51
|
Boudier C, Storchak R, Sharma KK, Didier P, Follenius-Wund A, Muller S, Darlix JL, Mély Y. The mechanism of HIV-1 Tat-directed nucleic acid annealing supports its role in reverse transcription. J Mol Biol 2010; 400:487-501. [PMID: 20493881 DOI: 10.1016/j.jmb.2010.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
The main function of the HIV-1 trans-activator of transcription (Tat protein) is to promote the transcription of the proviral DNA by the host RNA polymerase which leads to the synthesis of large quantities of the full length viral RNA. Tat is also thought to be involved in the reverse transcription (RTion) reaction by a still unknown mechanism. The recently reported nucleic acid annealing activity of Tat might explain, at least in part, its role in RTion. To further investigate this possibility, we carried out a fluorescence study on the mechanism by which the full length Tat protein (Tat(1-86)) and the basic peptide (44-61) direct the annealing of complementary viral DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, essential for the early steps of RTion. Though both Tat(1-86) and the Tat(44-61) peptide were unable to melt the lower half of the cTAR stem, they strongly promoted cTAR/dTAR annealing through non-specific attraction between the peptide-bound oligonucleotides. Using cTAR and dTAR mutants, this Tat promoted-annealing was found to be nucleated through the thermally frayed 3'/5' termini, resulting in an intermediate with 12 intermolecular base pairs, which then converts into the final extended duplex. Moreover, we found that Tat(1-86) was as efficient as the nucleocapsid protein NCp7, a major nucleic acid chaperone of HIV-1, in promoting cTAR/dTAR annealing, and could act cooperatively with NCp7 during the annealing reaction. Taken together, our data are consistent with a role of Tat in the stimulation of the obligatory strand transfers during viral DNA synthesis by reverse transcriptase.
Collapse
Affiliation(s)
- C Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Lee L, Cavalieri F, Johnston APR, Caruso F. Influence of salt concentration on the assembly of DNA multilayer films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3415-3422. [PMID: 19891451 DOI: 10.1021/la9032145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA multilayer films are promising candidates for a plethora of applications, including sensing, diagnostics, and drug/gene delivery. Fabricated solely from DNA, the use of salt in forming DNA multilayers is crucial in promoting and maintaining hybridization of complementary base pairs by minimizing the repulsive forces between the oligonucleotides and preventing disassembly of the layers once formed. Herein, we examine the role of salt on the assembly of DNA films assembled from oligonucleotides composed of two homopolymeric diblocks (polyA(n)G(n) and polyT(n)C(n)) in salt concentrations ranging from 0.1 to 2 M. Using quartz crystal microgravimetry (QCM) and flow cytometry, we show that films assembled at high salt concentrations (2 M salt) exhibit a different morphology and are denser than those assembled from lower (1 M salt) salt solutions. Formation of the T x A*T triplex in solution and within the DNA film was also studied using circular dichroism (CD) and QCM, respectively. DNA films assembled using oligonucleotides of various lengths (20- to 60-mer) at high salt concentration (2 M salt) showed no significant influence on the film growth. This work shows that salt plays an important role in the assembly and final morphology of DNA multilayer films, hence enabling films with different properties to be tailored.
Collapse
Affiliation(s)
- Lillian Lee
- Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
53
|
Fujii T, Kashida H, Asanuma H. Analysis of coherent heteroclustering of different dyes by use of threoninol nucleotides for comparison with the molecular exciton theory. Chemistry 2010; 15:10092-102. [PMID: 19722239 DOI: 10.1002/chem.200900962] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To test the molecular exciton theory for heterodimeric chromophores, various heterodimers and clusters, in which two different dyes were stacked alternately, were prepared by hybridizing two oligodeoxyribonucleotides (ODNs), each of which tethered a different dye on D-threoninol at the center of the strand. NMR analyses revealed that two different dyes from each strand were stacked antiparallel to each other in the duplex, and were located adjacent to the 5'-side of a natural nucleobase. The spectroscopic behavior of these heterodimers was systematically examined as a function of the difference in the wavelength of the dye absorption maxima (Delta lambda(max)). We found that the absorption spectrum of the heterodimer was significantly different from that of the simple sum of each monomeric dye in the single strand. When azobenzene and Methyl Red, which have lambda(max) at 336 and 480 nm, respectively, in the single strand (Delta lambda(max) = 144 nm), were assembled on ODNs, the band derived from azobenzene exhibited a small hyperchromism, whereas the band from Methyl Red showed hypochromism and both bands shifted to a longer wavelength (bathochromism). These hyper- and hypochromisms were further enhanced in a heterodimer derived from 4'-methylthioazobenzene and Methyl Red, which had a much smaller Delta lambda(max) (82 nm; lambda(max) = 398 and 480 nm in the single-strand, respectively). With a combination of 4'-dimethylamino-2-nitroazobenzene and Methyl Red, which had an even smaller Delta lambda(max) (33 nm), a single sharp absorption band that was apparently different from the sum of the single-stranded spectra was observed. These changes in the intensity of the absorption band could be explained by the molecular exciton theory, which has been mainly applied to the spectral behavior of H- and/or J-aggregates composed of homo dyes. However, the bathochromic band shifts observed at shorter wavelengths did not agree with the hypsochromism predicted by the theory. Thus, these data experimentally verify the molecular exciton theory of heterodimerization. This coherent coupling among the heterodimers could also partly explain the bathochromicity and hypochromicity that were observed when the dyes were intercalated into the duplex.
Collapse
Affiliation(s)
- Taiga Fujii
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | |
Collapse
|
54
|
Inhibition of HIV-1 replication by a bis-thiadiazolbenzene-1,2-diamine that chelates zinc ions from retroviral nucleocapsid zinc fingers. Antimicrob Agents Chemother 2010; 54:1461-8. [PMID: 20124006 DOI: 10.1128/aac.01671-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid p7 (NCp7) protein holds two highly conserved "CCHC" zinc finger domains that are required for several phases of viral replication. Basic residues flank the zinc fingers, and both determinants are required for high-affinity binding to RNA. Several compounds were previously found to target NCp7 by reacting with the sulfhydryl group of cysteine residues from the zinc fingers. Here, we have identified an N,N'-bis(1,2,3-thiadiazol-5-yl)benzene-1,2-diamine (NV038) that efficiently blocks the replication of a wide spectrum of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) strains. Time-of-addition experiments indicate that NV038 interferes with a step of the viral replication cycle following the viral entry but preceding or coinciding with the early reverse transcription reaction, pointing toward an interaction with the nucleocapsid protein p7. In fact, in vitro, NV038 efficiently depletes zinc from NCp7, which is paralleled by the inhibition of the NCp7-induced destabilization of cTAR (complementary DNA sequence of TAR). A chemical model suggests that the two carbonyl oxygens of the esters in this compound are involved in the chelation of the Zn(2+) ion. This compound thus acts via a different mechanism than the previously reported zinc ejectors, as its structural features do not allow an acyl transfer to Cys or a thiol-disulfide interchange. This new lead and the mechanistic study presented provide insight into the design of a future generation of anti-NCp7 compounds.
Collapse
|
55
|
Sánchez-Valencia JR, Toudert J, González-García L, González-Elipe AR, Barranco A. Excitation transfer mechanism along the visible to the Near-IR in rhodamine J-heteroaggregates. Chem Commun (Camb) 2010; 46:4372-4. [DOI: 10.1039/c0cc00087f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
56
|
Hirano T, Akiyama J, Mori S, Kagechika H. Modulation of intramolecular heterodimer-induced fluorescence quenching of tricarbocyanine dye for the development of fluorescent sensor. Org Biomol Chem 2010; 8:5568-75. [DOI: 10.1039/c0ob00207k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
57
|
Ikeda S, Kubota T, Yuki M, Okamoto A. Exciton-controlled hybridization-sensitive fluorescent probes: multicolor detection of nucleic acids. Angew Chem Int Ed Engl 2009; 48:6480-4. [PMID: 19637175 DOI: 10.1002/anie.200902000] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shuji Ikeda
- Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
58
|
Ikeda S, Kubota T, Yuki M, Okamoto A. Exciton-Controlled Hybridization-Sensitive Fluorescent Probes: Multicolor Detection of Nucleic Acids. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
59
|
Gaind V, Webb KJ, Kularatne S, Bouman CA. Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2009; 26:1805-13. [PMID: 19649115 DOI: 10.1364/josaa.26.001805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is a nonradiative energy transfer process based on dipole-dipole interaction between donor and acceptor fluorophores that are spatially separated by a distance of a few nanometers. FRET has proved to be of immense value in the study of cellular function and the underlying cause of disease due to, for example, protein misfolding (of consequence in Alzheimer's disease). The standard parameterization in intramolecular FRET is the lifetime and yield, which can be related to the donor-acceptor (DA) distance. FRET imaging has thus far been limited to in vitro or near-surface microscopy because of the deleterious effects of substantial scatter. We show that it is possible to extract the microscopic FRET parameters in a highly scattering environment by incorporating the FRET kinetics of an ensemble of DA molecules connected by a flexible or rigid linker into an optical diffusion tomography (ODT) framework. We demonstrate the efficacy of our approach for extracting the microscopic DA distance through simulations and an experiment using a phantom with scattering properties similar to tissue. Our method will allow the in vivo imaging of FRET parameters in deep tissue, and hence provide a new vehicle for the fundamental study of disease.
Collapse
Affiliation(s)
- Vaibhav Gaind
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
60
|
Abstract
Powerful methods now allow the imaging of specific mRNAs in living cells. These methods enlist fluorescent proteins to illuminate mRNAs, use labeled oligonucleotide probes and exploit aptamers that render organic dyes fluorescent. The intracellular dynamics of mRNA synthesis, transport and localization can be analyzed at higher temporal resolution with these methods than has been possible with traditional fixed-cell or biochemical approaches. These methods have also been adopted to visualize and track single mRNA molecules in real time. This review explores the promises and limitations of these methods.
Collapse
|
61
|
Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. Biochimie 2009; 91:916-23. [PMID: 19401213 DOI: 10.1016/j.biochi.2009.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/15/2009] [Indexed: 11/22/2022]
Abstract
Due to its highly conserved zinc fingers and its nucleic acid chaperone properties which are critical for HIV-1 replication, the nucleocapsid protein (NC) constitutes a major target in AIDS therapy. Different families of molecules targeting NC zinc fingers and/or inhibiting the binding of NC with its target nucleic acids have been developed. However, their limited specificity and their cellular toxicity prompted us to develop a screening assay to target molecules able to inhibit NC chaperone properties, and more specifically the initial NC-promoted destabilization of the nucleic acid secondary structure. Since this destabilization is critically dependent on the properly folded fingers, the developed assay is thought to be highly specific. The assay was based on the use of cTAR DNA, a stem-loop sequence complementary to the transactivation response element, doubly labelled at its 5' and 3' ends by a rhodamine 6G fluorophore and a fluorescence quencher, respectively. Addition of NC(12-55), a peptide corresponding to the zinc finger domain of NC, to this doubly-labelled cTAR, led to a partial melting of the cTAR stem, which increases the distance between the two labels and thus, restores the rhodamine 6G fluorescence. Thus, positive hits were detected through the decrease of rhodamine 6G fluorescence. An "in-house" chemical library of 4800 molecules was screened and five compounds with IC(50) values in the micromolar range have been selected. The hits were shown by mass spectrometry and fluorescence anisotropy titration to prevent binding of NC(12-55) to cTAR through direct interaction with the NC folded fingers, but without promoting zinc ejection. These non-zinc ejecting NC binders are a new series of anti-NC molecules that could be used to rationally design molecules with potential anti-viral activities.
Collapse
|
62
|
Maxwell D, Chang Q, Zhang X, Barnett EM, Piwnica-Worms D. An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjug Chem 2009; 20:702-9. [PMID: 19331388 PMCID: PMC2672423 DOI: 10.1021/bc800516n] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is required for normal cellular homeostasis, and deregulation of the apoptotic process is implicated in various diseases. Previously, we developed a cell-penetrating near-infrared fluorescence (NIRF) probe based on an activatable strategy to detect apoptosis-associated caspase activity in vivo. This probe consisted of a cell-penetrating Tat peptide conjugated to an effector recognition sequence (DEVD) that was flanked by a fluorophore-quencher pair (Alexa Fluor 647 and QSY 21). Once exposed to effector caspases, the recognition sequence was cleaved, resulting in separation of the fluorophore-quencher pair and signal generation. Herein, we present biochemical analysis of a second generation probe, KcapQ, with a modified cell-penetrating peptide sequence (KKKRKV). This modification resulted in a probe that was more sensitive to effector caspase enzymes, displayed an unexpectedly higher quenching efficiency between the fluorophore-quencher pair, and was potentially less toxic to cells. Assays using recombinant caspase enzymes revealed that the probe was specific for effector caspases (caspase 3 > 7 > 6). Analysis of apoptosis in HeLa cells treated with doxorubicin showed probe activation specific to apoptotic cells. In a rat model of retinal neuronal excitotoxicity, intravitreal injection of N-methyl-d-aspartate (NMDA) induced apoptosis of retinal ganglion cells (RGCs). Eyecup and retinal flat-mount images of NMDA-pretreated animals injected intravitreally with KcapQ using a clinically applicable protocol showed specific and widely distributed cell-associated fluorescence signals compared to untreated control animals. Fluorescence microscopy images of vertical retinal sections from NMDA-pretreated animals confirmed that activated probe was predominantly localized to RGCs and colocalized with TUNEL labeling. Thus, KcapQ represents an improved effector caspase-activatable NIRF probe for enhanced noninvasive analysis of apoptosis in whole cells and live animals.
Collapse
Affiliation(s)
- Dustin Maxwell
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri 63110
| | - Qing Chang
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri 63110
| | - Xu Zhang
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri 63110
| | - Edward M. Barnett
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri 63110
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri 63110
- Department of Developmental Biology, Washington University Medical School, St. Louis, Missouri 63110
| |
Collapse
|
63
|
Chakraborty S, Sharma S, Maiti PK, Krishnan Y. The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res 2009; 37:2810-7. [PMID: 19279188 PMCID: PMC2685084 DOI: 10.1093/nar/gkp133] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a pH-dependent conformational transition in short, defined homopolymeric deoxyadenosines (dA15) from a single helical structure with stacked nucleobases at neutral pH to a double-helical, parallel-stranded duplex held together by AH+-H+A base pairs at acidic pH. Using native PAGE, 2D NMR, circular dichroism (CD) and fluorescence spectroscopy, we have characterized the two different pH dependent forms of dA15. The pH-triggered transition between the two defined helical forms of dA15 is characterized by CD and fluorescence. The kinetics of this conformational switch is found to occur on a millisecond time scale. This robust, highly reversible, pH-induced transition between the two well-defined structured states of dA15 represents a new molecular building block for the construction of quick-response, pH-switchable architectures in structural DNA nanotechnology.
Collapse
|
64
|
Nesterova IV, Erdem SS, Pakhomov S, Hammer RP, Soper SA. Phthalocyanine dimerization-based molecular beacons using near-IR fluorescence. J Am Chem Soc 2009; 131:2432-3. [PMID: 19191492 PMCID: PMC2684671 DOI: 10.1021/ja8088247] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we demonstrate the use of a novel dimerization-based molecular beacon (MB) probe consisting of two metallo-phthalocyanine (Pc) fluorophores that use near-IR fluorescence, appropriate for highly specific and sensitive in vivo and/or in vitro DNA/RNA detection. Pc's possess a propensity to form nonfluorescent H-dimers that is utilized as the molecular "off" switch in the closed MB conformation. The "on" switch, which is generated when the solution target binds to the loop of the MB forming the open form, also provides two fluorophores for transduction resulting in a doubling of the extinction coefficient and improving the resulting fluorescence yield compared to a classical single-fluorophore/quencher MB system. In addition, the Pc-based MBs possess high thermal, photo, and chemical stabilities that are essential for many highly sensitive applications, such as molecular imaging. The dimer-based MBs were obtained using a simple single-step synthesis procedure and demonstrated excellent quenching efficiencies (98%) as well as a high signal-to-background ratio (approximately 60) exceeding the performance characteristics of many conventionally available MB probes.
Collapse
Affiliation(s)
- Irina V. Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - S. Sibel Erdem
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Serhii Pakhomov
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Robert P. Hammer
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Steven A. Soper
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
65
|
Chen X, Zhou Y, Qu P, Zhao XS. Base-by-Base Dynamics in DNA Hybridization Probed by Fluorescence Correlation Spectroscopy. J Am Chem Soc 2008; 130:16947-52. [DOI: 10.1021/ja804628x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xudong Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng Qu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
66
|
How the HIV-1 nucleocapsid protein binds and destabilises the (-)primer binding site during reverse transcription. J Mol Biol 2008; 383:1112-28. [PMID: 18773912 DOI: 10.1016/j.jmb.2008.08.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus type 1 nucleocapsid protein (NCp7) plays an important role in the second strand transfer during reverse transcription. It promotes annealing of the 18-nucleotide complementary DNA primer-binding site (PBS) sequences at the 3' ends of (-)DNA and (+)DNA. NMR studies show that NCp7(12-55) and NCp7(1-55) interact at the 5' end of the loop of DeltaP(-)PBS, a (-)PBS derivative without the 3' protruding sequence, in a slow-exchange equilibrium. This interaction is mediated through the binding of the hydrophobic plateau (Val13, Phe16, Thr24, Ala25, Trp37, and Met46) on the zinc finger domain of both peptides to the 5-CTG-7 sequence of DeltaP(-)PBS. The stacking of the Trp37 aromatic ring with the G7 residue likely constitutes the determinant factor of the interaction. Although NCp7(12-55) does not melt the DeltaP(-)PBS stem-loop structure, it opens the loop and weakens the C5.G11 base pair next to the loop. Moreover, NCp7(12-55) was also found to bind but with lower affinity to the 10-CGG-12 sequence in an intermediate-exchange equilibrium on the NMR time scale. The loop modifications may favour a kissing interaction with the complementary (+)PBS loop. Moreover, the weakening of the upper base pair of the stem likely promotes the melting of the stem that is required to convert the kissing complex into the final (+/-)PBS extended duplex.
Collapse
|
67
|
Chakraborty S, Krishnan Y. Kinetic hybrid i-motifs: Intercepting DNA with RNA to form a DNA2–RNA2 i-motif. Biochimie 2008; 90:1088-95. [DOI: 10.1016/j.biochi.2008.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/25/2008] [Indexed: 11/26/2022]
|
68
|
Mao X, Jiang J, Xu X, Chu X, Luo Y, Shen G, Yu R. Enzymatic amplification detection of DNA based on “molecular beacon” biosensors. Biosens Bioelectron 2008; 23:1555-61. [DOI: 10.1016/j.bios.2008.01.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/13/2007] [Accepted: 01/14/2008] [Indexed: 11/29/2022]
|
69
|
Chakraborty S, Modi S, Krishnan Y. The RNA2-PNA2 hybrid i-motif-a novel RNA-based building block. Chem Commun (Camb) 2008:70-2. [PMID: 18401893 DOI: 10.1039/b713525d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the formation of a hybrid RNA2-PNA2 i-motif comprised of two RNA and two PNA strands based on the sequence specific self assembly of RNA, with potential as a building block for structural RNA nanotechnology.
Collapse
Affiliation(s)
- Saikat Chakraborty
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore, 560065, India
| | | | | |
Collapse
|
70
|
Li JJ, Chu Y, Lee BYH, Xie XS. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res 2008; 36:e36. [PMID: 18304948 PMCID: PMC2346604 DOI: 10.1093/nar/gkn033] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 01/09/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023] Open
Abstract
Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
71
|
Egelé C, Piémont E, Didier P, Ficheux D, Roques B, Darlix JL, de Rocquigny H, Mély Y. The single-finger nucleocapsid protein of moloney murine leukemia virus binds and destabilizes the TAR sequences of HIV-1 but does not promote efficiently their annealing. Biochemistry 2007; 46:14650-62. [PMID: 18027912 DOI: 10.1021/bi7012239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The retroviral nucleocapsid proteins (NCs) are small proteins with either one or two conserved zinc fingers flanked by basic domains. NCs play key roles during reverse transcription by chaperoning the obligatory strand transfers. In HIV-1, the first DNA strand transfer relies on the NCp7-promoted destabilization and subsequent annealing of the transactivation response element, TAR with its complementary cTAR sequence. NCp7 chaperone activity relies mainly on its two folded fingers. Since NCs with a unique zinc finger are encoded by gammaretroviruses such as the canonical Moloney murine leukemia virus (MoMuLV), our objective was to characterize, by fluorescence techniques, the binding and chaperone activities of the NCp10 protein of MoMuLV to the TAR sequences of HIV-1. The unique finger and the flanking 12-25 and 40-48 domains of NCp10 were found to bind and destabilize cTAR stem-loop almost as efficiently as the homologous NCp7 protein. The flanking domains were essential for properly positioning the finger and, notably, the Trp35 residue onto cTAR. Thus, the binding and destabilization determinants scattered on the two NCp7 fingers are encoded by the unique finger of NCp10 and its flanking domains. NCp10 also activates the cTAR/TAR annealing reaction, but less efficiently than NCp7, suggesting that the two NCp7 fingers promote in concert the rate-limiting nucleation of the duplex. Due to its ability to mimic NCp7, the simple structure of NCp10 might be useful to design peptidomimetics aimed at inhibiting HIV replication.
Collapse
Affiliation(s)
- Caroline Egelé
- Département de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7175 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Liu X, Wang Y, Nakamura K, Liu G, Dou S, Kubo A, Rusckowski M, Hnatowich DJ. Optical antisense imaging of tumor with fluorescent DNA duplexes. Bioconjug Chem 2007; 18:1905-11. [PMID: 17939728 DOI: 10.1021/bc700221d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antisense targeting of tumor with fluorescent conjugated DNA oligomers has the potential of improving tumor/normal tissue ratios over that achievable by nuclear antisense imaging. When administered as a linear duplex of two fluorophore-conjugated oligomers arranged in a manner that inhibits fluorescence as the duplex and designed to dissociate only in the presence of the target mRNA, the fluorescence signal should in principle be inhibited everywhere except in the target cell. Optical imaging by fluorescence quenching using linear fluorophore-conjugated oligomers has not been extensively investigated and may not have been previously considered for antisense targeting. We evaluated in cell culture and in KB-G2 tumor bearing nude mice a 25-mer phosphorothioate (PS) anti- mdr1 antisense DNA conjugated with the Cy5.5 emitter on its 3' equivalent end and hybridized as a linear duplex with a shorter 18-mer phosphodiester (PO) complementary DNA (cDNA) with the Black Hole inhibitor BHQ3 on its 5' end. In serum environments, 90% of the DNA25-Cy5.5 fluorescence was inhibited immediately following addition of the cDNA18-BHQ3 and showed only slight loss of inhibition over 24 h at 37 degrees C. As evidence of antisense specific binding, when incubated with the DNA25-Cy5.5/cDNA18-BHQ3 duplex, the fluorescence was lower in KB-31 (Pgp +/-) cells compared to KB-G2 (Pgp++) cells, but when incubated with the control cDNA18-Cy5.5/DNA25-BHQ3 duplex in which the fluorophores were reversed, the fluorescence of both cell types was low. As further evidence of specific binding, the fluorescent intensity of total RNA from KB-G2 cells incubated with the study duplex showed evidence of dissociation and hybridization with the target mRNA. Furthermore, the fluorescence microscopy images of KB-G2 cells incubated with DNA25-Cy5.5 as the singlet or study duplex show that migration in both cases is to the nucleus. The animal studies were performed in mice bearing KB-G2 tumor in one thigh and receiving iv the study or control duplexes. The tumor/normal thigh fluorescence ratio was clearly positive as early as 30 min postinjection in the study mice and reached a maximum at 5 h. By contrast, much lower fluorescence was observed in mice receiving the control duplex at the same dosage. Fluorescence microscope imaging showed that the Cy5.5 fluorescence was much higher in tumor sections from the animal that had received the study rather than control duplex. Thus combining a fluorophore-conjugated antisense DNA with an inhibitor-conjugated shorter complementary cDNA inhibited fluorescence both in cell culture and in tumored animals except in the presence of the target mRNA. This proof of concept investigation of optical antisense targeting therefore suggests that further studies including optimization of this approach are appropriate.
Collapse
Affiliation(s)
- Xinrong Liu
- Depatment of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Conley NR, Pomerantz AK, Wang H, Twieg RJ, Moerner WE. Bulk and single-molecule characterization of an improved molecular beacon utilizing H-dimer excitonic behavior. J Phys Chem B 2007; 111:7929-31. [PMID: 17583944 PMCID: PMC2663424 DOI: 10.1021/jp073310d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pairs of fluorophores in close proximity often show self-quenching of fluorescence by the well-known H-dimer mechanism. We use a pair of fluorophores in the new dicyanomethylenedihydrofuran (DCDHF) dye family in the design and characterization of a new fluorescent probe for nucleic acid detection, which we refer to as a self-quenched intramolecular dimer (SQuID) molecular beacon (MB). We obtain a quenching efficiency of 97.2%, higher than the only other reported value for a MB employing fluorophore self-quenching by H-dimer formation. Furthermore, the excellent single-molecule (SM) emitter characteristics of the DCDHF dyes allow observation of individual SQuID MB-target complexes immobilized on a surface, where the doubled SM emission intensity of our target-bound beacon ensures a higher signal-to-background ratio than conventional fluorophore-quencher MBs. Additional advantages of the SQuID MB are single-pot labeling, visible colorimetric detection of the target, and intrinsic single-molecule two-step photobleaching behavior, which offers a specific means of discriminating between functional MBs and spurious fluorescence.
Collapse
|
74
|
Bourdoncle A, Estévez Torres A, Gosse C, Lacroix L, Vekhoff P, Le Saux T, Jullien L, Mergny JL. Quadruplex-based molecular beacons as tunable DNA probes. J Am Chem Soc 2007; 128:11094-105. [PMID: 16925427 DOI: 10.1021/ja0608040] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular beacons (MBs) are fluorescent nucleic acid probes with a hairpin-shaped structure in which the 5' and 3' ends are self-complementary. Due to a change in their emissive properties upon recognition with complementary sequences, MBs allow the diagnosis of single-stranded DNA or RNA with high mismatch discrimination, in vitro and in vivo. Whereas the stems of MB hairpins usually rely on the formation of a Watson-Crick duplex, we demonstrate in this report that the preceding structure can be replaced by a G-quadruplex motif (G4). Intramolecular quadruplexes may still be formed with a central loop composed of 12 to 21 bases, therefore extending the sequence repertoire of quadruplex formation. G4-MB can efficiently be used for oligonucleotide discrimination: in the presence of a complementary sequence, the central loop hybridizes and forms a duplex that causes opening of the quadruplex stem. The corresponding G4-MB unfolding can be detected by a change in its fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using G4-MB instead of traditional MB. In particular, the intrinsic feature of the quadruplex motif facilitates the design of functional molecular beacons by independently varying the concentration of monovalent or divalent cations in the medium.
Collapse
Affiliation(s)
- A Bourdoncle
- Département de Chimie, CNRS UMR 8640, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Bullok KE, Maxwell D, Kesarwala AH, Gammon S, Prior JL, Snow M, Stanley S, Piwnica-Worms D. Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. Biochemistry 2007; 46:4055-65. [PMID: 17348687 DOI: 10.1021/bi061959n] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis is an important process involved in diverse developmental pathways, homeostasis, and response to therapy for a variety of diseases. Thus, noninvasive methods to study regulation and to monitor cell death in cells and whole animals are desired. To specifically detect apoptosis in vivo, a novel cell-permeable activatable caspase substrate, TcapQ647, was synthesized and Km, kcat, and Ki values were biochemically characterized. Specific cleavage of TcapQ647 by effector caspases was demonstrated using a panel of purified recombinant enzyme assays. Of note, caspase 3 was shown to cleave TcapQ647 with a kcat 7-fold greater than caspase 7 and 16-fold greater than caspase 6. No evidence of TcapQ647 cleavage by initiator caspases was observed. In KB 3-1 or Jurkat cells treated with cytotoxic agents or C6-ceramide, TcapQ647 detected apoptosis in individual- and population-based fluorescent cell assays in an effector caspase inhibitor-specific manner. Further, only background fluorescence was observed in cells incubated with dTcapQ647, a noncleavable all d-amino acid control peptide. Finally, in vivo experiments demonstrated the utility of TcapQ647 to detect parasite-induced apoptosis in human colon xenograft and liver abscess mouse models. Thus, TcapQ647 represents a sensitive, effector caspase-specific far-red "smart" probe to noninvasively monitor apoptosis in vivo.
Collapse
Affiliation(s)
- Kristin E Bullok
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Okoh MP, Hunter JL, Corrie JET, Webb MR. A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 2006; 45:14764-71. [PMID: 17144669 DOI: 10.1021/bi060960j] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel biosensor for inorganic phosphate (Pi) has been developed based on the phosphate binding protein of Escherichia coli. Two cysteine mutations were introduced and labeled with 6-iodoacetamidotetramethylrhodamine. When physically close to each other and correctly oriented, two rhodamine dyes interact to form a noncovalent dimer. In this state, they have little or no fluorescence, unlike the high fluorescence intensity of monomeric rhodamine. The labeling sites were so placed that the distance and orientation between the rhodamines change as a consequence of the conformational change associated with Pi binding. This movement alters the extent of interaction between the dyes. The best mutant of those tested (A17C, A197C) gives rise on average to approximately 18-fold increase in fluorescence intensity as Pi binds. The kinetics of interaction with Pi were measured at 10 degrees C. Under these conditions, the fluorescence increase associated with Pi binding has a maximum rate of 267 s-1. The Pi dissociation rate is 6.6 s-1, and the dissociation constant is 70 nM. An application of the sensor is demonstrated for measuring ATP hydrolysis in real time as a helicase moves along DNA. Advantages of the new sensor are discussed, both in terms of the use of a rhodamine fluorophore and the potential of this double labeling strategy.
Collapse
Affiliation(s)
- Michael P Okoh
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
77
|
Modi S, Wani AH, Krishnan Y. The PNA-DNA hybrid I-motif: implications for sugar-sugar contacts in i-motif tetramerization. Nucleic Acids Res 2006; 34:4354-63. [PMID: 16936319 PMCID: PMC1636347 DOI: 10.1093/nar/gkl443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have created a hybrid i-motif composed of two DNA and two peptide nucleic acid (PNA) strands from an equimolar mixture of a C-rich DNA and analogous PNA sequence. Nano-electrospray ionization mass spectrometry confirmed the formation of a tetrameric species, composed of PNA–DNA heteroduplexes. Thermal denaturation and CD experiments revealed that the structure was held together by C-H+-C base pairs. High resolution NMR spectroscopy confirmed that PNA and DNA form a unique complex comprising five C-H+-C base pairs per heteroduplex. The imino protons are protected from D2O exchange suggesting intercalation of the heteroduplexes as seen in DNA4 i-motifs. FRET established the relative DNA and PNA strand polarities in the hybrid. The DNA strands were arranged antiparallel with respect to one another. The same topology was observed for PNA strands. Fluorescence quenching revealed that both PNA–DNA parallel heteroduplexes are intercalated, such that both DNA strands occupy one of the narrow grooves. H1′–H1′ NOEs show that both heteroduplexes are fully intercalated and that both DNA strands are disposed towards a narrow groove, invoking sugar–sugar interactions as seen in DNA4 i-motifs. The hybrid i-motif shows enhanced thermal stability, intermediate pH dependence and forms at relatively low concentrations making it an ideal nanoscale structural element for pH-based molecular switches. It also serves as a good model system to assess the contribution of sugar–sugar contacts in i-motif tetramerization.
Collapse
Affiliation(s)
| | | | - Yamuna Krishnan
- To whom correspondence should be addressed. Tel: +91 80 23636421; Fax: +91 80 23636462;
| |
Collapse
|
78
|
Li J, Wang F, Mamon H, Kulke MH, Harris L, Maher E, Wang L, Makrigiorgos GM. Antiprimer quenching-based real-time PCR and its application to the analysis of clinical cancer samples. Clin Chem 2006; 52:624-33. [PMID: 16469859 DOI: 10.1373/clinchem.2005.063321] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nucleic acid amplification plays an increasingly important role in genetic analysis of clinical samples, medical diagnostics, and drug discovery. We present a novel quantitative PCR technology that combines the advantages of existing methods and allows versatile and flexible nucleic acid target quantification in clinical samples of widely different origin and quality. METHODS We modified one of the 2 PCR primers by use of an oligonucleotide "tail" fluorescently labeled at the 5' end. An oligonucleotide complementary to this tail, carrying a 3' quenching molecule (antiprimer), was included in the reaction along with 2 primers. After primer extension, the reaction temperature was lowered such that the antiprimer hybridizes and quenches the fluorescence of the free primer but not the fluorescence of the double-stranded PCR product. The latter provides real-time fluorescent product quantification. This antiprimer-based quantitative real-time PCR method (aQRT-PCR) was used to amplify and quantify minute amounts of input DNA for genes important to cancer. RESULTS Simplex and multiplex aQRT-PCR demonstrated linear correlation (r(2) >0.995) down to a DNA input equivalent to 20 cells. Multiplex aQRT-PCR reliably identified the HER-2 gene in microdissected breast cancer samples; in formalin-fixed, paraffin-embedded specimens; and in plasma circulating DNA from cancer patients. Adaptation to multiplex single-nucleotide polymorphism detection via allele-specific aQRT-PCR allowed correct identification of apolipoprotein B polymorphisms in 51 of 51 human specimens. CONCLUSION The simplicity, versatility, reliability, and low cost of aQRT-PCR make it suitable for genetic analysis of clinical specimens.
Collapse
Affiliation(s)
- Jin Li
- Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- G Goel
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132-001, Haryana, India
| | | | | | | | | |
Collapse
|
80
|
Santangelo P, Nitin N, Bao G. Nanostructured Probes for RNA Detection in Living Cells. Ann Biomed Eng 2006; 34:39-50. [PMID: 16463087 DOI: 10.1007/s10439-005-9003-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/30/2005] [Indexed: 01/29/2023]
Abstract
The ability to visualize in real-time the expression level and localization of specific RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we review the recent development of nanostructured oligonucleotide probes for living cell RNA detection, and discuss the biological and engineering issues and challenges of quantifying gene expression in vivo. In particular, we describe methods that use dual FRET (fluorescence resonance energy transfer) or single molecular beacons in combination with peptide-based or membrane-permeabilization-based delivery, to image the relative level, localization, and dynamics of RNA in live cells. Examples of detecting endogenous mRNAs, as well as imaging their subcellular localization and colocalization are given to illustrate the biological applications, and issues in molecular beacon design, probe delivery, and target accessibility are discussed. The nanostructured probes promise to open new and exciting opportunities in sensitive gene detection for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Philip Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
81
|
Kieken F, Paquet F, Brulé F, Paoletti J, Lancelot G. A new NMR solution structure of the SL1 HIV-1Lai loop-loop dimer. Nucleic Acids Res 2006; 34:343-52. [PMID: 16410614 PMCID: PMC1331991 DOI: 10.1093/nar/gkj427] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dimerization of genomic RNA is directly related with the event of encapsidation and maturation of the virion. The initiating sequence of the dimerization is a short autocomplementary region in the hairpin loop SL1. We describe here a new solution structure of the RNA dimerization initiation site (DIS) of HIV-1Lai. NMR pulsed field-gradient spin-echo techniques and multidimensional heteronuclear NMR spectroscopy indicate that this structure is formed by two hairpins linked by six Watson–Crick GC base pairs. Hinges between the stems and the loops are stabilized by intra and intermolecular interactions involving the A8, A9 and A16 adenines. The coaxial alignment of the three A-type helices present in the structure is supported by previous crystallography analysis but the A8 and A9 adenines are found in a bulged in position. These data suggest the existence of an equilibrium between bulged in and bulged out conformations in solution.
Collapse
Affiliation(s)
| | | | | | | | - Gérard Lancelot
- To whom correspondence should be addressed. Tel: +33 2 38 25 55 71;
| |
Collapse
|
82
|
Tian F, Johnson K, Lesar AE, Moseley H, Ferguson J, Samuel IDW, Mazzini A, Brancaleon L. The pH-dependent conformational transition of β-lactoglobulin modulates the binding of protoporphyrin IX. Biochim Biophys Acta Gen Subj 2006; 1760:38-46. [PMID: 16297563 DOI: 10.1016/j.bbagen.2005.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 08/23/2005] [Accepted: 09/02/2005] [Indexed: 11/23/2022]
Abstract
We have investigated the interaction between PPIX and beta-lactoglobulin (beta-lg) as a function of the pH of the solution. beta-lg is a small globular protein (MW approximately 18 kDa) with a very well characterized structure that reveals several possible binding sites for ligands. The interaction with beta-lg affects the photophysical properties of PPIX. The shift of PPIX emission maximum, excitation maximum and the increase of the fluorescence intensity is an indicator that binding between the porphyrin and beta-lg occurs. The binding constant appears to be modulated by the pH of the solution. Spectroscopic measurements do not reveal any significant energy transfer between the Trp residues of beta-lg and PPIX, however, fluorescence anisotropy decay measurements confirm the binding and the modulation introduced by the pH of the solution. Since beta-lg has been shown to be stable within the range of pH adopted in our experiments (5.0-9.0), the results suggest that PPIX binds a site affected by the pH of the solution. Because of the crystallographic evidence an obvious site is near the aperture of the interior beta-barrel however an alternative (or concurrent) binding site may still be present.
Collapse
Affiliation(s)
- Fang Tian
- Department of Physics and Astronomy, University of Texas at San Antonio, 6900 N Loop 1604 W, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Egelé C, Schaub E, Piémont E, de Rocquigny H, Mély Y. Investigation by fluorescence correlation spectroscopy of the chaperoning interactions of HIV-1 nucleocapsid protein with the viral DNA initiation sequences. C R Biol 2005; 328:1041-51. [PMID: 16314282 DOI: 10.1016/j.crvi.2005.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/26/2005] [Accepted: 07/27/2005] [Indexed: 11/23/2022]
Abstract
HIV-1 nucleocapsid protein (NC) exhibits nucleic acid chaperone properties that are important during reverse transcription. Herein, we review and extend our recent investigation by fluorescence correlation spectroscopy (FCS) of the NC chaperone activity on the primer binding site sequences (PBS) of the (-) and (+) DNA strands, which are involved in the second strand transfer during reverse transcription. In the absence of NC, the PBS stem-loops exhibited a fraying limited to the terminal G-C base pair. The kinetics of fraying were significantly activated by NC, a feature that may favour (-)PBS/(+)PBS annealing during the second strand transfer. In addition, NC was found to promote the formation of PBS kissing homodimers through interaction between the loops. These kissing complexes may favour secondary contacts between viral sequences and thus, promote recombination and viral diversity.
Collapse
Affiliation(s)
- Caroline Egelé
- Laboratoire de pharmacologie et physico-chimie des interactions cellulaires et moléculaires, UMR 7034, CNRS, faculté de pharmacie, université Louis-Pasteur, Strasbourg-1, 74, route du Rhin, 67401 Illkirch cedex, France
| | | | | | | | | |
Collapse
|
84
|
Demchenko AP. Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 2005; 343:1-22. [PMID: 16018869 DOI: 10.1016/j.ab.2004.11.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/23/2022]
Affiliation(s)
- Alexander P Demchenko
- TUBITAK Research Institute for Genetic Engineering Biotechnology, 41470 Gebze-Kocaeli, Turkey.
| |
Collapse
|
85
|
Long YT, Li CZ, Sutherland TC, Kraatz HB, Lee JS. Electrochemical detection of single-nucleotide mismatches: application of M-DNA. Anal Chem 2005; 76:4059-65. [PMID: 15253643 DOI: 10.1021/ac049482d] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detection of a single-nucleotide mismatch in unlabeled duplex DNA by electrochemical methods is presented. Impedance spectroscopy is used to characterize a perfect duplex monolayer and three DNA monolayers differing in the position of the mismatch. The monolayers were studied as B-DNA (normal duplex DNA) and after conversion to M-DNA (a metalated duplex). Modeling of the impedance data to an equivalent circuit provides parameters that are useful in discriminating the four monolayer configurations. The resistance to charge transfer, R(CT), was lower for all duplexes after conversion to M-DNA. Contrary to expectations, R(CT) was also found to decrease for duplexes containing a mismatch. However, R(CT) was found to be diagnostic for mismatch detection. In particular, the difference in R(CT) between B- and M-DNA (deltaR(CT)) decreased from 190(22) omega.cm(2) for a perfectly matched duplex to 95(20), 30(20), and 85(20) omega.cm(2) for a mismatch at the top (distal), middle, and bottom (proximal) positions of the monolayer with respect to the gold surface. Further, a method to form loosely packed single-stranded (ss)-DNA monolayers by duplex dehybridization that is able to rehybridize to target strands is presented. Rehybridization efficiencies were in the range of 40-70%. Under incomplete hybridization conditions, the R(CT) was the same for matched and mismatched duplexes under B-DNA conditions. However, deltaR(CT) between B- and M-DNA, under incomplete hybridization, still provided a distinction. The deltaR(CT) for a perfect duplex was 76(12) omega.cm(2), whereas a mismatch in the middle of the sequence yielded a deltaR(CT) value of 30(15) omega.cm(2). The detection limit was measured and the impedance methodology reliably detected single DNA base pair mismatches at concentrations as low as 100 pM.
Collapse
Affiliation(s)
- Yi-Tao Long
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N 5C9 Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
86
|
Beltz H, Clauss C, Piémont E, Ficheux D, Gorelick RJ, Roques B, Gabus C, Darlix JL, de Rocquigny H, Mély Y. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. J Mol Biol 2005; 348:1113-26. [PMID: 15854648 DOI: 10.1016/j.jmb.2005.02.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/17/2005] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) is formed of two highly conserved CCHC zinc fingers flanked by small basic domains. NC is required for the two obligatory strand transfers in viral DNA synthesis through its nucleic acid chaperoning properties. The first DNA strand transfer relies on NC's ability to bind and destabilize the secondary structure of complementary transactivation response region (cTAR) DNA, to inhibit self-priming, and to promote the annealing of cTAR to TAR RNA. To further investigate NC chaperone properties, our aim was to identify by fluorescence spectroscopy and gel electrophoresis, the NC structural determinants for cTAR binding and destabilization, and for the inhibition of self-primed DNA synthesis on a model system using a series of NC mutants and HIV-1 reverse transcriptase. NC destabilization and self-priming inhibition properties were found to be supported by the two fingers in their proper context and the basic (29)RAPRKKG(35) linker. The strict requirement of the native proximal finger suggests that its hydrophobic platform (Val13, Phe16, Thr24 and Ala25) is crucial for binding, destabilization and inhibition of self-priming. In contrast, only partial folding of the distal finger is required, probably for presenting the Trp37 residue in an appropriate orientation. Also, Trp37 and the hydrophobic residues of the proximal finger appear to be essential for the propagation of the melting from the cTAR ends up to the middle of the stem. Finally, both N-terminal and C-terminal basic domains contribute to cTAR binding but not to its destabilization.
Collapse
Affiliation(s)
- Hervé Beltz
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. THE PLANT CELL 2005; 17:746-59. [PMID: 15705953 PMCID: PMC1069696 DOI: 10.1105/tpc.104.027714] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 12/05/2004] [Indexed: 05/18/2023]
Abstract
Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.
Collapse
|
88
|
Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:882-92. [PMID: 15584954 DOI: 10.1111/j.1365-313x.2004.02263.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Volatile terpenoid compounds, potentially derived from carotenoids, are important components of flavor and aroma in many fruits, vegetables and ornamentals. Despite their importance, little is known about the enzymes that generate these volatiles. The tomato genome contains two closely related genes potentially encoding carotenoid cleavage dioxygenases, LeCCD1A and LeCCD1B. A quantitative reverse transcriptase-polymerase chain reaction analysis revealed that one of these two genes, LeCCD1B, is highly expressed in ripening fruit (4 days post-breaker), where it constitutes 0.11% of total RNA. Unlike the related neoxanthin cleavage dioxygenases, import assays using pea chloroplasts showed that the LeCCD1 proteins are not plastid-localized. The biochemical functions of the LeCCD1 proteins were determined by bacterial expression and in vitro assays, where it was shown that they symmetrically cleave multiple carotenoid substrates at the 9,10 (9',10') positions to produce a C14 dialdehyde and two C13 cyclohexones that vary depending on the substrate. The potential roles of the LeCCD1 genes in vivo were assessed in transgenic tomato plants constitutively expressing the LeCCD1B gene in reverse orientation. This over-expression of the antisense transcript led to 87-93% reductions in mRNA levels of both LeCCD1A and LeCCD1B in the leaves and fruits of selected lines. Transgenic plants exhibited no obvious morphological alterations. High-performance liquid chromatography analysis showed no significant modification in the carotenoid content of fruit tissue. However, volatile analysis showed a > or =50% decrease in beta-ionone (a beta-carotene-derived C13 cyclohexone) and a > or =60% decrease in geranylacetone (a C13 acyclic product likely derived from a lycopene precursor) in selected lines, implicating the LeCCD1 genes in the formation of these important flavor volatiles in vivo.
Collapse
Affiliation(s)
- Andrew J Simkin
- Horticultural Sciences, Plant Molecular and Cellular Biology Program, PO Box 110690, University of Florida, Gainesville, FL 32611-0690, USA
| | | | | | | | | |
Collapse
|
89
|
White SS, Ying L, Balasubramanian S, Klenerman D. Individual Molecules of Dye-Labeled DNA Act as a Reversible Two-Color Switch upon Application of an Electric Field. Angew Chem Int Ed Engl 2004; 43:5926-30. [PMID: 15547896 DOI: 10.1002/anie.200460323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Samuel S White
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
90
|
White SS, Ying L, Balasubramanian S, Klenerman D. Individual Molecules of Dye-Labeled DNA Act as a Reversible Two-Color Switch upon Application of an Electric Field. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200460323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
91
|
Egelé C, Schaub E, Ramalanjaona N, Piémont E, Ficheux D, Roques B, Darlix JL, Mély Y. HIV-1 nucleocapsid protein binds to the viral DNA initiation sequences and chaperones their kissing interactions. J Mol Biol 2004; 342:453-66. [PMID: 15327946 DOI: 10.1016/j.jmb.2004.07.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 07/19/2004] [Indexed: 11/17/2022]
Abstract
The chaperone properties of the human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) are required for the two obligatory strand transfer reactions occurring during viral DNA synthesis. The second strand transfer relies on the destabilization and the subsequent annealing of the primer binding site sequences (PBS) at the 3' end of the (-) and (+) DNA strands. To characterize the binding and chaperone properties of NC on the (-)PBS and (+)PBS sequences, we monitored by steady-state and time-resolved fluorescence spectroscopy as well as by fluorescence correlation spectroscopy the interaction of NC with wild type and mutant oligonucleotides corresponding to the (-)PBS and (+)PBS hairpins. NC was found to bind with high affinity to the loop, the stem and the single-stranded protruding sequence of both PBS sequences. NC induces only a limited destabilization of the secondary structure of both sequences, activating the transient melting of the stem only during its "breathing" period. This probably results from the high stability of the PBS due to the four G-C pairs in the stem. In contrast, NC directs the formation of "kissing" homodimers efficiently for both (-)PBS and (+)PBS sequences. Salt-induced dimerization and mutations in the (-)PBS sequence suggest that these homodimers may be stabilized by two intermolecular G-C Watson-Crick base-pairs between the partly self-complementary loops. The propensity of NC to promote the dimerization of partly complementary sequences may favor secondary contacts between viral sequences and thus, recombination and viral diversity.
Collapse
Affiliation(s)
- Caroline Egelé
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Sharkey FH, Banat IM, Marchant R. Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 2004; 70:3795-806. [PMID: 15240248 PMCID: PMC444812 DOI: 10.1128/aem.70.7.3795-3806.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Freddie H Sharkey
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry BT52 1SA, Northern Ireland
| | | | | |
Collapse
|
93
|
Drake TJ, Tan W. Molecular beacon DNA probes and their bioanalytical applications. APPLIED SPECTROSCOPY 2004; 58:269A-280A. [PMID: 15479516 DOI: 10.1366/0003702041959406] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Timothy J Drake
- Center for Research at the Bio/Nano Interface, Department of Chemistry and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | | |
Collapse
|
94
|
Beltz H, Piémont E, Schaub E, Ficheux D, Roques B, Darlix JL, Mély Y. Role of the structure of the top half of HIV-1 cTAR DNA on the nucleic acid destabilizing activity of the nucleocapsid protein NCp7. J Mol Biol 2004; 338:711-23. [PMID: 15099739 DOI: 10.1016/j.jmb.2004.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 11/27/2022]
Abstract
The viral nucleic acid chaperone protein NCp7 of HIV-1 assists the two obligatory strand transfers required for the conversion of the genomic RNA into double-stranded DNA by reverse transcriptase. The first strand transfer necessitates the annealing of the early product of cDNA synthesis, the minus strand strong stop DNA (ss-cDNA) to the 3' end of the genomic RNA. The hybridization reaction involves regions containing imperfect stem-loop (SL) structures, namely the TAR RNA at the 3' end of the genomic RNA and the complementary sequence cTAR at the 3' end of ss-cDNA. To pursue the characterization of the interaction between NCp7 and cTAR DNA, we investigated by absorbance, steady-state and time-resolved fluorescence spectroscopy, the interaction of NCp7 with wild-type and mutated DNAs representing the top half of cTAR. NCp7 was found to activate the transient melting of this cTAR DNA structure but less efficiently than that of cTAR lower half. The NCp7-induced destabilization of cTAR top half is dependent upon the three nucleotides bulging out of the stem, which thus represent a melting initiation site. In contrast, despite its ability to bind NCp7, the top loop does not play any significant role in NCp7-mediated melting. Thermodynamic data further suggest that NCp7-mediated destabilization of this cTAR structure correlates with the free energy changes afforded by destabilizing motifs like loops and bulges within the SL secondary structure. Interestingly, since NCp7 melts only short double-stranded sequences, destabilizing motifs need to be regularly positioned along the genomic sequence in order to promote strand transfer and thus genetic recombination during proviral DNA synthesis.
Collapse
Affiliation(s)
- Hervé Beltz
- UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74 Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
95
|
Santangelo PJ, Nix B, Tsourkas A, Bao G. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 2004; 32:e57. [PMID: 15084672 PMCID: PMC390379 DOI: 10.1093/nar/gnh062] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 12/18/2022] Open
Abstract
The ability to visualize in real-time the expression level and localization of specific endogenous RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we demonstrate such a capability using a pair of molecular beacons, one with a donor and the other with an acceptor fluorophore that hybridize to adjacent regions on the same mRNA target, resulting in fluorescence resonance energy transfer (FRET). Detection of the FRET signal significantly reduced false positives, leading to sensitive imaging of K-ras and survivin mRNAs in live HDF and MIAPaCa-2 cells. FRET detection gave a ratio of 2.25 of K-ras mRNA expression in stimulated and unstimulated HDF, comparable to the ratio of 1.95 using RT-PCR, and in contrast to the single-beacon result of 1.2. We further revealed intriguing details of K-ras and survivin mRNA localization in living cells. The dual FRET molecular beacons approach provides a novel technique for sensitive RNA detection and quantification in living cells.
Collapse
Affiliation(s)
- Philip J Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
96
|
Baeumner AJ, Pretz J, Fang S. A Universal Nucleic Acid Sequence Biosensor with Nanomolar Detection Limits. Anal Chem 2004; 76:888-94. [PMID: 14961717 DOI: 10.1021/ac034945l] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A quantitative universal biosensor was developed on the basis of olignucleotide sandwich hybridization for the rapid (30 min total assay time) and highly sensitive (1 nM) detection of specific nucleic acid sequences. The biosensor consists of a universal membrane and a universal dye-entrapping liposomal nanovesicle. Two oligonucleotides, a reporter and a capture probe that can hybridize specifically with the target nucleic acid sequence, can be coupled to the universal biosensor components within a 10-min incubation period, thus converting it into a specific assay. The liposomal nanovesicles bear a generic oligonucleotide sequence on their outer surface. The reporter probes consist of two parts: the 3' end is complementary to the generic liposomal oligonucleotide, and the 5' end is complementary to the target sequence. Streptavidin is immobilized in the detection zone of the universal membranes. The capture probes are biotinylated at the 5' end and are complementary to another segment in the target sequence. Thus, by incubating the liposomal nanovesicles with the reporter probes, the target sequence, and the capture probes in a hybridization buffer for 20 min, a sandwich complex is formed. The mixture is applied to the membrane, migrates along the strip, and is captured in the detection zone via streptavidin-biotin binding. The biosensor assay was optimized with respect to hybridization conditions, concentrations of all components, and length of the generic probe. It was tested using synthetic DNA sequences and authentic RNA sequences isolated and amplified using nucleic acid sequence-based amplification (NASBA) from Escherichia coli, Bacillus anthracis, and Cryptosporidium parvum. Dose-response curves were carried out using a portable reflectometer for the instantaneous quantification of liposomal nanovesicles in the detection zone. Limits of detection of 1 fmol per assay (1 nM) and dynamic ranges between 1 fmol and at least 750 fmol (1-750 nM) were obtained. The universal biosensors were compared to specific RNA biosensors developed earlier and were found to match or exceed their performance characteristics. In addition, no changes to hybridization conditions were required when switching to the detection of a new target sequence or when using actual nucleic acid sequence-based amplified RNA sequences. Therefore, the universal biosensor described is an excellent tool for use in laboratories or at test sites for rapidly investigating and quantifying any nucleic acid sequence of interest.
Collapse
Affiliation(s)
- Antje J Baeumner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853-5701, USA.
| | | | | |
Collapse
|
97
|
Liu J, Lu Y. Improving Fluorescent DNAzyme Biosensors by Combining Inter- and Intramolecular Quenchers. Anal Chem 2003; 75:6666-72. [PMID: 14640743 DOI: 10.1021/ac034924r] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A previously reported DNAzyme-based biosensor for Pb(2+) has shown high sensitivity and selectivity at 4 degrees C. In the system, the substrate and the enzyme strand of the DNAzyme are labeled with a fluorophore and a quencher, respectively. In the presence of Pb(2+), the substrate strand is cleaved by the enzyme strand, and the release of the cleaved fragment results in significant fluorescence increase. However, the performance of the sensor decreases considerably if the temperature is raised to room temperature because of high background fluorescence. A careful analysis of the sensor system, including measurement of the melting curve and fluorescence resonance energy-transfer (FRET) study of the free substrate, suggests that a fraction of the fluorophore-labeled substrate strand is dissociated from the enzyme strand, resulting in elevated background fluorescence signals at room temperature. To overcome this problem, we designed a new sensor system by introducing both inter- and intramolecular quenchers. The design was aided by the FRET study that showed the dissociated substrate maintained a random coil conformation with an end-to-end distance of approximately 39 A, which is much shorter than that of the fully extended DNA. With this new design, the background fluorescence was significantly suppressed, with 660% increase of fluorescence intensity as compared to 60% increase for the previous design. This suppression of background fluorescence signals was achieved without losing selectivity of the sensor. The new design makes it possible to use the sensor for practical applications in a wide temperature range. The design principle presented here should be applicable to other nucleic acid-based biosensors to decrease background fluorescence.
Collapse
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
98
|
Mahara A, Iwase R, Sakamoto T, Yamaoka T, Yamana K, Murakami A. Detection of acceptor sites for antisense oligonucleotides on native folded RNA by fluorescence spectroscopy. Bioorg Med Chem 2003; 11:2783-90. [PMID: 12788352 DOI: 10.1016/s0968-0896(03)00227-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antisense strategy has high potential for curing diseases and studying gene functions by suppressing the translation step. For the strategy, it is essential to detect acceptor sites of antisense molecules on mRNA under physiological conditions. We propose a new analytical method for the detection of acceptor sites of antisense molecules with high sensitivity. 2'-O-Methyloligoribonucleotide containing 2'-O-(1-pyrenylmethyl)uridine (OMUpy) was chosen as the fluorescence probe. The fluorescence intensity due to the pyrene in single-stranded OMUpy was scarcely observed. When OMUpy was hybridized with the complementary oligoRNA, the fluorescence intensity at 375 nm was remarkably increased. It was found that the increase was derived from the localization of the pyrene by the measurements of time-resolved fluorescence spectroscopy, CD and UV absorption spectra. These results suggest that the change of the fluorescence intensity of OMUpy can be a useful index to monitor hybridization. In this study, we chose Escherichia coli. 16S-rRNA as the model RNA and chose seven regions for probing by OMUpy based on the reported secondary structure of 16S-rRNA. The fluorescence intensity of an equimolar mixture of OMUpy with 16S-rRNA varied depending on the sequence. In particular, the increment in the system of OMUpy-8, which can hybridize with region 887-896 nt of 16S-rRNA, was most significant among the systems. These results indicated that the site targeted by OMUpy-8 was exposed to regulatory molecules, and suggest that the method presented here is useful to design antisense molecules.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Tsourkas A, Behlke MA, Xu Y, Bao G. Spectroscopic Features of Dual Fluorescence/Luminescence Resonance Energy-Transfer Molecular Beacons. Anal Chem 2003; 75:3697-703. [PMID: 14572032 DOI: 10.1021/ac034295l] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular beacons have the potential to become a powerful tool in gene detection and quantification in living cells. Here we report a novel dual molecular beacons approach to reduce false-positive signals in detecting target nucleic acids in homogeneous assays. A pair of molecular beacons, each containing a fluorescence quencher and a reporter fluorophore, one with a donor and a second with an acceptor fluorophore, hybridize to adjacent regions on the same target resulting in fluorescence resonance energy transfer (FRET). The detection of a FRET signal leads to a substantially increased signal-to-background ratio compared with that seen in single molecular beacon assays and enables discrimination between fluorescence due to specific probe/target hybridization and a variety of possible false-positive events. Further, when a lanthanide chelate is used as a donor in a dual-probe assay, extremely high signal-to-background ratios can be achieved owing to the long lifetime and sharp emission peaks of the donor and the time-gated detection of acceptor fluorescence emission. These new approaches allow for the ultrasensitive detection of target molecules in a way that could be readily applied to real-time imaging of gene expression in living cells.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
100
|
Ha T, Xu J. Photodestruction intermediates probed by an adjacent reporter molecule. PHYSICAL REVIEW LETTERS 2003; 90:223002. [PMID: 12857312 DOI: 10.1103/physrevlett.90.223002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2001] [Revised: 12/05/2002] [Indexed: 05/24/2023]
Abstract
We used a fluorescence resonance energy transfer donor molecule to probe the multiple intermediates in the photoinduced destruction of an acceptor molecule. These intermediates are nonemitting but are still able to quench the fluorescence of the donor at a distance scale shorter than conventional fluorescence resonance energy transfer, suggesting novel biophysical applications.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | |
Collapse
|