume Billet
- Muséum national d'Histoire naturelle; CR2P-UMR 7207 CNRS, MNHN, Univ Paris 06, 57 rue Cuvier, CP; 38 75005 Paris France
| | | | - Jemima Lane
- Museum of Zoology; University of Cambridge; Cambridge UK
| |
Collapse
|
97
|
Lin J, Chen G, Gu L, Shen Y, Zheng M, Zheng W, Hu X, Zhang X, Qiu Y, Liu X, Jiang C. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate. Mol Phylogenet Evol 2013; 71:193-200. [PMID: 24333622 DOI: 10.1016/j.ympev.2013.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/26/2022]
Abstract
Previous phylogenetic analyses have led to incongruent evolutionary relationships between tree shrews and other suborders of Euarchontoglires. What caused the incongruence remains elusive. In this study, we identified 6845 orthologous genes between seventeen placental mammals. Tree shrews and Primates were monophyletic in the phylogenetic trees derived from the first or/and second codon positions whereas tree shrews and Glires formed a monophyly in the trees derived from the third or all codon positions. The same topology was obtained in the phylogeny inference using the slowly and fast evolving genes, respectively. This incongruence was likely attributed to the fast substitution rate in tree shrews and Glires. Notably, sequence GC content only was not informative to resolve the controversial phylogenetic relationships between tree shrews, Glires, and Primates. Finally, estimation in the confidence of the tree selection strongly supported the phylogenetic affiliation of tree shrews to Primates as a monophyly.
Collapse
Affiliation(s)
- Jiannan Lin
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Guangfeng Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Rd, Shanghai 200072, China.
| | - Liang Gu
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Yuefeng Shen
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Meizhu Zheng
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Weisheng Zheng
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Xinjie Hu
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Xiaobai Zhang
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Yu Qiu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Rd, Shanghai 200072, China.
| | - Xiaoqing Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Rd, Shanghai 200072, China.
| | - Cizhong Jiang
- Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| |
Collapse
|
98
|
Morgan CC, Mc Cartney AM, Donoghue MTA, Loughran NB, Spillane C, Teeling EC, O'Connell MJ. Molecular adaptation of telomere associated genes in mammals. BMC Evol Biol 2013; 13:251. [PMID: 24237966 PMCID: PMC3833184 DOI: 10.1186/1471-2148-13-251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placental mammals display a huge range of life history traits, including size, longevity, metabolic rate and germ line generation time. Although a number of general trends have been proposed between these traits, there are exceptions that warrant further investigation. Species such as naked mole rat, human and certain bat species all exhibit extreme longevity with respect to body size. It has long been established that telomeres and telomere maintenance have a clear role in ageing but it has not yet been established whether there is evidence for adaptation in telomere maintenance proteins that could account for increased longevity in these species. RESULTS Here we carry out a molecular investigation of selective pressure variation, specifically focusing on telomere associated genes across placental mammals. In general we observe a large number of instances of positive selection acting on telomere genes. Although these signatures of selection overall are not significantly correlated with either longevity or body size we do identify positive selection in the microbat species Myotis lucifugus in functionally important regions of the telomere maintenance genes DKC1 and TERT, and in naked mole rat in the DNA repair gene BRCA1. CONCLUSION These results demonstrate the multifarious selective pressures acting across the mammal phylogeny driving lineage-specific adaptations of telomere associated genes. Our results show that regardless of the longevity of a species, these proteins have evolved under positive selection thereby removing increased longevity as the single selective force driving this rapid rate of evolution. However, evidence of molecular adaptations specific to naked mole rat and Myotis lucifugus highlight functionally significant regions in genes that may alter the way in which telomeres are regulated and maintained in these longer-lived species.
Collapse
|
99
|
Teeling EC, Hedges SB. Making the impossible possible: rooting the tree of placental mammals. Mol Biol Evol 2013; 30:1999-2000. [PMID: 23813980 DOI: 10.1093/molbev/mst118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Untangling the root of the evolutionary tree of placental mammals has been nearly an impossible task. The good news is that only three possibilities are seriously considered. The bad news is that all three possibilities are seriously considered. Paleontologists favor a root anchored by Xenarthra (e.g., sloths and anteater), whereas molecular evolutionists have favored the two other possible roots: Afrotheria (e.g., elephants, hyraxes, and tenrecs) and Atlantogenata (Afrotheria + Xenarthra). Now, two groups of researchers have scrutinized the largest available genomic data sets bearing on the question and have come to opposite conclusions, as reported in this issue of Molecular Biology and Evolution. Needless to say, more research is needed.
Collapse
Affiliation(s)
- Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|