51
|
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 2008; 18:343-58. [PMID: 18256243 DOI: 10.1101/gr.5558208] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) have shared an exceptionally long coexistence with their host organisms and have come to occupy a significant fraction of eukaryotic genomes. The bulk of the expansion occurring within mammalian genomes has arisen from the activity of type I retrotransposons, which amplify in a "copy-and-paste" fashion through an RNA intermediate. For better or worse, the sequences of these retrotransposons are now wedded to the genomes of their mammalian hosts. Although there are several reported instances of the positive contribution of mobile elements to their host genomes, these discoveries have occurred alongside growing evidence of the role of TEs in human disease and genetic instability. Here we examine, with a particular emphasis on human retrotransposon activity, several newly discovered aspects of mammalian retrotransposon biology. We consider their potential impact on host biology as well as their ultimate implications for the nature of the TE-host relationship.
Collapse
Affiliation(s)
- Victoria P Belancio
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
52
|
Rodriguez J, Vives L, Jordà M, Morales C, Muñoz M, Vendrell E, Peinado MA. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 2007; 36:770-84. [PMID: 18084025 PMCID: PMC2241897 DOI: 10.1093/nar/gkm1105] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methylation of the cytosine is the most frequent epigenetic modification of DNA in mammalian cells. In humans, most of the methylated cytosines are found in CpG-rich sequences within tandem and interspersed repeats that make up to 45% of the human genome, being Alu repeats the most common family. Demethylation of Alu elements occurs in aging and cancer processes and has been associated with gene reactivation and genomic instability. By targeting the unmethylated SmaI site within the Alu sequence as a surrogate marker, we have quantified and identified unmethylated Alu elements on the genomic scale. Normal colon epithelial cells contain in average 25 486 ± 10 157 unmethylated Alu's per haploid genome, while in tumor cells this figure is 41 995 ± 17 187 (P = 0.004). There is an inverse relationship in Alu families with respect to their age and methylation status: the youngest elements exhibit the highest prevalence of the SmaI site (AluY: 42%; AluS: 18%, AluJ: 5%) but the lower rates of unmethylation (AluY: 1.65%; AluS: 3.1%, AluJ: 12%). Data are consistent with a stronger silencing pressure on the youngest repetitive elements, which are closer to genes. Further insights into the functional implications of atypical unmethylation states in Alu elements will surely contribute to decipher genomic organization and gene regulation in complex organisms.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
53
|
Parrott AM, Walsh MR, Mathews MB. Analysis of RNA:protein interactions in vivo: identification of RNA-binding partners of nuclear factor 90. Methods Enzymol 2007; 429:243-60. [PMID: 17913627 DOI: 10.1016/s0076-6879(07)29012-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ribonucleoprotein complexes (RNPs) perform a multitude of functions in the cell. Elucidating the composition of such complexes and unraveling their many interactions are current challenges in molecular biology. To stabilize complexes formed in cells and to preclude reassortment of their components during isolation, we employ chemical crosslinking of the RNA and protein moieties. Here we describe the identification of cellular RNAs bound to nuclear factor 90 (NF90), the founder member of a family of ubiquitous double-stranded RNA-binding proteins. Crosslinked RNA-NF90 complexes were immunoprecipitated from stable cell lines containing epitope-tagged NF90 protein isoforms. The bound RNA was released and identified through RNase H digestion and by various gene amplification techniques. We appraise the methods used by altering crosslinking conditions, and the binding profiles of different NF90 protein isoforms in synchronized and asynchronous cells are compared. This study discovers two novel RNA species and establishes NF90 as a multiclass RNA-binding protein, capable of binding representatives of all three classes of RNA.
Collapse
Affiliation(s)
- Andrew M Parrott
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|
54
|
Abstract
Alu elements are the most abundant repetitive elements in the human genome; they emerged 65 million years ago from a 5' to 3' fusion of the 7SL RNA gene and amplified throughout the human genome by retrotransposition to reach the present number of more than one million copies. Over the last years, several lines of evidence demonstrated that these elements modulate gene expression at the post-transcriptional level in at least three independent manners. They have been shown to be involved in alternative splicing, RNA editing and translation regulation. These findings highlight how the genome adapted to these repetitive elements by assigning them important functions in regulation of gene expression. Alu elements should therefore be considered as a large reservoir of potential regulatory functions that have been actively participating in primate evolution.
Collapse
Affiliation(s)
| | - Katharina Strub
- To whom correspondence should be addressed. Tel: +41 22 379 67 24; Fax: +41 22 379 64 42;
| |
Collapse
|
55
|
Abstract
Alu elements are the most abundant repetitive elements in the human genome; they emerged from the signal recognition particle RNA gene and are composed of two related but distinct monomers (left and right arms). Alu RNAs transcribed from these elements are present at low levels at normal cell growth but various stress conditions increase their abundance. Alu RNAs are known to bind the cognate proteins SRP9/14. We purified synthetic Alu RNP, composed of Alu RNA in complex with SRP9/14, and investigated the effects of Alu RNPs and naked Alu RNA on protein translation. We found that the dimeric Alu RNP and the monomeric left and right Alu RNPs have a general dose-dependent inhibitory effect on protein translation. In the absence of SRP9/14, Alu RNA has a stimulatory effect on all reporter mRNAs. The unstable structure of sRight RNA suggests that the differential activities of Alu RNP and Alu RNA may be explained by conformational changes in the RNA. We demonstrate that Alu RNPs and Alu RNAs do not stably associate with ribosomes during translation and, based on the analysis of polysome profiles and synchronized translation, we show that Alu RNP and Alu RNA regulate translation at the level of initiation.
Collapse
Affiliation(s)
| | - Katharina Strub
- To whom correspondence should be addressed. Tel: +41 22 379 67 24; Fax: +41 22 379 64 42;
| |
Collapse
|
56
|
Kaup S, Grandjean V, Mukherjee R, Kapoor A, Keyes E, Seymour CB, Mothersill CE, Schofield PN. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res 2006; 597:87-97. [PMID: 16417911 DOI: 10.1016/j.mrfmmm.2005.06.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 01/24/2023]
Abstract
The mechanism by which radiation-induced genomic instability is initiated, propagated and effected is currently under intense scrutiny. We have investigated the potential role of altered genomic methylation patterns in the cellular response to irradiation and have found evidence for widespread dysregulation of CpG methylation persisting up to 20 population doublings post-irradiation. Similar effects are seen with cells treated with medium from irradiated cells (the 'bystander effect') rather than subjected to direct irradiation. Using an arbitrarily primed methylation sensitive PCR screening method we have demonstrated that irradiation causes reproducible alterations in the methylation profile of a human keratinocyte cell line, HPV-G, and have further characterised one of these sequences as being a member of a retrotransposon element derived sequence family on chromosome 7; MLT1A. Multiple changes were also detected in the screen, which indicate that although the response of cells is predominantly hypermethylation, specific hypomethylation occurs as well. Sequence specific changes are also reported in the methylation of the pericentromeric SAT2 satellite sequence. This is the first demonstration that irradiation results in the induction of heritable methylation changes in mammalian cells, and provides a link between the various non-radiological instigators of genomic instability, the perpetuation of the unstable state and several of its manifestations.
Collapse
Affiliation(s)
- Sahana Kaup
- Laboratory of Stem Cell biology, Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Gasior SL, Palmisano M, Deininger PL. Alu-linked hairpins efficiently mediate RNA interference with less toxicity than do H1-expressed short hairpin RNAs. Anal Biochem 2005; 349:41-8. [PMID: 16359634 DOI: 10.1016/j.ab.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/18/2005] [Accepted: 11/01/2005] [Indexed: 12/22/2022]
Abstract
RNA interference has become a powerful tool for specific inhibition of gene expression in mammalian cells. Expression constructs allow for the long-term delivery of short interfering RNAs, usually through the expression of Pol III-transcribed hairpins. In some instances, these expression systems have been shown to have side effects, including induction of the interferon response and cytotoxicity. Here we demonstrate that H1-expressed hairpins, as well as the cloning vector, reduce the plating efficiency of HeLa cells. This toxicity is abrogated by coexpression of the hairpin in the same transcript as a human Alu repetitive element. These Alu-linked hairpins retain the ability to knock down expression of target mRNAs. This modification, which we term SINE (short interspersed repetitive element)-enhanced short hairpin RNA, provides an alternative expression system for hairpins with reduced side effects.
Collapse
Affiliation(s)
- Stephen L Gasior
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
58
|
Dewannieux M, Heidmann T. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 2005; 110:35-48. [PMID: 16093656 DOI: 10.1159/000084936] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 04/22/2004] [Indexed: 11/19/2022] Open
Abstract
Two major classes of retrotransposons have invaded eukaryotic genomes: the LTR retrotransposons closely resembling the proviral integrated form of infectious retroviruses, and the non-LTR retrotransposons including the widespread, autonomous LINE elements. Here, we review the modeling effects of the latter class of elements, which are the most active in humans, and whose enzymatic machinery is subverted to generate a large series of "secondary" retroelements. These include the processed pseudogenes, naturally present in all eukaryotic genomes possessing non-LTR retroelements, and the very successful SINE elements such as the human Alu sequences which have evolved refined parasitic strategies to efficiently bypass the original "protectionist" cis-preference of LINEs for their own retrotransposition.
Collapse
Affiliation(s)
- M Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
59
|
Bernes S, Siman-Tov R, Ankri S. Epigenetic and classical activation of Entamoeba histolytica heat shock protein 100 (EHsp100) expression. FEBS Lett 2005; 579:6395-402. [PMID: 16263115 DOI: 10.1016/j.febslet.2005.09.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 09/28/2005] [Indexed: 11/17/2022]
Abstract
The protozoan parasite Entamoeba histolytica expresses a cytosine-5 DNA methyltransferase (Ehmeth) that belongs to the DNMT2 protein family. The biological function of members of this DNMT2 family is unknown. In the present study, the 5' region of E. histolytica heat shock protein 100 (5'EHsp100) was isolated by affinity chromatography with 5-methylcytosine antibodies as ligand. The methylation status of 5'EHsp100 was confirmed by sodium bisulfite sequencing. We showed that the expression of EHsp100 was induced by heat shock, 5-azacytidine (5-AzaC), an inhibitor of DNA methyltransferase and Trichostatin A (TSA), an inhibitor of histone deacetylase. The effect of TSA on EHsp100 expression was rapidly reversed by removing the drug from the culture. In contrast, EHsp100 expression was still detectable one month after removing 5-AzaC from the media. Whereas 5-AzaC and TSA caused demethylation in the promoter region of EHsp100, no demethylation was observed following heat shock. Remarkably, DNA that includes three putative heat shock elements identified in the promoter region of EHsp100 bound to a protein of 37kDa present in the nuclear fraction of heat-shocked trophozoites but absent in the nuclear fraction of 5-AzaC and TSA treated trophozoites. Our data suggest that EHsp100 expression can be regulated by both a classical and an epigenetic mechanism.
Collapse
Affiliation(s)
- Sabina Bernes
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | | | | |
Collapse
|
60
|
Abstract
As is the case with mammals in general, primate genomes are inundated with repetitive sequence. Although much of this repetitive content consists of "molecular fossils" inherited from early mammalian ancestors, a significant portion of this material comprises active mobile element lineages. Despite indications that these elements played a major role in shaping the architecture of the genome, there remain many unanswered questions surrounding the nature of the host-element relationship. Here we review advances in our understanding of the host-mobile element dynamic and its overall impact on primate evolution.
Collapse
Affiliation(s)
- Dale J Hedges
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, LA 70803, USA
| | | |
Collapse
|
61
|
Youngson NA, Kocialkowski S, Peel N, Ferguson-Smith AC. A Small Family of Sushi-Class Retrotransposon-Derived Genes in Mammals and Their Relation to Genomic Imprinting. J Mol Evol 2005; 61:481-90. [PMID: 16155747 DOI: 10.1007/s00239-004-0332-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/29/2005] [Indexed: 02/08/2023]
Abstract
Ty3/gypsy retrotransposons are rare in mammalian genomes despite their abundance in invertebrate and other vertebrate classes. Here we identify a family of nine conserved mammalian genes with homology to Ty3/gypsy retrotransposons but which have lost their ability to autonomously retrotranspose. Of these, five map to the X chromosome while the remaining four are autosomal. Comparative phylogenetic analyses show them to have strongest homology to the sushi-ichi element from Fugu rubripes. Two of the autosomal gene members, Peg10 and Rtl1, are known to be imprinted, being expressed from the paternally inherited chromosome homologue. This suggests, consistent with the host-parasite response theory of the evolution of the imprinting mechanism, that parental-origin specific epigenetic control may be mediated by genomic "parasitic" elements such as these. Alternatively, these elements may preferentially integrate into regions that are differentially modified on the two homologous chromosomes such as imprinted domains and the X chromosome and acquire monoallelic expression. We assess the imprinting status of the remaining autosomal members of this family and show them to be biallelically expressed in embryo and placenta. Furthermore, the methylation status of Rtl1 was assayed throughout development and was found to resemble that of actively, silenced repetitive elements rather than imprinted sequences. This indicates that the ability to undergo genomic imprinting is not an inherent property of all members of this family of retroelements. Nonetheless, the conservation but functional divergence between the different members suggests that they have undergone positive selection and acquired distinct endogenous functions within their mammalian hosts.
Collapse
Affiliation(s)
- Neil A Youngson
- Department of Anatomy, University of Cambridge, Downing St, Cambridge, CB23DY, UK
| | | | | | | |
Collapse
|
62
|
Zingler N, Willhoeft U, Brose HP, Schoder V, Jahns T, Hanschmann KMO, Morrish TA, Löwer J, Schumann GG. Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining. Genome Res 2005; 15:780-9. [PMID: 15930490 PMCID: PMC1142468 DOI: 10.1101/gr.3421505] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insertion of the human non-LTR retrotransposon LINE-1 (L1) into chromosomal DNA is thought to be initiated by a mechanism called target-primed reverse transcription (TPRT). This mechanism readily accounts for the attachment of the 3'-end of an L1 copy to the genomic target, but the subsequent integration steps leading to the attachment of the 5'-end to the chromosomal DNA are still cause for speculation. By applying bioinformatics to analyze the 5' junctions of recent L1 insertions in the human genome, we provide evidence that L1 uses at least two distinct mechanisms to link the 5'-end of the nascent L1 copy to its genomic target. While 5'-truncated L1 elements show a statistically significant preference for short patches of overlapping nucleotides between their target site and the point of truncation, full-length insertions display no distinct bias for such microhomologies at their 5'-ends. In a second genome-wide approach, we analyzed Alu elements to examine whether these nonautonomous retrotransposons, which are thought to be mobilized through L1 proteins, show similar characteristics. We found that Alu elements appear to be predominantly integrated via a pathway not involving overlapping nucleotides. The results indicate that a cellular nonhomologous DNA end-joining pathway may resolve intermediates from incomplete L1 retrotransposition events and thus lead to 5' truncations.
Collapse
Affiliation(s)
- Nora Zingler
- Fachgebiet Pr2/Retroelemente, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Tang RB, Wang HY, Lu HY, Xiong J, Li HH, Qiu XH, Liu HQ. Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue. Mol Carcinog 2005; 42:93-6. [PMID: 15593371 DOI: 10.1002/mc.20057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There have been extensive observations that RNA containing repetitive elements accumulates in transformed cells and tumor tissues. In the present study, we first obtained result consistent with previous observations by in situ hybridization. Then we used primer extension analysis to determine the level of polymerase III directed Alu RNA and found an increased expression of Alu RNA in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rui-Bao Tang
- Department of Histology and Embryology, the Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
64
|
Pélissier T, Bousquet-Antonelli C, Lavie L, Deragon JM. Synthesis and processing of tRNA-related SINE transcripts in Arabidopsis thaliana. Nucleic Acids Res 2004; 32:3957-66. [PMID: 15282328 PMCID: PMC506818 DOI: 10.1093/nar/gkh738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the ubiquitous distribution of tRNA-related short interspersed elements (SINEs) in eukaryotic species, very little is known about the synthesis and processing of their RNAs. In this work, we have characterized in detail the different RNA populations resulting from the expression of a tRNA-related SINE S1 founder copy in Arabidopsis thaliana. The main population is composed of poly(A)-ending (pa) SINE RNAs, while two minor populations correspond to full-length (fl) or poly(A) minus [small cytoplasmic (sc)] SINE RNAs. Part of the poly(A) minus RNAs is modified by 3'-terminal addition of C or CA nucleotides. All three RNA populations accumulate in the cytoplasm. Using a mutagenesis approach, we show that the poly(A) region and the 3' end unique region, present at the founder locus, are both important for the maturation and the steady-state accumulation of the different S1 RNA populations. The observation that primary SINE transcripts can be post-transcriptionally processed in vivo into a poly(A)-ending species introduces the possibility that this paRNA is used as a retroposition intermediate.
Collapse
MESH Headings
- 3' Untranslated Regions
- Arabidopsis/genetics
- Base Sequence
- Cytoplasm/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Polyadenylation
- RNA Processing, Post-Transcriptional
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Short Interspersed Nucleotide Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Thierry Pélissier
- CNRS UMR 6547 BIOMOVE and GDR 2157, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
65
|
Oei SL, Babich VS, Kazakov VI, Usmanova NM, Kropotov AV, Tomilin NV. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters. Genomics 2004; 83:873-82. [PMID: 15081116 DOI: 10.1016/j.ygeno.2003.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
Primate genomes contain a very large number of short interspersed GC-rich repeats of the Alu family, which are abundant in introns and intergenic spacers but also present in 5' flanking regions of genes enriched in binding motifs (BMs) for transcription factors and frequently containing CpG islands. Here we studied whether CpG islands located in promoters of human genes overlap with Alu repeats and with clusters of BMs for the zinc-finger transcription factors Sp1, estrogen receptor alpha, and YY1. The presence of estrogen-response elements in Alu was shown earlier and here we confirm the presence in the consensus Alu sequence of the binding sites for Sp1 and YY1. Analyzing >5000 promoters from the two databases we found that Alu sequences are underrepresented in promoters compared to introns and that approximately 4% of CpG islands located within the -1000 to +200 segments of human promoters overlap with Alu repeats. Although this fraction was found to be lower for proximal segments of promoters (-500 to +100), our results indicate that a significant number (>1000) of all human genes may be controlled by Alu-associated CpG islands. Analysis of clustering of potential BMs for the indicated transcription factors within some promoters also suggests that the Alu family contributed to the evolution of transcription cis-regulatory modules in the human genome. It is important that among Alu sequences overlapping with CpG islands in promoters a large fraction of members of the old Alu subfamilies is found, suggesting extensive retroposon-assisted regulatory genome evolution during the divergence of the primates.
Collapse
Affiliation(s)
- Shiao-Li Oei
- Institute of Biochemistry, Free University of Berlin, Thielallee 63, D-14195, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Hagan CR, Sheffield RF, Rudin CM. Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 2003; 35:219-20. [PMID: 14578886 DOI: 10.1038/ng1259] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 10/03/2003] [Indexed: 11/08/2022]
Abstract
Alu elements are found exclusively in primate species and comprise over 10% of the human genome. To better define the mechanisms responsible for Alu replication, we introduced a human Alu element into mouse cells. We report that Alu retrotransposition can be induced in mouse cells by exposure to the topoisomerase II inhibitor etoposide and is mediated in trans by endogenous mouse long interspersed elements (LINEs).
Collapse
Affiliation(s)
- Christy R Hagan
- Biological Sciences Division and Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
67
|
Johanning K, Stevenson CA, Oyeniran OO, Gozal YM, Roy-Engel AM, Jurka J, Deininger PL. Potential for retroposition by old Alu subfamilies. J Mol Evol 2003; 56:658-64. [PMID: 12911029 DOI: 10.1007/s00239-002-2433-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alu elements sharing sequence characteristics of the "old" subfamilies are thought to currently be retrotranspositionally inactive. We analyzed one of these old subfamilies of Alu elements, Sx, for sequence conservation relative to the consensus and the length of the "A-tail" as parameters to define the presence of potential Alu Sx source genes in the human genome. Sequence identity to the left half or the right half of the Alu Sx consensus sequence was evaluated for 4424 complete elements obtained from the human genome draft sequence. A small subset of Alu Sx left halves were found to be more conserved than any of the Alu Sx right halves. Selection for promoter function in active elements may explain the slightly higher conservation of the left half. In order to determine whether this sequence identity was the result of recent activity, or simply sequence conservation for older elements, PCR amplification of some of the loci containing Sx elements with conserved left/right halves from different primate genomes was carried out. Several of these Sx Alus were found to have amplified at a later evolutionary period (<35 mya) than expected based on previous studies of Sx elements. Analysis of "A-tail" length, a feature correlated with current retroposition activity, varied between Alu Sx element loci in different primates, where the length increased in specific Alu elements in the human genome. The presence of few conserved Alu Sx elements and the dynamic expansion/contraction of the A-tail suggests that some of these older subfamilies may still be active at very low levels or in a few individuals.
Collapse
Affiliation(s)
- Karla Johanning
- Tulane Cancer Center SL-66, Department of Environmental Health Sciences, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
SINEs and LINEs are short and long interspersed retrotransposable elements, respectively, that invade new genomic sites using RNA intermediates. SINEs and LINEs are found in almost all eukaryotes (although not in Saccharomyces cerevisiae) and together account for at least 34% of the human genome. The noncoding SINEs depend on reverse transcriptase and endonuclease functions encoded by partner LINEs. With the completion of many genome sequences, including our own, the database of SINEs and LINEs has taken a great leap forward. The new data pose new questions that can only be answered by detailed studies of the mechanism of retroposition. Current work ranges from the biochemistry of reverse transcription and integration invitro, target site selection in vivo, nucleocytoplasmic transport of the RNA and ribonucleoprotein intermediates, and mechanisms of genomic turnover. Two particularly exciting new ideas are that SINEs may help cells survive physiological stress, and that the evolution of SINEs and LINEs has been shaped by the forces of RNA interference. Taken together, these studies promise to explain the birth and death of SINEs and LINEs, and the contribution of these repetitive sequence families to the evolution of genomes.
Collapse
Affiliation(s)
- Alan M Weiner
- Department of Biochemistry, HSB J417, University of Washington, Box 357350, Seattle, WA 98195-7350, USA.
| |
Collapse
|
69
|
Abstract
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.
Collapse
Affiliation(s)
- Mark A Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
70
|
Affiliation(s)
- Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
71
|
Li TH, Schmid CW. Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 2001; 276:135-41. [PMID: 11591480 DOI: 10.1016/s0378-1119(01)00637-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While human Alu repeats can be considered to be members of an extremely large, globally regulated, multigene family, each member of this family resides within a different sequence context that might uniquely modulate its transcription. Unique 3' flanking sequences for several transcriptionally active human Alu elements were identified by cDNA cloning and used for primer extension analysis to compare the basal and stress-induced expression of the corresponding Alu loci. Each of six Alu loci investigated exhibits a unique pattern of expression in three different human cell lines and in response to stress induction. The sequence context surrounding each Alu member uniquely determines its transcriptional regulation. In many cases, the individual Alu loci and total Alu RNA exhibit opposing patterns of expression implying that local rather than global regulation ultimately determines the expression of individual members. Some of the stresses, which induce Alu transcription, increase co-expression of LINE1 RNA, another requirement for Alu retrotransposition.
Collapse
Affiliation(s)
- T H Li
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8535, USA
| | | |
Collapse
|
72
|
Kimura RH, Choudary PV, Stone KK, Schmid CW. Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes. Cell Stress Chaperones 2001; 6:263-72. [PMID: 11599568 PMCID: PMC434408 DOI: 10.1379/1466-1268(2001)006<0263:siobri>2.0.co;2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study surveys the induction of RNA polymerase III (Pol III)-directed expression of short interspersed element (SINE) transcripts by various stresses in an animal model, silkworm larvae. Sublethal heat shock and exposure to several toxic compounds increase the level of Bm1 RNA, the silkworm SINE transcript, while also transiently increasing expression of a well-characterized stress-induced transcript, Hsp70 messenger RNA (mRNA). In certain cases, the Bm1 RNA response coincides with that of Hsp70 mRNA, but more often Bm1 RNA responds later in recovery. Baculovirus infection and exposure to certain toxic compounds increase Bm1 RNA but not Hsp70 mRNA, showing that SINE induction is not necessarily coupled to transcription of this particular heat shock gene. SINEs behave as an additional class of stress-inducible genes in living animals but are unusual as stress genes because of their high copy number, genomic dispersion, and Pol III-directed transcription.
Collapse
Affiliation(s)
- R H Kimura
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
73
|
Abstract
Gene silencing was perceived initially as an unpredictable and inconvenient side effect of introducing transgenes into plants. It now seems that it is the consequence of accidentally triggering the plant's adaptive defence mechanism against viruses and transposable elements. This recently discovered mechanism, although mechanistically different, has a number of parallels with the immune system of mammals.
Collapse
|
74
|
Alemán C, Roy-Engel AM, Shaikh TH, Deininger PL. Cis-acting influences on Alu RNA levels. Nucleic Acids Res 2000; 28:4755-61. [PMID: 11095687 PMCID: PMC115182 DOI: 10.1093/nar/28.23.4755] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human short interspersed repeated element (SINE), Alu, amplifies through a poorly understood RNA-mediated mechanism, termed retroposition. There are over one million copies of Alu per haploid human genome. The copies show some internal variations in sequence and are very heterogeneous in chromosomal environment. However, very few Alu elements actively amplify. The amplification rate has decreased greatly in the last 40 million years. Factors influencing Alu transcription would directly affect an element's retroposition capability. Therefore, we evaluated several features that might influence expression from individual Alu elements. The influence of various internal sequence variations and 3' unique flanks on full-length Alu RNA steady-state levels was determined. Alu subfamily diagnostic mutations do not significantly alter the amount of Alu RNA observed. However, sequences containing random mutations throughout the right half of selected genomic Alu elements altered Alu RNA steady-state levels in cultured cells. In addition, sequence variations at the 3' unique end of the transcript also significantly altered the Alu RNA levels. In general, sequence mutations and 3' end sequences contribute to Alu RNA levels, suggesting that the master Alu element(s) have a multitude of individual differences that collectively gives them a selective advantage over other Alu elements.
Collapse
Affiliation(s)
- C Alemán
- Tulane Cancer Center, SL-66, and Department of Environmental Health Sciences, Tulane University-Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
75
|
Roy AM, West NC, Rao A, Adhikari P, Alemán C, Barnes AP, Deininger PL. Upstream flanking sequences and transcription of SINEs. J Mol Biol 2000; 302:17-25. [PMID: 10964558 DOI: 10.1006/jmbi.2000.4027] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SINEs, short interspersed repeated DNA elements, undergo amplification through retroposition and subsequent integration into a new location in the genome. Each new SINE insertion will be located in a new chromosomal environment, with different flanking sequences. Modulation of transcription by different flanking sequences may play an important role in determining which SINE elements are preferentially active in a genome. We evaluated the ability of upstream flanking sequences to regulate the transcription of three different SINEs (Alu, B2 and ID) by constructing chimeric constructs with known 5' flanking sequences of RNA polymerase III-transcribed genes. Upstream sequences from the 7SL RNA gene, U6 RNA gene, vault RNA gene, and BC1 gene increase transcription of Alu, B2 and BC1 in transient transfections of NIH3T3, HeLa, Neuro2a and C6 glioma cell lines. The 7SL sequence proved most efficient in increasing SINE transcription. The 7SL upstream fused to the BC1 RNA gene (an ID element) was used to create a transgenic mouse line. In contrast to the tissue-specific endogenous BC1 transcription, BC1 transgene transcripts were detected in all tissues tested. However, expression was much higher in those tissues that express the endogenous gene, demonstrating both transcriptional and post-transcriptional regulation. The BC1 RNA was detected in a similar ribonucleoprotein complex in the different tissues.
Collapse
Affiliation(s)
- A M Roy
- Department of Environmental Health Sciences, Tulane Cancer Center, SL-66 and, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Li TH, Kim C, Rubin CM, Schmid CW. K562 cells implicate increased chromatin accessibility in Alu transcriptional activation. Nucleic Acids Res 2000; 28:3031-9. [PMID: 10931917 PMCID: PMC108432 DOI: 10.1093/nar/28.16.3031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alu repeats in K562 cells are unusually hypomethylated and far more actively transcribed than those in other human cell lines and somatic tissues. Also, the level of Alu RNA in K562 cells is relatively insensitive to cell stresses, namely heat shock, adenovirus infection and treatment with cycloheximide, which increase the abundance of Alu RNA in HeLa and 293 cells. Recent advances in understanding the interactions between DNA methylation, transcriptional activation and chromatin conformation reveal reasons for the constitutively high level of Alu expression in K562 cells. Methylation represses transcription of transiently transfected Alu templates in all cell lines tested but cell stresses do not relieve this repression suggesting that they activate Alu transcription through another pathway. A relatively large fraction of the Alus within K562 chromatin is accessible to restriction enzyme cleavage and cell stresses increase the chromatin accessibility of Alus in HeLa and 293 cells. Cell stress evidently activates Alu transcription by rapidly remodeling chromatin to recruit additional templates.
Collapse
Affiliation(s)
- T H Li
- Section of Molecular and Cellular Biology and Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
77
|
Stuart JJ, Egry LA, Wong GH, Kaspar RL. The 3' UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Biochem Biophys Res Commun 2000; 274:641-8. [PMID: 10924331 DOI: 10.1006/bbrc.2000.3189] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human MnSOD localizes to the mitochondria and plays a key protective role by detoxifying oxygen free radicals. The MnSOD mRNA 3' UTR contains a 280-bp region (Alu-like element or Alu-E) that shows high homology to human Alu and 7SL sequences. MnSOD 3' UTR probes hybridize to a specific cytoplasmic RNA species of approximately 300 nucleotides. This antisense RNA is most likely 7SL RNA based on its size, ubiquitousness, high levels, and lack of inducibility. Hybridization of this small RNA to the MnSOD 3' UTR may modulate posttranscriptional MnSOD gene expression. This regulation could occur by several means including inhibition of translation and mRNA destabilization. Regulation at the level of translational initiation does not seem to occur as MnSOD mRNA containing the Alu-E is efficiently bound by ribosomes. To test the role of the MnSOD 3' UTR, and in particular the Alu-E in gene expression, luciferase reporter gene constructs were made containing various regions of the MnSOD 3' UTR including the Alu-E. These constructs were transfected into human A549 lung carcinoma cells and luciferase activity was measured. Reporter constructs containing the MnSOD 3' UTR and the Alu-E repress luciferase activity. Taken together, these results suggest that naturally occurring antisense RNA may bind MnSOD mRNA and repress its expression. These results also suggest that other mRNAs containing Alu elements may be similarly repressed.
Collapse
Affiliation(s)
- J J Stuart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | | | | | | |
Collapse
|
78
|
Goldberg B, Urnovitz HB, Stricker RB. Beyond danger: unmethylated CpG dinucleotides and the immunopathogenesis of disease. Immunol Lett 2000; 73:13-8. [PMID: 10963805 DOI: 10.1016/s0165-2478(00)00191-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligonucleotide sequences containing unmethylated cytidine phosphate guanosine (CpG) motifs are known to have significant immunostimulatory properties. Because of these immunostimulatory effects, unmethylated CpG oligonucleotides are thought to act as 'danger signals' that produce a favorable immune response by alerting the host to the presence of invading organisms or abnormal cells. In contrast to this concept, we review the evidence that unmethylated CpG sequences derived either from microbial agents or from endogenous CpG-rich Alu motifs promote disease progression by inducing an aberrant or autoreactive immune response. Recognition of the negative effect of unmethylated CpG dinucleotides should lead to more effective immune strategies to combat infectious, inflammatory, autoimmune and malignant diseases.
Collapse
Affiliation(s)
- B Goldberg
- International DNCB Study Group, California Pacific Medical Center, 450 Sutter Street, Suite 1504, San Francisco, CA 94108, USA
| | | | | |
Collapse
|
79
|
Ueda Y, Chaudhuri G. Differential expression of B1-containing transcripts in Leishmania-exposed macrophages. J Biol Chem 2000; 275:19428-32. [PMID: 10781585 PMCID: PMC3086771 DOI: 10.1074/jbc.m001336200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
When the parasitic protozoan Leishmania infect host macrophage cells, establishment of the infection requires alteration in the expression of genes in both the parasite and the host cells. In the early phase of infection of macrophages in vitro, Leishmania exposure affects the expression of a group of mouse macrophage genes containing the repetitive transposable element designated B1 sequence. In Leishmania-exposed macrophages compared with unexposed macrophages, small (approximately 0.5 kilobase) B1-containing RNAs (small B1-RNAs) are down-regulated, and large (1-4 kilobases) B1-containing RNAs (large B1-RNA) are up-regulated. The down-regulation of small B1-RNAs precedes the up-regulation of large B1-RNAs in Leishmania-exposed macrophages. These differential B1-containing gene expressions in Leishmania-exposed macrophages were verified using individual small-B1-RNA and large B1-RNA. The differential expressions of the B1-containing RNAs at the early phase of Leishmania-macrophage interaction may associate the establishment of the leishmanial infection.
Collapse
Affiliation(s)
| | - Gautam Chaudhuri
- To whom correspondence should be addressed: Dept. of Microbiology, School of Medicine, Meharry Medical College, 1005 D. B. Todd Jr. Blvd., Nashville, TN 37208. Tel.: 615-327-6499; Fax: 615-327-5559;
| |
Collapse
|
80
|
Arnaud P, Goubely C, Pélissier T, Deragon JM. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Mol Cell Biol 2000; 20:3434-41. [PMID: 10779333 PMCID: PMC85636 DOI: 10.1128/mcb.20.10.3434-3441.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SINEs (short interspersed elements) are an abundant class of transposable elements found in a wide variety of eukaryotes. Using the genomic sequencing technique, we observed that plant S1 SINE retroposons mainly integrate in hypomethylated DNA regions and are targeted by methylases. Methylation can then spread from the SINE into flanking genomic sequences, creating distal epigenetic modifications. This methylation spreading is vectorially directed upstream or downstream of the S1 element, suggesting that it could be facilitated when a potentially good methylatable sequence is single stranded during DNA replication, particularly when located on the lagging strand. Replication of a short methylated DNA region could thus lead to the de novo methylation of upstream or downstream adjacent sequences.
Collapse
Affiliation(s)
- P Arnaud
- Biomove, UMR6547 CNRS, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
81
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
82
|
|
83
|
Yates PA, Burman RW, Mummaneni P, Krussel S, Turker MS. Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation. J Biol Chem 1999; 274:36357-61. [PMID: 10593928 DOI: 10.1074/jbc.274.51.36357] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cis-acting methylation center that signals de novo DNA methylation is located upstream of the mouse Aprt gene. In the current study, two approaches were taken to determine if tandem B1 repetitive elements found at the 3' end of the methylation center contribute to the methylation signal. First, bisulfite genomic sequencing demonstrated that CpG sites within the B1 elements were methylated at relative levels of 43% in embryonal stem cells deficient for the maintenance DNA methyltransferase when compared with wild type embryonal stem cells. Second, the ability of the B1 elements to signal de novo methylation upon stable transfection into mouse embryonal carcinoma cells was examined. This approach demonstrated that the B1 elements were methylated de novo to a high level in the embryonal carcinoma cells and that the B1 elements acted synergistically. The results from these experiments provide strong evidence that the tandem B1 repetitive elements provide a significant fraction of the methylation center signal. By extension, they also support the hypothesis that one role for DNA methylation in mammals is to protect the genome from expression and transposition of parasitic elements.
Collapse
Affiliation(s)
- P A Yates
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
84
|
Brock GJ, Charlton J, Bird A. Densely methylated sequences that are preferentially localized at telomere-proximal regions of human chromosomes. Gene 1999; 240:269-77. [PMID: 10580146 DOI: 10.1016/s0378-1119(99)00442-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have constructed a library of densely methylated DNA sequences from human blood DNA by selecting fragments with a high affinity for a methyl-CpG binding domain (MBD) column. PCR analysis of the library confirmed the presence of known densely methylated CpG island sequences. Analysis of random clones, however, showed that the library was dominated by sequences whose G+C content and CpG frequency were intermediate between those of bulk genomic DNA and bona fide CpG islands. When human chromosomes were probed with the library by fluorescent in situ hybridisation (FISH), the predominant sites of labelling were at terminal regions of many chromosomes, approximately corresponding to T-bands. Analysis of the methylation status of random clones indicated that all were heavily methylated at CpGs in blood DNA, but many were under-methylated in sperm DNA. Lack of methylation in germ cells may reduce CpG depletion at some sub-terminal sequences and result in a high density of methyl-CpG when these regions become methylated in somatic cells.
Collapse
Affiliation(s)
- G J Brock
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow, UK
| | | | | |
Collapse
|
85
|
Li T, Spearow J, Rubin CM, Schmid CW. Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 1999; 239:367-72. [PMID: 10548739 DOI: 10.1016/s0378-1119(99)00384-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possible functionality of short interspersed elements (SINEs) is investigated by assaying the effects of physiological stress on their RNA polymerase-III-directed transcriptional expression in vivo. B2 RNA is expressed at moderately high levels in all mouse tissues investigated, namely liver, spleen, kidney and testis. B1 RNA is expressed in testis but is nearly undetectable in the other tissues. Following hyperthermic shock, the amounts of B1 and B2 SINE RNAs transiently increase in all tissues by as much as 40-fold in certain cases. The kinetics of these increases resemble those of heat shock protein mRNAs. An acute dose of ethanol also transiently increases the abundance of B1 and B2 RNA in liver, showing that other physiological stresses increase SINE RNA expression. The constitutive expression of B2 RNA in all tissues and tissue-specific differences in expression of B1 RNA imply that these transcripts serve a normal physiological function(s). Moreover, increased SINE RNA expression is a vital response to stress and by the criterion of their inducibility, mammalian SINEs behave like regulated cell stress genes.
Collapse
Affiliation(s)
- T Li
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
86
|
Kimura RH, Choudary PV, Schmid CW. Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res 1999; 27:3380-7. [PMID: 10454647 PMCID: PMC148573 DOI: 10.1093/nar/27.16.3380] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of cell stresses upon the expression of the Bm1 short interspersed element (SINE) family in cultured silk worm cells is examined. Primer extension analysis shows that Bm1 repeats are transcribed by RNA polymerase III (Pol III) into cytoplasmic RNAs. Five consecutive T residues, which would normally terminate Pol III transcription, occur within the Bm1 consensus and are included within cDNA sequences representing these transcripts. In analogy to mammalian SINEs, the level of the Bm1 transcripts increases in response to either heat shock, inhibiting protein synthesis by cycloheximide or viral infection. The lifetime of Bm1 RNA increases following cell insults so that post-transcriptional events partially account for stress induced increases in its abundance. In the case of heat shock, the increase in Bm1 RNA follows the transient increase in hsp70 mRNA indicating that this response is temporally regulated to occur later in heat shock recovery. These results support the proposal that SINE RNAs serve a role in the cell stress response that predates the divergence of insects and mammals implying that SINEs are essentially a class of cell stress genes.
Collapse
Affiliation(s)
- R H Kimura
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
87
|
Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A, Krutilina R, Oei SL, Griesenbeck J, Buchlow G, Tomilin N. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:336-46. [PMID: 10095767 DOI: 10.1046/j.1432-1327.1999.00162.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we identified a novel protein which may contribute to the transcriptional inactivity of Alu retroposons in vivo. A human cDNA clone encoding this protein (ACR1) was isolated from a human expression library using South-western screening with an Alu subfragment, implicated in the regulation of Alu in vitro transcription and interacting with a HeLa nuclear protein down-regulated in adenovirus-infected cells. Bacterially expressed ACR1 is demonstrated to inhibit RNA polymerase III (Pol III)-dependent Alu transcription in vitro but showed no repression of transcription of a tRNA gene or of a reporter gene under control of a Pol II promoter. ACR1 mRNA is also found to be down-regulated in adenovirus-infected HeLa cells, consistent with a possible repressor function of the protein in vivo. ACR1 is mainly (but not exclusively) located in cytoplasm and appears to be a member of a weakly characterized redox protein family having a central, highly conserved sequence motif, PGAFTPXCXXXXLP. One member of the family identified earlier as peroxisomal membrane protein (PMP)20 is known to interact in a sequence-specific manner with a yeast homolog of mammalian cyclosporin-A-binding protein cyclophilin, and mammalian cyclophilin A (an abundant ubiquitously expressed protein) is known to interact with human transcriptional repressor YY1, which is a major sequence-specific Alu-binding protein in human cells. It appears, therefore, that transcriptional silencing of Alu in vivo is a result of complex interactions of many proteins which bind to its Pol III promoter.
Collapse
Affiliation(s)
- A Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Goubely C, Arnaud P, Tatout C, Heslop-Harrison JS, Deragon JM. S1 SINE retroposons are methylated at symmetrical and non-symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation. PLANT MOLECULAR BIOLOGY 1999; 39:243-255. [PMID: 10080692 DOI: 10.1023/a:1006108325504] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA methylation has been often proposed to operate as a genome defence system against parasitic mobile elements. To test this possibility, the methylation status of a class of plant mobile elements, the S1Bn SINEs, was analysed in detail using the bisulfite modification method. We observed that S1Bn SINE retroposons are methylated at symmetrical and asymmetrical positions. Methylated cytosines are not limited to transcriptionally important regions but are well distributed along the sequence. S1Bn SINE retroposons are two-fold more methylated than the average methylation level of the Brassica napus nuclear DNA. By in situ hybridization, we showed that this high level of methylation does not result from the association of S1Bn elements to genomic regions known to be highly methylated suggesting that S1Bn elements were specifically methylated. A detailed analysis of the methylation context showed that S1Bn cytosines in symmetrical CpG and CpNpG sites are methylated at a level of 87% and 44% respectively. We observed that 5.3% of S1Bn cytosines in non-symmetrical positions were also methylated. Of this asymmetrical methylation, 57% occurred at a precise motif (Cp(A/T)pA) that only represented 12% of the asymmetrical sites in S1Bn sequences suggesting that it represents a preferred asymmetrical methylation site. This motif is methylated in S1Bn elements at only half the level observed for the Cp(A/T)pG sites. We show that non-S1Bn CpTpA sites can also be methylated in DNA from B. napus and from other plant species.
Collapse
Affiliation(s)
- C Goubely
- Department of Cell Biology, John Innes Centre, Norwich, UK
| | | | | | | | | |
Collapse
|
89
|
Hibino Y, Ohzeki H, Hirose N, Morita Y, Sugano N. Involvement of DNA methylation in binding of a highly repetitive DNA component to nuclear scaffold proteins from rat liver. Biochem Biophys Res Commun 1998; 252:296-301. [PMID: 9826523 DOI: 10.1006/bbrc.1998.9620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental reduction of the amount of CpG methylation in a highly repetitive DNA component was achieved by growth of Ac2F cells in the presence of 5-aza-2'-deoxycytidine or procainamide, as judged by the results of methyl-sensitive restriction endonuclease digestion and colony hybridization. Modification of genomic DNA with these DNA methylation inhibitors increased the release of 370-bp highly repetitive DNA from rat chromosomal DNA by HindIII digestion. This result indicated that highly repetitive DNA components in the nuclear scaffold fraction are hypermethylated. On the other hand, methylated DNA was used for southwestern analysis to investigate the protein(s) which bind specifically to the DNA in the nuclear scaffold fraction. The introduction of additional methylated cytosines within a highly repetitive DNA component affected the binding of DNA to the nuclear scaffold proteins. Thus, cytosine methylation may be involved in the regulation of gene expression and construction of the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Y Hibino
- Molecular Genetics Research Center, Toyama Medical & Pharmaceutical University, 2630 Sugitani, Toyama, 930-0194, Japan.
| | | | | | | | | |
Collapse
|
90
|
Abstract
The evolution, mobility and deleterious genetic effects of human Alus are fairly well understood. The complexity of regulated transcriptional expression of Alus is becoming apparent and insight into the mechanism of retrotransposition is emerging. Unresolved questions concern why mobile, highly repetitive short interspersed elements (SINEs) have been tolerated throughout evolution and why and how families of such sequences are periodically replaced. Either certain SINEs are more successful genomic parasites or positive selection drives their relative success and genomic maintenance. A complete understanding of the evolutionary dynamics and significance of SINEs requires determining whether or not they have a function(s). Recent evidence suggests two possibilities, one concerning DNA and the other RNA. Dispersed Alus exhibit remarkable tissue-specific differences in the level of their 5-methylcytosine content. Differences in Alu methylation in the male and female germlines suggest that Alu DNA may be involved in either the unique chromatin organization of sperm or signaling events in the early embryo. Alu RNA is increased by cellular insults and stimulates protein synthesis by inhibiting PKR, the eIF2 kinase that is regulated by double-stranded RNA. PKR serves other roles potentially linking Alu RNA to a variety of vital cell functions. Since Alus have appeared only recently within the primate lineage, this proposal provokes the challenging question of how Alu RNA could have possibly assumed a significant role in cell physiology.
Collapse
Affiliation(s)
- C W Schmid
- Section of Molecular and Cellular Biology and Department of Chemistry, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
91
|
Abstract
Available data on possible genetic impacts of mammalian retroposons are reviewed. Most important is the growing number of established examples showing the involvement of retroposons in modulation of expression of protein-coding genes transcribed by RNA polymerase II (Pol II). Retroposons contain conserved blocks of nucleotide sequence for binding of some important Pol II transcription factors as well as sequences involved in regulation of stability of mRNA. Moreover, these mobile genes provide short regions of sequence homology for illegitimate recombinations, leading to diverse genome rearrangements during evolution. Therefore, mammalian retroposons representing a significant fraction of noncoding DNA cannot be considered at present as junk DNA but as important genetic symbionts driving the evolution of regulatory networks controlling gene expression.
Collapse
Affiliation(s)
- N V Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
92
|
Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 1998; 18:58-68. [PMID: 9418853 PMCID: PMC121451 DOI: 10.1128/mcb.18.1.58] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA by cotransient transfection increased the expression of a reporter construct, which is consistent with an inhibitory effect on PKR. Alu RNA formed stable, discrete complexes with PKR in vitro, bound PKR in vivo, and antagonized PKR activation both in vitro and in vivo. Alu RNAs produced by either overexpression or exposure of cells to heat shock bound PKR, whereas transiently overexpressed Alu RNA antagonized virus-induced activation of PKR in vivo. Cycloheximide treatment of cells decreased PKR activity, coincident with an increase in Alu RNA. These observations suggest that the increased levels of Alu RNAs caused by cellular exposure to different stresses regulate protein synthesis by antagonizing PKR activation. This provides a functional role for mammalian short interspersed elements, prototypical junk DNA.
Collapse
Affiliation(s)
- W M Chu
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
93
|
Abstract
Transcripts for the cysteine protease cathepsin B are alternatively spliced in the untranslated regions (UTRs). We show that a cathepsin B probe containing 5'-UTR sequences hybridized to an RNA of approximately 300 nt in addition to the typical 2.2 and 4.0 kbp mRNAs. Within this 5'-UTR, exon 2 was found to be homologous to Alu repetitive elements. Specifically, exon 2 was part of an Alu element interspersed with the cathepsin B gene. The approximately 300 nt band that hybridized to our cathepsin B probe likely corresponds to Alu transcripts, which are known to accumulate in human cells. Indeed, a similarly migrating band was detected with an authentic Alu probe. Thus, we suggest that primary transcripts for cathepsin B contain Alu sequences which are preserved as exon 2 in some fully spliced mRNAs.
Collapse
Affiliation(s)
- I M Berquin
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
94
|
Abstract
Alu sequences are frequently encountered during study of human genomic nucleic acid and form a major component of repetitive DNA. This review describes the origin of Alu sequences and their subsequent amplification and evolution into distinct subfamilies. In recent years a number of different functional roles for Alu sequences have been described. The multiple influences of Alu sequences on RNA polymerase II-mediated gene expression and the presence of Alu sequences in RNA polymerase III-generated transcripts are discussed.
Collapse
Affiliation(s)
- A J Mighell
- Molecular Medicine Unit, The University of Leeds, St. James's University Hospital, UK.
| | | | | |
Collapse
|
95
|
Abstract
A human genomic clone designated LhrRAX3 isolated from an X chromosome-specific library was found to have a 28S ribosomal RNA retropseudogene symbolized as RNRP2 within a 12.5-kb human DNA insert. The sequence of the rRNA retropseudogene has an identity of 96% with about 300 nucleotides at the 3'-terminus of the human 28S rRNA gene. RNRP2 is flanked by a pair of perfect direct repeats of 16 nucleotides, the hallmark characteristic of a processed pseudogene having been integrated into the genome. The structural element has a long A-rich tract at its 3'-end, apparently the result of an aberrant polyadenylation event of a RNA polymerase I transcript, prior to its subsequent reverse transcription and retroposition into the genome. An Alu repeat sequence truncated by 80 nucleotides at the 5'-region occurs about 800 base pairs downstream and is of opposite orientation to RNRP2. The Alu element is bounded by 16-nucleotide direct repeats and is a member of the Alu Y subfamily.
Collapse
Affiliation(s)
- S Wang
- Department of Biological Sciences, University of North Texas, Denton 76203, USA
| | | | | |
Collapse
|
96
|
Shaikh TH, Roy AM, Kim J, Batzer MA, Deininger PL. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J Mol Biol 1997; 271:222-34. [PMID: 9268654 DOI: 10.1006/jmbi.1997.1161] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced twenty-six cDNAs derived from primary Alu transcripts. Most cDNAs (22/26) sequenced end in multiple T residues, known to be at the termination for RNA polymerase III-directed transcripts. We conclude that these cDNAs were derived from authentic, RNA polymerase III-directed primary Alu transcripts. Sequence alignment of the cDNAs with Alu consensus sequences show that the cDNAs belong to different, previously described Alu subfamilies. The sequence variation observed in the 3' non-Alu regions of each of the cDNAs led us to conclude that they were derived from different genomic loci, thus demonstrating that multiple Alu loci are transcriptionally active. The subfamily distribution of the cDNAs suggests that transcriptional activity is biased towards evolutionarily younger Alu subfamilies, with a strong selection for the consensus sequence in the first 42 bases and the promoter B box. Sequence data from seven cDNAs derived from small cytoplasmic Alu (scAlu) transcripts, a processed form of Alu transcripts, also have a similar bias towards younger Alu subfamilies. About half of these cDNAs are due to processing or degradation, but the other half appear to be due to the formation of a cryptic RNA polymerase III termination signal in multiple loci. Using our sequence data, we have isolated a transcriptionally active genomic Alu element belonging to the Ya5 subfamily. In vitro transcription studies of this element suggest that its flanking sequences contribute to its transcriptional activity. The role of flanking sequences and other factors involved in transcriptional activity of Alu elements are discussed.
Collapse
Affiliation(s)
- T H Shaikh
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, 1901 Perdido St, New Orleans, LA, 70112, USA
| | | | | | | | | |
Collapse
|
97
|
Shen MR, Brosius J, Deininger PL. BC1 RNA, the transcript from a master gene for ID element amplification, is able to prime its own reverse transcription. Nucleic Acids Res 1997; 25:1641-8. [PMID: 9092674 PMCID: PMC146617 DOI: 10.1093/nar/25.8.1641] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ID elements are short interspersed elements (SINEs) found in high copy number in many rodent genomes. BC1 RNA, an ID-related transcript, is derived from the single copy BC1 RNA gene. The BC1 RNA gene has been shown to be a master gene for ID element amplification in rodent genomes. ID elements are dispersed through a process termed retroposition. The retroposition process involves a number of potential regulatory steps. These regulatory steps may include transcription in the appropriate tissue, transcript stability, priming of the RNA transcript for reverse transcription and integration. This study focuses on priming of the RNA transcript for reverse transcription. BC1 RNA gene transcripts are shown to be able to prime their own reverse transcription in an efficient intramolecular and site-specific fashion. This self-priming ability is a consequence of the secondary structure of the 3'-unique region. The observation that a gene actively amplified throughout rodent evolution makes a RNA capable of efficient self-primed reverse transcription strongly suggests that self-priming is at least one feature establishing the BC1 RNA gene as a master gene for amplification of ID elements.
Collapse
Affiliation(s)
- M R Shen
- Department of Biochemistry and Molecular Biology, Neuroscience Center of Excellence, Stanley S.Scott Cancer Center, Louisiana State University Medical Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
98
|
Sarrowa J, Chang DY, Maraia RJ. The decline in human Alu retroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric Alu RNA and increased expression of small cytoplasmic Alu RNA. Mol Cell Biol 1997; 17:1144-51. [PMID: 9032241 PMCID: PMC231839 DOI: 10.1128/mcb.17.3.1144] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alu interspersed elements are inserted into the genome by a retroposition process that occurs via dimeric Alu RNA and causes genetic disorders in humans. Alu RNA is labile and can be diverted to a stable left monomer transcript known as small cytoplasmic Alu (scAlu) RNA by RNA 3' processing, although the relationship between Alu RNA stability, scAlu RNA production, and retroposition has been unknown. In vivo, Alu and scAlu transcripts interact with the Alu RNA-binding subunit of signal recognition particle (SRP) known as SRP9/14. We examined RNAs corresponding to Alu sequences that were differentially active during primate evolution, as well as an Alu RNA sequence that is currently active in humans. Mutations that accompanied Alu RNA evolution led to changes in a conserved structural motif also found in SRP RNAs that are associated with thermodynamic destabilization and decreased affinity of the Alu right monomer for SRP9/14. In contrast to the right monomer, the Alu left monomer maintained structural integrity and high affinity for SRP9/14, indicating that scAlu RNA has been under selection during human evolution. Loss of Alu right monomer affinity for SRP9/14 is associated with scAlu RNA production from Alu elements in vivo. Moreover, the loss in affinity coincided with decreased rates of Alu amplification during primate evolution. This indicates that stability of the Alu right monomer is a critical determinant of Alu retroposition. These results provide insight into Alu mobility and evolution and into how retroposons may interact with host proteins during genome evolution.
Collapse
Affiliation(s)
- J Sarrowa
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
99
|
Bovia F, Wolff N, Ryser S, Strub K. The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Nucleic Acids Res 1997; 25:318-26. [PMID: 9016560 PMCID: PMC146433 DOI: 10.1093/nar/25.2.318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The heterodimeric subunit, SRP9/14, of the signal recognition particle (SRP) has previously been found to bind to scAlu and scB1 RNAs in vitro and to exist in large excess over SRP in anthropoid cells. Here we show that human and mouse SRP9/14 bind with high affinities to other Alu-like RNAs of different evolutionary ages including the neuron-specific BC200 RNA. The relative dissociation constants of the different RNA-protein complexes are inversely proportional to the evolutionary distance between the Alu RNA species and 7SL RNA. In addition, the human SRP9/14 binds with higher affinity than mouse SRP9/14 to all RNAs analyzed and this difference is not explained by the additional C-terminal domain present in the anthropoid SRP14. The conservation of high affinity interactions between SRP9/14 and Alu-like RNAs strongly indicates that these Alu-like RNPs exist in vivo and that they have cellular functions. The observation that human SRP9/14 binds better than its mouse counterpart to distantly related Alu RNAs, such as recently transposed elements, suggests that the anthropoid-specific excess of SRP9/14 may have a role in controlling Alu amplification rather than in compensating a defect in SRP assembly and functions.
Collapse
Affiliation(s)
- F Bovia
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
100
|
Chesnokov I, Chu WM, Botchan MR, Schmid CW. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 1996; 16:7084-8. [PMID: 8943363 PMCID: PMC231711 DOI: 10.1128/mcb.16.12.7084] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wild-type p53 represses Alu template activity in vitro and in vivo. However, upstream activating sequence elements from both the 7SL RNA gene and an Alu source gene relieve p53-mediated repression. p53 also represses the template activity of the U6 RNA gene both in vitro and in vivo but has no effect on in vitro transcription of genes encoding 5S RNA, 7SL RNA, adenovirus VAI RNA, and tRNA. The N-terminal activation domain of p53, which binds TATA-binding protein (TBP), is sufficient for repressing Alu transcription in vitro, and mutation of positions 22 and 23 in this region impairs p53-mediated repression of an Alu template both in vitro and in vivo. p53's N-terminal domain binds TFIIIB, presumably through its known interaction with TBP, and mutation of positions 22 and 23 interferes with TFIIIB binding. These results extend p53's transcriptional role to RNA polymerase III-directed templates and identify an additional level of Alu transcriptional regulation.
Collapse
Affiliation(s)
- I Chesnokov
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|