51
|
Grusz AL, Rothfels CJ, Schuettpelz E. Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns. BMC Genomics 2016; 17:692. [PMID: 27577050 PMCID: PMC5006594 DOI: 10.1186/s12864-016-3034-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/22/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns-an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. RESULTS We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. CONCLUSIONS Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes.
Collapse
Affiliation(s)
- Amanda L. Grusz
- Department of Botany, Smithsonian Institution, MRC 166 PO Box 37012, Washington, DC, 20013-7012 USA
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, MN 55812 USA
| | - Carl J. Rothfels
- Department of Integrative Biology, University of California Berkeley, 1001 Valley Life Sciences Building, Berkeley, CA 94720-2466 USA
| | - Eric Schuettpelz
- Department of Botany, Smithsonian Institution, MRC 166 PO Box 37012, Washington, DC, 20013-7012 USA
| |
Collapse
|
52
|
Smith DR. The mutational hazard hypothesis of organelle genome evolution: 10 years on. Mol Ecol 2016; 25:3769-75. [PMID: 27357487 DOI: 10.1111/mec.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/14/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Why is there such a large variation in size and noncoding DNA content among organelle genomes? One explanation is that this genomic variation results from differences in the rates of organelle mutation and random genetic drift, as opposed to being the direct product of natural selection. Along these lines, the mutational hazard hypothesis (MHH) holds that 'excess' DNA is a mutational liability (because it increases the potential for harmful mutations) and, thus, has a greater tendency to accumulate in an organelle system with a low mutation rate as opposed to one with a high rate of mutation. Various studies have explored this hypothesis and, more generally, the relationship between organelle genome architecture and the mode and efficiency of organelle DNA repair. Although some of these investigations are in agreement with the MHH, others have contradicted it; nevertheless, they support a central role of mutation, DNA maintenance pathways and random genetic drift in fashioning organelle chromosomes. Arguably, one of the most important contributions of the MHH is that it has sparked crucial, widespread discussions about the importance of nonadaptive processes in genome evolution.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
53
|
The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae). Mol Phylogenet Evol 2016; 99:16-33. [DOI: 10.1016/j.ympev.2016.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
|
54
|
Cusimano N, Wicke S. Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. THE NEW PHYTOLOGIST 2016; 210:680-93. [PMID: 26671255 DOI: 10.1111/nph.13784] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/28/2015] [Indexed: 05/10/2023]
Abstract
Plastid genomes (plastomes) of nonphotosynthetic plants experience extensive gene losses and an acceleration of molecular evolutionary rates. Here, we inferred the mechanisms and timing of reductive genome evolution under relaxed selection in the broomrape family (Orobanchaceae). We analyzed the plastomes of several parasites with a major focus on the genus Orobanche using genome-descriptive and Bayesian phylogenetic-comparative methods. Besides this, we scanned the parasites' other cellular genomes to trace the fate of all genes that were purged from their plastomes. Our analyses indicate that the first functional gene losses occurred within 10 Myr of the transition to obligate parasitism in Orobanchaceae, and that the physical plastome reduction proceeds by small deletions that accumulate over time. Evolutionary rate shifts coincide with the genomic reduction process in broomrapes, suggesting that the shift of selectional constraints away from photosynthesis to other molecular processes alters the plastid rate equilibrium. Most of the photosynthesis-related genes or fragments of genes lost from the plastomes of broomrapes have survived in their nuclear or mitochondrial genomes as the results of multiple intracellular transfers and subsequent fragmentation. Our findings indicate that nonessential DNA is eliminated much faster in the plastomes of nonphotosynthetic parasites than in their other cellular genomes.
Collapse
Affiliation(s)
- Natalie Cusimano
- Department of Biology, Ludwig Maximilian University of Munich, Menzinger Street 67, Munich, 80638, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, Muenster, 48149, Germany
| |
Collapse
|
55
|
Rutishauser R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. ANNALS OF BOTANY 2016; 117:811-32. [PMID: 26589968 PMCID: PMC4845801 DOI: 10.1093/aob/mcv172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Various groups of flowering plants reveal profound ('saltational') changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps 'hopeful monsters') that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. SCOPE This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. CONCLUSIONS Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves - as still distinguishable in related flowering plants - are blurred ('fuzzy'). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic alterations that led to the evolution of these atypical plants. Future molecular genetic work on morphological misfits such as bladderworts and river-weeds will provide insight into developmental and evolutionary aspects of more typical vascular plants.
Collapse
Affiliation(s)
- Rolf Rutishauser
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
56
|
Samigullin TH, Logacheva MD, Penin AA, Vallejo-Roman CM. Complete Plastid Genome of the Recent Holoparasite Lathraea squamaria Reveals Earliest Stages of Plastome Reduction in Orobanchaceae. PLoS One 2016; 11:e0150718. [PMID: 26934745 PMCID: PMC4775063 DOI: 10.1371/journal.pone.0150718] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
Plants from the family Orobanchaceae are widely used as a model to study different aspects of parasitic lifestyle including host–parasite interactions and physiological and genomic adaptations. Among the latter, the most prominent are those that occurred due to the loss of photosynthesis; they include the reduction of the photosynthesis-related gene set in both nuclear and plastid genomes. In Orobanchaceae, the transition to non-photosynthetic lifestyle occurred several times independently, but only one lineage has been in the focus of evolutionary studies. These studies included analysis of plastid genomes and transcriptomes and allowed the inference of patterns and mechanisms of genome reduction that are thought to be general for parasitic plants. Here we report the plastid genome of Lathraea squamaria, a holoparasitic plant from Orobanchaceae, clade Rhinantheae. We found that in this plant the degree of plastome reduction is the least among non-photosynthetic plants. Like other parasites, Lathraea possess a plastome with elevated absolute rate of nucleotide substitution. The only gene lost is petL, all other genes typical for the plastid genome are present, but some of them–those encoding photosystem components (22 genes), cytochrome b6/f complex proteins (4 genes), plastid-encoded RNA polymerase subunits (2 genes), ribosomal proteins (2 genes), ccsA and cemA–are pseudogenized. Genes for cytochrome b6/f complex and photosystems I and II that do not carry nonsense or frameshift mutations have an increased ratio of non-synonymous to synonymous substitution rates, indicating the relaxation of purifying selection. Our divergence time estimates showed that transition to holoparasitism in Lathraea lineage occurred relatively recently, whereas the holoparasitic lineage Orobancheae is about two times older.
Collapse
Affiliation(s)
- Tahir H. Samigullin
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Maria D. Logacheva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Aleksey A. Penin
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Carmen M. Vallejo-Roman
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
57
|
Zhu A, Guo W, Gupta S, Fan W, Mower JP. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. THE NEW PHYTOLOGIST 2016; 209:1747-56. [PMID: 26574731 DOI: 10.1111/nph.13743] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/01/2015] [Indexed: 05/20/2023]
Abstract
Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR provides enhanced copy-correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent with other SC genes. Surprisingly, however, several plastid genes from Pelargonium, Plantago, and Silene have highly accelerated synonymous rates despite their IR localization. Together, these results provide strong evidence that the duplicative nature of the IR reduces the substitution rate within this region. The anomalously fast-evolving genes in Pelargonium, Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of error-prone double-strand break repair in these regions, which generates substitutional rate variation.
Collapse
Affiliation(s)
- Andan Zhu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Sakshi Gupta
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
58
|
Abstract
Santalales is an order of plants consisting almost entirely of parasites. Some, such as Osyris, are facultative root parasites whereas others, such as Viscum, are obligate stem parasitic mistletoes. Here, we report the complete plastome sequences of one species of Osyris and three species of Viscum, and we investigate the evolutionary aspects of structural changes and changes in gene content in relation to parasitism. Compared with typical angiosperms plastomes, the four Santalales plastomes are all reduced in size (10–22% compared with Vitis), and they have experienced rearrangements, mostly but not exclusively in the border areas of the inverted repeats. Additionally, a number of protein-coding genes (matK, infA, ccsA, rpl33, and all 11 ndh genes) as well as two transfer RNA genes (trnG-UCC and trnV-UAC) have been pseudogenized or completely lost. Most of the remaining plastid genes have a significantly changed selection pattern compared with other dicots, and the relaxed selection of photosynthesis genes is noteworthy. Although gene loss obviously reduces plastome size, intergenic regions were also shortened. As plastome modifications are generally most prominent in Viscum, they are most likely correlated with the increased nutritional dependence on the host compared with Osyris.
Collapse
Affiliation(s)
- Gitte Petersen
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Argelia Cuenca
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Ole Seberg
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| |
Collapse
|
59
|
Lam VKY, Soto Gomez M, Graham SW. The Highly Reduced Plastome of Mycoheterotrophic Sciaphila (Triuridaceae) Is Colinear with Its Green Relatives and Is under Strong Purifying Selection. Genome Biol Evol 2015; 7:2220-36. [PMID: 26170229 PMCID: PMC4558852 DOI: 10.1093/gbe/evv134] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
Abstract
The enigmatic monocot family Triuridaceae provides a potentially useful model system for studying the effects of an ancient loss of photosynthesis on the plant plastid genome, as all of its members are mycoheterotrophic and achlorophyllous. However, few studies have placed the family in a comparative context, and its phylogenetic placement is only partly resolved. It was also unclear whether any taxa in this family have retained a plastid genome. Here, we used genome survey sequencing to retrieve plastid genome data for Sciaphila densiflora (Triuridaceae) and ten autotrophic relatives in the orders Dioscoreales and Pandanales. We recovered a highly reduced plastome for Sciaphila that is nearly colinear with Carludovica palmata, a photosynthetic relative that belongs to its sister group in Pandanales, Cyclanthaceae-Pandanaceae. This phylogenetic placement is well supported and robust to a broad range of analytical assumptions in maximum-likelihood inference, and is congruent with recent findings based on nuclear and mitochondrial evidence. The 28 genes retained in the S. densiflora plastid genome are involved in translation and other nonphotosynthetic functions, and we demonstrate that nearly all of the 18 protein-coding genes are under strong purifying selection. Our study confirms the utility of whole plastid genome data in phylogenetic studies of highly modified heterotrophic plants, even when they have substantially elevated rates of substitution.
Collapse
Affiliation(s)
- Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
60
|
Pavlovič A, Saganová M. A novel insight into the cost-benefit model for the evolution of botanical carnivory. ANNALS OF BOTANY 2015; 115:1075-92. [PMID: 25948113 PMCID: PMC4648460 DOI: 10.1093/aob/mcv050] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Saganová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| |
Collapse
|
61
|
Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 2015; 16:306. [PMID: 25887666 PMCID: PMC4446112 DOI: 10.1186/s12864-015-1498-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plastid genomes, also known as plastomes, are shaped by the selective forces acting on the fundamental cellular functions they code for and thus they are expected to preserve signatures of the adaptive path undertaken by different plant species during evolution. To identify molecular signatures of positive selection associated to adaptation to contrasting ecological niches, we sequenced with Solexa technology the plastomes of two congeneric Brassicaceae species with different habitat preference, Cardamine resedifolia and Cardamine impatiens. Results Following in-depth characterization of plastome organization, repeat patterns and gene space, the comparison of the newly sequenced plastomes between each other and with 15 fully sequenced Brassicaceae plastomes publically available in GenBank uncovered dynamic variation of the IR boundaries in the Cardamine lineage. We further detected signatures of positive selection in ten of the 75 protein-coding genes of the examined plastomes, identifying a range of chloroplast functions putatively involved in adaptive processes within the family. For instance, the three residues found to be under positive selection in RUBISCO could possibly be involved in the modulation of RUBISCO aggregation/activation and enzymatic specificty in Brassicaceae. In addition, our results points to differential evolutionary rates in Cardamine plastomes. Conclusions Overall our results support the existence of wider signatures of positive selection in the plastome of C. resedifolia, possibly as a consequence of adaptation to high altitude environments. We further provide a first characterization of the selective patterns shaping the Brassicaceae plastomes, which could help elucidate the driving forces underlying adaptation and evolution in this important plant family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1498-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiliang Hu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Gaurav Sablok
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Bo Wang
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Dong Qu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy. .,College of Horticulture, Northwest Agricultural and Forest University, 712100, Yangling, Shaanxi, PR China.
| | - Enrico Barbaro
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Roberto Viola
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Mingai Li
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Claudio Varotto
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| |
Collapse
|
62
|
Abstract
Within plastid-bearing species, the mutation rate of the plastid genome is often assumed to be greater than that of the mitochondrial genome. This assumption is based on early, pioneering studies of land plant molecular evolution, which uncovered higher rates of synonymous substitution in plastid versus mitochondrial DNAs. However, much of the plastid-containing eukaryotic diversity falls outside of land plants, and the patterns of plastid DNA evolution for embryophytes do not necessarily reflect those of other groups. Recent analyses of plastid and mitochondrial substitution rates in diverse lineages have uncovered very different trends than those recorded for land plants. Here, I explore these new data and argue that for many protists the plastid mutation rate is lower than that of the mitochondrion, including groups with primary or secondary plastids as well as nonphotosynthetic algae. These findings have far-reaching implications for how we view plastid genomes and how their sequences are used for evolutionary analyses, and might ultimately reflect a general tendency toward more efficient DNA repair mechanisms in plastids than in mitochondria.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
63
|
Bárta J, Stone JD, Pech J, Sirová D, Adamec L, Campbell MA, Štorchová H. The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba. BMC PLANT BIOLOGY 2015; 15:78. [PMID: 25848894 PMCID: PMC4358910 DOI: 10.1186/s12870-015-0467-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes. RESULTS We sequenced a normalized cDNA library prepared from total RNA extracted from shoots of U. vulgaris including leaves and traps, cultivated under sterile or outdoor conditions. 454 pyrosequencing resulted in more than 1,400,000 reads which were assembled into 41,407 isotigs in 19,522 isogroups. We observed high transcript variation in several isogroups explained by multiple loci and/or alternative splicing. The comparison of U. vulgaris and U. gibba transcriptomes revealed a similar distribution of GO categories among expressed genes, despite the differences in transcriptome preparation. We also found a strong correspondence in the presence or absence of root-associated genes between the U. vulgaris transcriptome and U. gibba genome, which indicated that the loss of some root-specific genes had occurred before the divergence of the two rootless species. CONCLUSIONS The species-rich genus Utricularia offers a unique opportunity to study adaptations related to the environment and carnivorous habit and also evolutionary processes responsible for considerable genome reduction. We show that a transcriptome may approximate the genome for gene content or gene duplication estimation. Our study is the first comparison of two global sequence data sets in Utricularia.
Collapse
Affiliation(s)
- Jiří Bárta
- />Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005 Czech Republic
| | - James D Stone
- />Institute of Experimental Botany CAS, Rozvojová 263 6- Lysolaje, Praha, 16502 Czech Republic
- />Institute of Botany CAS, Zámek 1, Průhonice, 25243 Czech Republic
| | - Jiří Pech
- />Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005 Czech Republic
| | - Dagmara Sirová
- />Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005 Czech Republic
| | - Lubomír Adamec
- />Institute of Botany CAS, Section of Plant Ecology, Dukelská 135, Treboň, 37982 Czech Republic
| | - Matthew A Campbell
- />Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4442 New Zealand
| | - Helena Štorchová
- />Institute of Experimental Botany CAS, Rozvojová 263 6- Lysolaje, Praha, 16502 Czech Republic
| |
Collapse
|
64
|
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 2014; 32:820-32. [PMID: 25540451 DOI: 10.1093/molbev/msu400] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional medium/long-wavelength sensitive opsin, M/LWS1, is found to be relaxed in all echolocating bats compared with nonecholocating bats.
Collapse
Affiliation(s)
| | - Ben Murrell
- Department of Medicine, University of California, San Diego
| | - Martin D Smith
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego
| | | | - Konrad Scheffler
- Department of Medicine, University of California, San Diego Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
65
|
Korotkova N, Nauheimer L, Ter-Voskanyan H, Allgaier M, Borsch T. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae) and other angiosperms for marker choice. PLoS One 2014; 9:e112998. [PMID: 25405773 PMCID: PMC4236126 DOI: 10.1371/journal.pone.0112998] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/17/2014] [Indexed: 11/29/2022] Open
Abstract
Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing whole plastid genomes to find markers for evolutionary analyses is therefore particularly useful when overall genetic distances are low.
Collapse
Affiliation(s)
- Nadja Korotkova
- Institut für Biologie/Botanik, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences (DCPS), Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Berlin, Germany
| | - Lars Nauheimer
- Institut für Biologie/Botanik, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences (DCPS), Berlin, Germany
| | - Hasmik Ter-Voskanyan
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Berlin, Germany
- Institute of Botany, National Academy of Sciences of Republic Armenia, Yerevan, Armenia
| | - Martin Allgaier
- The Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
| | - Thomas Borsch
- Institut für Biologie/Botanik, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences (DCPS), Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Berlin, Germany
- * E-mail:
| |
Collapse
|
66
|
Barrett CF, Freudenstein JV, Li J, Mayfield-Jones DR, Perez L, Pires JC, Santos C. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol Biol Evol 2014; 31:3095-112. [PMID: 25172958 DOI: 10.1093/molbev/msu252] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parasitic organisms exemplify morphological and genomic reduction. Some heterotrophic, parasitic plants harbor drastically reduced and degraded plastid genomes resulting from relaxed selective pressure on photosynthetic function. However, few studies have addressed the initial stages of plastome degradation in groups containing both photosynthetic and nonphotosynthetic species. Corallorhiza is a genus of leafless, heterotrophic orchids that contains both green, photosynthetic species and nongreen, putatively nonphotosynthetic species, and represents an ideal system in which to assess the beginning of the transition to a "minimal plastome." Complete plastomes were generated for nine taxa of Corallorhiza using Illumina paired-end sequencing of genomic DNA to assess the degree of degradation among taxa, and for comparison with a general model of degradation among angiosperms. Quantification of total chlorophyll suggests that nongreen Corallorhiza still produce chlorophyll, but at 10-fold lower concentrations than green congeners. Complete plastomes and partial nuclear rDNA cistrons yielded a fully resolved tree for Corallorhiza, with at least two independent losses of photosynthesis, evidenced by gene deletions and pseudogenes in Co. striata and nongreen Co. maculata. All Corallorhiza show some evidence of degradation in genes of the NAD(P)H dehydrogenase complex. Among genes with open reading frames, photosynthesis-related genes displayed evidence of neutral evolution in nongreen Corallorhiza, whereas genes of the ATP synthase complex displayed some evidence of positive selection in these same groups, though for reasons unknown. Corallorhiza spans the early stages of a general model of plastome degradation and has added critical insight for understanding the process of plastome evolution in heterotrophic angiosperms.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biological Sciences, California State University, Los Angeles
| | - John V Freudenstein
- Department of Evolution, Ecology, and Organismal Biology and the Museum of Biological Diversity, Ohio State University
| | - Jeff Li
- Department of Biological Sciences, California State University, Los Angeles
| | | | - Leticia Perez
- Department of Biological Sciences, California State University, Los Angeles
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri
| | - Cristian Santos
- Department of Biological Sciences, California State University, Los Angeles
| |
Collapse
|
67
|
Civáň P, Foster PG, Embley MT, Séneca A, Cox CJ. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 2014; 6:897-911. [PMID: 24682153 PMCID: PMC4007539 DOI: 10.1093/gbe/evu061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2014] [Indexed: 11/23/2022] Open
Abstract
Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.
Collapse
Affiliation(s)
- Peter Civáň
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G. Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Martin T. Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Ana Séneca
- Department of Biology, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Department of Biology, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| |
Collapse
|