51
|
Daher W, Morlon-Guyot J, Sheiner L, Lentini G, Berry L, Tawk L, Dubremetz JF, Wengelnik K, Striepen B, Lebrun M. Lipid kinases are essential for apicoplast homeostasis in Toxoplasma gondii. Cell Microbiol 2014; 17:559-78. [PMID: 25329540 DOI: 10.1111/cmi.12383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/26/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022]
Abstract
Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P-binding proteins and identified in total six PX and FYVE domain-containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2 . Although depletion of putative PI(3)P-binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P-related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2 . Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.
Collapse
Affiliation(s)
- Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier 1 et 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Vesicles bearing Toxoplasma apicoplast membrane proteins persist following loss of the relict plastid or Golgi body disruption. PLoS One 2014; 9:e112096. [PMID: 25369183 PMCID: PMC4219833 DOI: 10.1371/journal.pone.0112096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii and malaria parasites contain a unique and essential relict plastid called the apicoplast. Most apicoplast proteins are encoded in the nucleus and are transported to the organelle via the endoplasmic reticulum (ER). Three trafficking routes have been proposed for apicoplast membrane proteins: (i) vesicular trafficking from the ER to the Golgi and then to the apicoplast, (ii) contiguity between the ER membrane and the apicoplast allowing direct flow of proteins, and (iii) vesicular transport directly from the ER to the apicoplast. Previously, we identified a set of membrane proteins of the T. gondii apicoplast which were also detected in large vesicles near the organelle. Data presented here show that the large vesicles bearing apicoplast membrane proteins are not the major carriers of luminal proteins. The vesicles continue to appear in parasites which have lost their plastid due to mis-segregation, indicating that the vesicles are not derived from the apicoplast. To test for a role of the Golgi body in vesicle formation, parasites were treated with brefeldin A or transiently transfected with a dominant-negative mutant of Sar1, a GTPase required for ER to Golgi trafficking. The immunofluorescence patterns showed little change. These findings were confirmed using stable transfectants, which expressed the toxic dominant-negative sar1 following Cre-loxP mediated promoter juxtaposition. Our data support the hypothesis that the large vesicles do not mediate the trafficking of luminal proteins to the apicoplast. The results further show that the large vesicles bearing apicoplast membrane proteins continue to be observed in the absence of Golgi and plastid function. These data raise the possibility that the apicoplast proteome is generated by two novel ER to plastid trafficking pathways, plus the small set of proteins encoded by the apicoplast genome.
Collapse
|
53
|
Webster WAJ, McFadden GI. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum. J Eukaryot Microbiol 2014; 61:655-71. [PMID: 25227912 DOI: 10.1111/jeu.12176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
Malaria plagues one out of every 30 humans and contributes to almost a million deaths, and the problem could worsen. Our current therapeutic options are compromised by emerging resistance by the parasite to our front line drugs. It is thus imperative to better understand the basic biology of the parasite and develop novel drugs to stem this disease. The most facile approach to analyse a gene's function is to remove it from the genome or inhibit its activity. Although genetic manipulation of the human malaria parasite Plasmodium falciparum is a relatively standard procedure, there is no optimal method to perturb genes essential to the intraerythrocytic development cycle--the part of the life cycle that produces the clinical manifestation of malaria. This is a severe impediment to progress because the phenotype we wish to study is exactly the one that is so elusive. In the absence of any utilitarian way to conditionally delete essential genes, we are prevented from investigating the parasite's most vulnerable points. This review aims to focus on the development of tools identifying essential genes of P. falciparum and our ability to elicit phenotypic mutation.
Collapse
Affiliation(s)
- Wesley A J Webster
- Centre for Regional and Rural Futures, School of Life and Environmental Sciences, Deakin University, Burwood, 3125, Victoria, Australia; Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | | |
Collapse
|
54
|
Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 2014; 28:4729-47. [PMID: 25114175 DOI: 10.1096/fj.14-252569] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronins are involved in the regulation of actin dynamics in a multifaceted way, participating in cell migration and vesicular trafficking. Apicomplexan parasites, which exhibit an actin-dependent gliding motility that is essential for traversal through tissues, as well as invasion of and egress from host cells, express only a single coronin, whereas higher eukaryotes possess several isoforms. We set out to characterize the 3-D structure, biochemical function, subcellular localization, and genetic ablation of Toxoplasma gondii coronin (TgCOR), to shed light on its biological role. A combination of X-ray crystallography, small-angle scattering of X-rays, and light scattering revealed the atomic structure of the conserved WD40 domain and the dimeric arrangement of the full-length protein. TgCOR binds to F-actin and increases the rate and extent of actin polymerization. In vivo, TgCOR relocalizes transiently to the posterior pole of motile and invading parasites, independent of actin dynamics, but concomitant to microneme secretory organelle discharge. TgCOR contributes to, but is not essential for, invasion and egress. Taken together, our data point toward a role for TgCOR in stabilizing newly formed, short filaments and F-actin cross-linking, as well as functions linked to endocytosis and recycling of membranes.
Collapse
Affiliation(s)
- Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juha P Kallio
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and
| | - Wassim Daher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland;
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
55
|
Advantages and disadvantages of conditional systems for characterization of essential genes in Toxoplasma gondii. Parasitology 2014; 141:1390-8. [PMID: 24926834 DOI: 10.1017/s0031182014000559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dissection of apicomplexan biology has been highly influenced by the genetic tools available for manipulation of parasite DNA. Here, we describe different techniques available for the generation of conditional mutants. Comparison of the advantages and disadvantages of the three most commonly used regulation systems: the tetracycline inducible system, the regulation of protein stability and site-specific recombination are discussed. Using some previously described examples we explore some of the pitfalls involved in gene-function analysis using these systems that can lead to wrong or over-interpretation of phenotypes. We will also mention different options to standardize the application of these techniques for the characterization of gene function in high-throughput.
Collapse
|
56
|
Jacot D, Frénal K, Marq JB, Sharma P, Soldati-Favre D. Assessment of phosphorylation inToxoplasmaglideosome assembly and function. Cell Microbiol 2014; 16:1518-32. [DOI: 10.1111/cmi.12307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Karine Frénal
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory; National Institute of Immunology; New Delhi 110067 India
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
57
|
The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma. PLoS Pathog 2014; 10:e1004074. [PMID: 24743791 PMCID: PMC3990729 DOI: 10.1371/journal.ppat.1004074] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
The apical complex is the definitive cell structure of phylum Apicomplexa, and is the focus of the events of host cell penetration and the establishment of intracellular parasitism. Despite the importance of this structure, its molecular composition is relatively poorly known and few studies have experimentally tested its functions. We have characterized a novel Toxoplasma gondii protein, RNG2, that is located at the apical polar ring--the common structural element of apical complexes. During cell division, RNG2 is first recruited to centrosomes immediately after their duplication, confirming that assembly of the new apical complex commences as one of the earliest events of cell replication. RNG2 subsequently forms a ring, with the carboxy- and amino-termini anchored to the apical polar ring and mobile conoid, respectively, linking these two structures. Super-resolution microscopy resolves these two termini, and reveals that RNG2 orientation flips during invasion when the conoid is extruded. Inducible knockdown of RNG2 strongly inhibits host cell invasion. Consistent with this, secretion of micronemes is prevented in the absence of RNG2. This block, however, can be fully or partially overcome by exogenous stimulation of calcium or cGMP signaling pathways, respectively, implicating the apical complex directly in these signaling events. RNG2 demonstrates for the first time a role for the apical complex in controlling secretion of invasion factors in this important group of parasites.
Collapse
|
58
|
Pereira LM, Yatsuda AP. Comparison of an ELISA assay for the detection of adhesive/invasive Neospora caninum tachyzoites. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2014; 23:36-43. [DOI: 10.1590/s1984-29612014005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/15/2014] [Indexed: 11/22/2022]
Abstract
Neospora caninum belongs to the phylum Apicomplexa, the causative agent of neosporosis, which leads to economic impacts on cattle production. A common feature among apicomplexan parasites is the invasive process driven mostly by the parasite. As a first evaluation of candidate molecules that play a possible role by interfering in this invasive process, the in vitro invasion assay is a fast and direct way to screen future agonists or antagonists. This work involved the development of a new cell culture ELISA and transient β-galactosidase activity applied to the semi-quantitative detection of N. caninum in Vero cell culture. Cell culture ELISA is based on histochemistry and immunology, resulting in a colorimetric reaction. The β-galactosidase activity was obtained by the transient transfection of the lacZ gene under control of RPS13 promoter of N. caninum. These methods were used to evaluate the effects of temperature (37°C and 85°C) on the invasion and adhesion of tachyzoites. The three tested methods (real time PCR, β-galactosidase activity and ELISA) showed a similar pattern, indicating that different methods may be complementary.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Universidade de São Paulo ? USP, Brasil; Universidade de São Paulo ? USP, Brasil
| | - Ana Patrícia Yatsuda
- Universidade de São Paulo ? USP, Brasil; Universidade de São Paulo ? USP, Brasil
| |
Collapse
|
59
|
Pereira LM, Baroni L, Yatsuda AP. A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene. Exp Parasitol 2014; 138:40-7. [PMID: 24440296 DOI: 10.1016/j.exppara.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/07/2014] [Indexed: 01/25/2023]
Abstract
Neospora caninum is an Apicomplexa parasite related to abortion and losses of fertility in cattle. The amenability of Toxoplasma gondii and Plasmodium to genetic manipulation offers several tools to determine the invasion and replication processes, which support posterior strategies related to the combat of these diseases. For Plasmodium the use of pyrimethamine as an auxiliary drug on malaria treatment has been affected by the rise of resistant strains and the analyses on Dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene indicated several point mutations. In this work we developed a method for stable insertion of genes based on resistance to pyrimethamine. For that, the coding sequence of NcDHFR-TS (Dihydrofolate reductase-thymidylate synthase) was point mutated in two amino acids, generating DHFRM2M3. The DHFRM2M3 flanked by the promoter and 3'UTR of Ncdhfr-ts (Ncdhfr-DHFRM2M3) conferred resistance to pyrimethamine after transfection. For illustration of stability and expression, the cassette Ncdhfr-DHFRM2M3 was ligated to the reporter gene Lac-Z (β-galactosidase enzyme) controlled by the N. caninum tubulin promoter and was transfected and selected in N. caninum. The cassette was integrated into the genome and the selected tachyzoites expressed Lac-Z, allowing the detection of tachyzoites by the CPRG reaction and X-gal precipitation. The obtainment of transgenic N. caninum resistant to pyrimethamine confirms the effects on DHFR-TS among the Apicomplexa members and will support future approaches on pholate inhibitors for N. caninum prophylaxis. The construction of stable tachyzoites based on vectors with N. caninum promoters initiates the molecular manipulation of this parasite independently of T. gondii.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
60
|
Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 2013; 16:95-114. [PMID: 24011186 DOI: 10.1111/cmi.12186] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Apicomplexan parasites express various calcium-dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock-down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7-depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium-dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier I et II, Montpellier, France
| | | | | | | | | | | |
Collapse
|
61
|
Jacot D, Daher W, Soldati-Favre D. Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. EMBO J 2013; 32:1702-16. [PMID: 23695356 DOI: 10.1038/emboj.2013.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/22/2013] [Indexed: 11/09/2022] Open
Abstract
Members of the Apicomplexa phylum possess an organelle surrounded by four membranes, originating from the secondary endosymbiosis of a red alga. This so-called apicoplast hosts essential metabolic pathways. We report here that apicoplast inheritance is an actin-based process. Concordantly, parasites depleted in either profilin or actin depolymerizing factor, or parasites overexpressing the FH2 domain of formin 2, result in loss of the apicoplast. The class XXII myosin F (MyoF) is conserved across the phylum and localizes in the vicinity of the Toxoplasma gondii apicoplast during division. Conditional knockdown of TgMyoF severely affects apicoplast turnover, leading to parasite death. This recapitulates the phenotype observed upon perturbation of actin dynamics that led to the accumulation of the apicoplast and secretory organelles in enlarged residual bodies. To further dissect the mode of action of this motor, we conditionally stabilized the tail of MyoF, which forms an inactive heterodimer with endogenous TgMyoF. This dominant negative mutant reveals a central role of this motor in the positioning of the two centrosomes prior to daughter cell formation and in apicoplast segregation.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
62
|
Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman JP, Müller S, Meissner M, Blackman MJ. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol Microbiol 2013; 88:687-701. [PMID: 23489321 PMCID: PMC3708112 DOI: 10.1111/mmi.12206] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
Abstract
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes.
Collapse
Affiliation(s)
- Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Sujaan Das
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Eleanor H Wong
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Nicole Andenmatten
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Jean-Paul Herman
- CRN2M – UMR 7286, Centre National de la Recherche Scientifique (CNRS), Aix Marseille UniversitéMarseille, France
| | - Sylke Müller
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Markus Meissner
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| |
Collapse
|
63
|
Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. PLoS Biol 2012; 10:e1001444. [PMID: 23239939 PMCID: PMC3519896 DOI: 10.1371/journal.pbio.1001444] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/30/2012] [Indexed: 01/08/2023] Open
Abstract
Apicomplexan parasites undergo cell division using an evolutionarily conserved mechanism first described in the positioning and assembly of flagella in algae. Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA) polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC). Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures. Malaria, toxoplasmosis, and related diseases are caused by infection with unicellular parasites called Apicomplexa. Their name refers to the elaborate invasion machinery that occupies the apical end of the parasite cell. This apparatus allows the parasite to force its way into the cells of its host, and to deliver factors that will manipulate host cell structure, gene expression, and metabolism. Once in the host cell the parasite will begin to grow. The parasite replicates its genome and organelles numerous times and then loads these various elements into numerous daughter cells that will further spread the infection. Here we report a fiber that coordinates the daughter cell budding process. The fiber links the centrosome, which controls the mitotic spindle, and the genome with the microtubule organizing center of the budding daughter. Parasite mutants lacking the proteins that build the fiber fail to form daughter cells at the earliest step. The fiber and its components are remarkably similar to fibers that coordinate flagella in algae. While Apicomplexa are not flagellated (with the exception of certain gamete stages) they evolved from flagellated algae. We propose that elements of the invasion apparatus evolved from the flagellum or flagellum associated structures.
Collapse
|
64
|
Pino P, Sebastian S, Kim E, Bush E, Brochet M, Volkmann K, Kozlowski E, Llinás M, Billker O, Soldati-Favre D. A Tetracycline-Repressible Transactivator System to Study Essential Genes in Malaria Parasites. Cell Host Microbe 2012; 12:824-34. [PMID: 23245327 PMCID: PMC3712325 DOI: 10.1016/j.chom.2012.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 09/10/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022]
Abstract
A major obstacle in analyzing gene function in apicomplexan parasites is the absence of a practical regulatable expression system. Here, we identified functional transcriptional activation domains within Apicomplexan AP2 (ApiAP2) family transcription factors. These ApiAP2 transactivation domains were validated in blood-, liver-, and mosquito-stage parasites and used to create a robust conditional expression system for stage-specific, tetracycline-dependent gene regulation in Toxoplasma gondii, Plasmodium berghei, and Plasmodium falciparum. To demonstrate the utility of this system, we created conditional knockdowns of two essential P. berghei genes: profilin (PRF), a protein implicated in parasite invasion, and N-myristoyltransferase (NMT), which catalyzes protein acylation. Tetracycline-induced repression of PRF and NMT expression resulted in a dramatic reduction in parasite viability. This efficient regulatable system will allow for the functional characterization of essential proteins that are found in these important parasites.
Collapse
|
65
|
Lourido S, Tang K, Sibley LD. Distinct signalling pathways control Toxoplasma egress and host-cell invasion. EMBO J 2012; 31:4524-34. [PMID: 23149386 DOI: 10.1038/emboj.2012.299] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 12/27/2022] Open
Abstract
Calcium signalling coordinates motility, cell invasion, and egress by apicomplexan parasites, yet the key mediators that transduce these signals remain largely unknown. One underlying assumption is that invasion into and egress from the host cell depend on highly similar systems to initiate motility. Using a chemical-genetic approach to specifically inhibit select calcium-dependent kinases (CDPKs), we instead demonstrate that these pathways are controlled by different kinases: both TgCDPK1 and TgCDPK3 were required during ionophore-induced egress, but only TgCDPK1 was required during invasion. Similarly, microneme secretion, which is necessary for motility during both invasion and egress, universally depended on TgCDPK1, but only exhibited TgCDPK3 dependence when triggered by certain stimuli. We also demonstrate that egress likely comes under a further level of control by cyclic GMP-dependent protein kinase and that its activation can induce egress and partially compensate for the inhibition of TgCDPK3. These results demonstrate that separate signalling pathways are integrated to regulate motility in response to the different signals that promote invasion or egress during infection by Toxoplasma gondii.
Collapse
Affiliation(s)
- Sebastian Lourido
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
66
|
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol 2012; 43:125-32. [PMID: 23068911 DOI: 10.1016/j.ijpara.2012.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Bovine babesiosis caused by the protozoan parasite, Babesia bovis, remains a significant cause of avoidable economic losses to the livestock industry in many countries throughout the world. The molecular mechanisms underlying the pathophysiology of severe disease in susceptible cattle are not well understood and the tools available to study the biology of the parasite, including technologies for genetic manipulation, have only recently been developed. Recent availability of multiple parasite genomes and bioinformatic tools, in combination with the development of new biological reagents, will facilitate our better understanding of the parasite. This will ultimately assist in the identification of novel targets for the development of new therapeutics and vaccines. Here we describe some recent advances in Babesia research and highlight some important challenges for the future.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
67
|
Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication. Proc Natl Acad Sci U S A 2012; 109:7463-8. [PMID: 22523242 DOI: 10.1073/pnas.1114661109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a conserved transmembrane adhesin of apicomplexan parasites that plays an important role in host-cell invasion. Toxoplasma gondii AMA1 (TgAMA1) is secreted onto the parasite surface and subsequently released by proteolytic cleavage within its transmembrane domain. To elucidate the function of TgAMA1 intramembrane proteolysis, we used a heterologous cleavage assay to characterize the determinants within the TgAMA1 transmembrane domain (ALIAGLAVGGVLLLALLGGGCYFA) that govern its processing. Quantitative analysis revealed that the TgAMA1(L/G) mutation enhanced cleavage by 13-fold compared with wild type. In contrast, the TgAMA1(AG/FF) mutation reduced cleavage by 30-fold, whereas the TgAMA1(GG/FF) mutation had a minor effect on proteolysis; mutating both motifs in a quadruple mutant blocked cleavage completely. We then complemented a TgAMA1 conditional knockout parasite line with plasmids expressing these TgAMA1 variants. Contrary to expectation, variants that increased or decreased TgAMA1 processing by >10-fold had no phenotypic consequences, revealing that the levels of rhomboid proteolysis in parasites are not delicately balanced. Only parasites transgenically expressing or carrying a true knock-in allele of the uncleavable TgAMA1(AG/FF+GG/FF) mutant showed a growth defect, which resulted from inhibiting invasion without perturbing intracellular replication. These data demonstrate that TgAMA1 cleavage plays a role in invasion, but refute a recently proposed model in which parasite replication within the host cell is regulated by intramembrane proteolysis of TgAMA1.
Collapse
|
68
|
Sampels V, Hartmann A, Dietrich I, Coppens I, Sheiner L, Striepen B, Herrmann A, Lucius R, Gupta N. Conditional mutagenesis of a novel choline kinase demonstrates plasticity of phosphatidylcholine biogenesis and gene expression in Toxoplasma gondii. J Biol Chem 2012; 287:16289-99. [PMID: 22451671 DOI: 10.1074/jbc.m112.347138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular and promiscuous protozoan parasite Toxoplasma gondii needs an extensive membrane biogenesis that must be satisfied irrespective of its host-cell milieu. We show that the synthesis of the major lipid in T. gondii, phosphatidylcholine (PtdCho), is initiated by a novel choline kinase (TgCK). Full-length (∼70-kDa) TgCK displayed a low affinity for choline (K(m) ∼0.77 mM) and harbors a unique N-terminal hydrophobic peptide that is required for the formation of enzyme oligomers in the parasite cytosol but not for activity. Conditional mutagenesis of the TgCK gene in T. gondii attenuated the protein level by ∼60%, which was abolished in the off state of the mutant (Δtgck(i)). Unexpectedly, the mutant was not impaired in its growth and exhibited a normal PtdCho biogenesis. The parasite compensated for the loss of full-length TgCK by two potential 53- and 44-kDa isoforms expressed through a cryptic promoter identified within exon 1. TgCK-Exon1 alone was sufficient in driving the expression of GFP in E. coli. The presence of a cryptic promoter correlated with the persistent enzyme activity, PtdCho synthesis, and susceptibility of T. gondii to a choline analog, dimethylethanolamine. Quite notably, the mutant displayed a regular growth in the off state despite a 35% decline in PtdCho content and lipid synthesis, suggesting a compositional flexibility in the membranes of the parasite. The observed plasticity of gene expression and membrane biogenesis can ensure a faithful replication and adaptation of T. gondii in disparate host or nutrient environments.
Collapse
Affiliation(s)
- Vera Sampels
- Institute of Biology, Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, House 14, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog 2011; 7:e1002392. [PMID: 22144892 PMCID: PMC3228799 DOI: 10.1371/journal.ppat.1002392] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/06/2011] [Indexed: 11/26/2022] Open
Abstract
Parasites of the phylum Apicomplexa cause diseases that impact global health and economy. These unicellular eukaryotes possess a relict plastid, the apicoplast, which is an essential organelle and a validated drug target. However, much of its biology remains poorly understood, in particular its elaborate compartmentalization: four membranes defining four different spaces. Only a small number of organellar proteins have been identified in particular few proteins are known for non-luminal apicoplast compartments. We hypothesized that enlarging the catalogue of apicoplast proteins will contribute toward identifying new organellar functions and expand the realm of targets beyond a limited set of characterized pathways. We developed a bioinformatic screen based on mRNA abundance over the cell cycle and on phyletic distribution. We experimentally assessed 57 genes, and of 30 successful epitope tagged candidates eleven novel apicoplast proteins were identified. Of those, seven appear to target to the lumen of the organelle, and four localize to peripheral compartments. To address their function we then developed a robust system for the construction of conditional mutants via a promoter replacement strategy. We confirm the feasibility of this system by establishing conditional mutants for two selected genes – a luminal and a peripheral apicoplast protein. The latter is particularly intriguing as it encodes a hypothetical protein that is conserved in and unique to Apicomplexan parasites and other related organisms that maintain a red algal endosymbiont. Our studies suggest that this peripheral plastid protein, PPP1, is likely localized to the periplastid compartment. Conditional disruption of PPP1 demonstrated that it is essential for parasite survival. Phenotypic analysis of this mutant is consistent with a role of the PPP1 protein in apicoplast biogenesis, specifically in import of nuclear-encoded proteins into the organelle. Apicomplexa are a group of parasites that cause important diseases, including malaria and several AIDS associated opportunistic infections. The parasites depend on an algal endosymbiont, the apicoplast, and this provides an Achilles' heel for drug development. We use Toxoplasma gondii as a model to characterize the biology and function of the apicoplast. In this study we apply a strategy to identify new apicoplast proteins and to prioritize them as potential targets through the analysis of genetic mutants. To aid this goal we develop a new parasite line and a protocol enabling the streamlined construction of conditional mutants. Using this new approach we discover numerous new apicoplast proteins, many of them have no assigned function yet. We demonstrate that function can be deduced using our genetic approach by establishing the essential role in apicoplast protein import for a new factor with intriguing localization and evolutionary history.
Collapse
|
70
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
71
|
Jammallo L, Eidell K, Davis PH, Dufort FJ, Cronin C, Thirugnanam S, Chiles TC, Roos DS, Gubbels MJ. An insertional trap for conditional gene expression in Toxoplasma gondii: identification of TAF250 as an essential gene. Mol Biochem Parasitol 2010; 175:133-43. [PMID: 21035508 DOI: 10.1016/j.molbiopara.2010.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022]
Abstract
Toxoplasmosis is characterized by fast lytic replication cycles leading to severe tissue lesions. Successful host cell invasion is essential for pathogenesis. The division cycle of Toxoplasma gondii is characterized by an unusual cell cycle progression and a distinct internal budding mechanism. To identify essential genes involved in the lytic cycle we devised an insertional gene trapping strategy using the Tet-transactivator system. In essence, a random, active promoter is displaced with a tetracycline regulatable promoter, which if in an essential gene, will result in a conditionally lethal phenotype upon tetracycline addition. We isolated eight mutants with growth defects, two of which displayed modest invasion defects, one of which had an additional cell cycle defect. The trapped loci were identified using expression microarrays, exploiting the tetracycline dependent expression of the trapped genes. In mutant 3.3H6 we identified TCP-1, a component of the chaperonin protein folding machinery under the control of the Tet promoter. However, this gene was not critical for growth of mutant 3.3H6. Subsequently, we identified a suppressor gene encoding a protein with a hypothetical function by guided cosmid complementation. In mutant 4.3B13, we identified TAF250, an RNA polymerase II complex component, as the trapped, essential gene. Furthermore, by mapping the plasmid insertion boundaries we identified multiple genomic rearrangements, which hint at a potential replication dependent DNA repair mechanism. Furthermore, these rearrangements provide an explanation for inconsistent locus rescue results observed by molecular biological approaches. Taken together, we have added an approach to identify and study essential genes in Toxoplasma.
Collapse
Affiliation(s)
- Lauren Jammallo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Daher W, Plattner F, Carlier MF, Soldati-Favre D. Concerted action of two formins in gliding motility and host cell invasion by Toxoplasma gondii. PLoS Pathog 2010; 6:e1001132. [PMID: 20949068 PMCID: PMC2951370 DOI: 10.1371/journal.ppat.1001132] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/06/2010] [Indexed: 12/22/2022] Open
Abstract
The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells. Gliding motility is a unique property of the Apicomplexa. Members of this phylum include important human and animal pathogens. An actomyosin-based machine powers parasite motility and is crucial for parasite migration across biological barriers, host cell invasion and egress from infected cells. The timing, duration and orientation of the gliding motility are tightly regulated to insure successful establishment of infection. Controlled polymerization of actin filaments is a key feature of motility, and we demonstrate here the implication of two formins that catalyse actin nucleation and fast assembly of filaments. Both proteins are essential and act in concert during productive penetration of the parasite into host cells.
Collapse
Affiliation(s)
- Wassim Daher
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Fabienne Plattner
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Marie-France Carlier
- Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurales UPR A 9063, CNRS, Gif sur Yvette, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
73
|
Buguliskis JS, Brossier F, Shuman J, Sibley LD. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog 2010; 6:e1000858. [PMID: 20421941 PMCID: PMC2858701 DOI: 10.1371/journal.ppat.1000858] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/15/2010] [Indexed: 11/18/2022] Open
Abstract
Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhomboid proteases in this step; however, their precise roles in vivo have not been elucidated. Using a conditional knockout strategy, we demonstrate that TgROM4 participates in processing of surface adhesins including MIC2, AMA1, and MIC3. Suppression of TgROM4 led to decreased release of the adhesin MIC2 into the supernatant and concomitantly increased the surface expression of this and a subset of other adhesins. Suppression of TgROM4 resulted in disruption of normal gliding, with the majority of parasites twirling on their posterior ends. Parasites lacking TgROM4 bound better to host cells, but lost the ability to apically orient and consequently most failed to generate a moving junction; hence, invasion was severely impaired. Our findings indicate that TgROM4 is involved in shedding of micronemal proteins from the cell surface. Down regulation of TgROM4 disrupts the normal apical-posterior gradient of adhesins that is important for efficient cell motility and invasion of host cells by T. gondii. Apicomplexan parasites invade host cells using a multi-step process that depends on regulated secretion of adhesins, attachment to the cell, and active penetration. Coordinating these activities requires control of proper timing and release of surface proteins that mediate adhesion. Parasites like Toxoplasma gondii attach directionally to their host cells due to the selective discharge of adhesive proteins at their apical end. The resulting complexes are then translocated along the long axis of the parasite, thus propelling the parasite into the cell. Completion of cell invasion also requires that these interactions ultimately be severed to allow detachment. Shedding is accomplished by proteolytic cleavage of the adhesive proteins at the point where they span the parasite outer membrane. By disrupting the expression of the intramembrane protease rhomboid 4 (ROM4), we demonstrate that it is important for shedding of adhesins. In the absence of ROM4, a subset of surface adhesive proteins was over-expressed on the parasite cell surface. Although ROM4 knockdown parasites bound better to host cells, they lost their ability to do so directionally, and hence were impaired in cell entry. Our findings demonstrate that host cell invasion by apicomplexan parasites relies on constitutive shedding of surface adhesins for efficient infection.
Collapse
Affiliation(s)
- Jeffrey S. Buguliskis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fabien Brossier
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel Shuman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
74
|
Transfection systems for Babesia bovis: A review of methods for the transient and stable expression of exogenous genes. Vet Parasitol 2010; 167:205-15. [DOI: 10.1016/j.vetpar.2009.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
75
|
Stanway RR, Graewe S, Rennenberg A, Helm S, Heussler VT. Highly efficient subcloning of rodent malaria parasites by injection of single merosomes or detached cells. Nat Protoc 2009; 4:1433-9. [PMID: 19745825 DOI: 10.1038/nprot.2009.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This protocol describes a method for obtaining rodent Plasmodium parasite clones with high efficiency, which takes advantage of the normal course of Plasmodium in vitro exoerythrocytic development. At the completion of development, detached cells/merosomes form, which contain hundreds to thousands of merozoites. As all parasites within a single detached cell/merosome derive from the same sporozoite, we predicted them to be genetically identical. To prove this, hepatoma cells were infected simultaneously with a mixture of Plasmodium berghei sporozoites expressing either GFP or mCherry. Subsequently, individual detached cells/merosomes from this mixed population were selected and injected into mice, resulting in clonal blood stage parasite infections. Importantly, as a large majority of mice become successfully infected using this protocol, significantly less mice are necessary than for the widely used technique of limiting dilution cloning. To produce a clonal P. berghei blood stage infection from a non-clonal infection using this procedure requires between 4 and 5 weeks.
Collapse
Affiliation(s)
- Rebecca R Stanway
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
76
|
Abstract
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.
Collapse
Affiliation(s)
- Marijo S Roiko
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
77
|
Frankel MB, Knoll LJ. The ins and outs of nuclear trafficking: unusual aspects in apicomplexan parasites. DNA Cell Biol 2009; 28:277-84. [PMID: 19348590 DOI: 10.1089/dna.2009.0853] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apicomplexa is a phylum within the kingdom Protista that contains some of the most significant threats to public health. One of the members of this phylum, Toxoplasma gondii, is amenable to molecular genetic analyses allowing for the identification of factors critical for colonization and disease. A pathway found to be important for T. gondii pathogenesis is the Ran network of nuclear trafficking. Bioinformatics analysis of apicomplexan genomes shows that while Ran is well conserved, the key regulators of Ran--Regulator of Chromosome Condensation 1 and Ran GTPase activating protein--are either highly divergent or absent. Likewise, several import and export receptor molecules that are crucial for nuclear transport are either not present or have experienced genetic drift such that they are no longer recognizable by bioinformatics tools. In this minireview we describe the basics of nuclear trafficking and compare components within apicomplexans to defined systems in humans and yeast. A detailed analysis of the nuclear trafficking network in these eukaryotes is required to understand how this potentially unique cellular biological pathway contributes to host-parasite interactions.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
78
|
Type II NADH dehydrogenase inhibitor 1-hydroxy-2-dodecyl-4(1H)quinolone leads to collapse of mitochondrial inner-membrane potential and ATP depletion in Toxoplasma gondii. EUKARYOTIC CELL 2009; 8:877-87. [PMID: 19286986 DOI: 10.1128/ec.00381-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The apicomplexan parasite Toxoplasma gondii expresses type II NADH dehydrogenases (NDH2s) instead of canonical complex I at the inner mitochondrial membrane. These non-proton-pumping enzymes are considered to be promising drug targets due to their absence in mammalian cells. We recently showed by inhibition kinetics that T. gondii NDH2-I is a target of the quinolone-like compound 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ), which inhibits T. gondii replication in the nanomolar range. In this study, the cationic fluorescent probes Mitotracker and DiOC(6)(3) (3,3'-dihexyloxacarbocyanine iodine) were used to monitor the influence of HDQ on the mitochondrial inner membrane potential (Delta Psi m) in T. gondii. Real-time imaging revealed that nanomolar HDQ concentrations led to a Delta Psi m collapse within minutes, which is followed by severe ATP depletions of 30% after 1 h and 70% after 24 h. Delta Psi m depolarization was attenuated when substrates for other dehydrogenases that can donate electrons to ubiquinone were added to digitonin-permeabilized cells or when infected cultures were treated with the F(o)-ATPase inhibitor oligomycin. A prolonged treatment with sublethal concentrations of HDQ induced differentiation into bradyzoites. This dormant stage is likely to be less dependent on the Delta Psi m, since Delta Psi m-positive parasites were found at a significantly lower frequency in alkaline-pH-induced bradyzoites than in tachyzoites. Together, our studies reveal that oxidative phosphorylation is essential for maintaining the ATP level in the fast-growing tachyzoite stage and that HDQ interferes with this pathway by inhibiting the electron transport chain at the level of ubiquinone reduction.
Collapse
|
79
|
Straub KW, Cheng SJ, Sohn CS, Bradley PJ. Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 2008; 11:590-603. [PMID: 19134112 DOI: 10.1111/j.1462-5822.2008.01276.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apicomplexan parasites generally invade their host cells by anchoring the parasite to the host membrane through a structure called the moving junction (MJ). This MJ is also believed to sieve host proteins from the nascent parasitophorous vacuole membrane, which likely protects the pathogen from lysosomal destruction. Previously identified constituents of the Toxoplasma MJ have orthologues in Plasmodium, indicating a conserved structure throughout the Apicomplexa. We report here two novel MJ proteins, RON5 and RON8. While RON5 is conserved in Plasmodium, RON8 appears restricted to the coccidia. RON8, which is likely essential, co-immunoprecipitates RON5 and known MJ proteins from extracellular parasites, indicating that a preformed complex exists within the parasites. Upon secretion, we show that RON8 within the MJ localizes to the cytoplasmic face of the host plasma membrane. To examine interactions between RON8 and the host cell, we expressed RON8 in mammalian cells and show that it targets to its site of action at the periphery in a manner dependent on the C-terminal portion of the protein. The discovery of RON5 and RON8 provides new insight into conserved and unique elements of the MJ, furthering our understanding of how the MJ contributes to the intricate mechanism of Apicomplexan invasion.
Collapse
Affiliation(s)
- Kurtis W Straub
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|
80
|
Abstract
Apicomplexan parasites rely on calcium-mediated signaling for a variety of vital functions including protein secretion, motility, cell invasion, and differentiation. These functions are controlled by a variety of specialized systems for uptake and release of calcium, which acts as a second messenger, and on the functions of calcium-dependent proteins. Defining these systems in parasites has been complicated by their evolutionary distance from model organisms and practical concerns in working with small, and somewhat fastidious cells. Comparative genomic analyses of Toxoplasma gondii, Plasmodium spp. and Cryptosporidium spp. reveal several interesting adaptations for calcium-related processes in parasites. Apicomplexans contain several P-type Ca2+ ATPases including an ER-type reuptake mechanism (SERCA), which is the proposed target of artemisinin. All three organisms also contain several genes related to Golgi PMR-like calcium transporters, and a Ca2+/H+ exchanger, while plasma membrane-type (PMCA) Ca2+ ATPases and voltage-dependent calcium channels are exclusively found in T. gondii. Pharmacological evidence supports the presence of IP3 and ryanodine channels for calcium-mediated release. Collectively these systems regulate calcium homeostasis and release calcium to act as a signal. Downstream responses are controlled by a family of EF-hand containing calcium binding proteins including calmodulin, and an array of centrin and caltractin-like genes. Most surprising, apicomplexans contain a diversity of calcium-dependent protein kinases (CDPK), which are commonly found in plants. Toxoplasma contains more than 20 CDPK or CDPK-like proteases, while Plasmodium and Cryptosporidium have fewer than half this number. Several of these CDPKs have been shown to play vital roles in protein secretion, invasion, and differentiation, indicating that disruption of calcium-regulated pathways may provide a novel means for selective inhibition of parasites.
Collapse
|
81
|
The Toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1455-62. [DOI: 10.1016/j.bbabio.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/22/2022]
|
82
|
Functional expression of ribozymes in Apicomplexa: Towards exogenous control of gene expression by inducible RNA-cleavage. Int J Parasitol 2008; 38:673-81. [DOI: 10.1016/j.ijpara.2007.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/20/2022]
|
83
|
Kessler H, Herm-Götz A, Hegge S, Rauch M, Soldati-Favre D, Frischknecht F, Meissner M. Microneme protein 8 – a new essential invasion factor inToxoplasma gondii. J Cell Sci 2008; 121:947-56. [PMID: 18319299 DOI: 10.1242/jcs.022350] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apicomplexan parasites rely on sequential secretion of specialised secretory organelles for the invasion of the host cell. First, micronemes release their content upon contact with the host cell. Second, rhoptries are discharged, leading to the formation of a tight interaction (moving junction) with the host cell, through which the parasite invades. The functional characterisation of several micronemal proteins in Toxoplasma gondii suggests the occurrence of a stepwise process. Here, we show that the micronemal protein MIC8 of T. gondii is essential for the parasite to invade the host cell. When MIC8 is not present, a block in invasion is caused by the incapability of the parasite to form a moving junction with the host cell. We furthermore demonstrate that the cytosolic domain is crucial for the function of MIC8 and can not be functionally complemented by any other micronemal protein characterised so far, suggesting that MIC8 represents a novel, functionally distinct invasion factor in this apicomplexan parasite.
Collapse
Affiliation(s)
- Henning Kessler
- Hygieneinstitute, Department of Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Angelika Herm-Götz
- Hygieneinstitute, Department of Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Stephan Hegge
- Hygieneinstitute, Department of Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Manuel Rauch
- Hygieneinstitute, Department of Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1, rue Michel-Servet 1211, Geneva 4, Switzerland
| | - Friedrich Frischknecht
- Hygieneinstitute, Department of Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Markus Meissner
- Hygieneinstitute, Department of Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| |
Collapse
|
84
|
Microneme rhomboid protease TgROM1 is required for efficient intracellular growth of Toxoplasma gondii. EUKARYOTIC CELL 2008; 7:664-74. [PMID: 18310358 DOI: 10.1128/ec.00331-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhomboids are serine proteases that cleave their substrates within the transmembrane domain. Toxoplasma gondii contains six rhomboids that are expressed in different life cycle stages and localized to different cellular compartments. Toxoplasma rhomboid protein 1 (TgROM1) has previously been shown to be active in vitro, and the orthologue in Plasmodium falciparum processes the essential microneme protein AMA1 in a heterologous system. We investigated the role of TgROM1 to determine its role during in vitro growth of T. gondii. TgROM1 was localized in the secretory pathway of the parasite, including the Golgi apparatus and micronemes, which contain adhesive proteins involved in invasion of host cells. However, unlike other micronemal proteins, TgROM1 was not released onto the parasite surface during cell invasion, suggesting it does not play a critical role in cell invasion. Suppression of TgROM1 using the tetracycline-regulatable system revealed that ROM1-deficient parasites were outcompeted by wild-type T. gondii. ROM1-deficient parasites showed only modest decrease in invasion but replicated more slowly than wild-type cells. Collectively, these results indicate that ROM1 is required for efficient intracellular growth by T. gondii.
Collapse
|
85
|
Fleige T, Pfaff N, Gross U, Bohne W. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii. Int J Parasitol 2008; 38:1121-32. [PMID: 18336823 DOI: 10.1016/j.ijpara.2008.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/17/2007] [Accepted: 01/21/2008] [Indexed: 12/25/2022]
Abstract
The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Tobias Fleige
- Institute of Medical Microbiology, University of Göttingen, Kreuzbergring 57, Göttingen, Germany
| | | | | | | |
Collapse
|
86
|
Identification of novel bradyzoite-specific Toxoplasma gondii genes with domains for protein–protein interactions by suppression subtractive hybridization. Mol Biochem Parasitol 2008; 157:228-32. [DOI: 10.1016/j.molbiopara.2007.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 11/20/2022]
|
87
|
Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 2007; 4:1003-5. [PMID: 17994029 DOI: 10.1038/nmeth1134] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/23/2007] [Indexed: 11/08/2022]
Abstract
Analysis of gene function in apicomplexan parasites is limited by the absence of reverse genetic tools that allow easy and rapid modulation of protein levels. The fusion of a ligand-controlled destabilization domain (ddFKBP) to a protein of interest enables rapid and reversible protein stabilization in T. gondii. This allows an efficient functional analysis of proteins that have a dual role during host cell invasion and/or intracellular growth of the parasite.
Collapse
|
88
|
Murphy KF, Balázsi G, Collins JJ. Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 2007; 104:12726-31. [PMID: 17652177 PMCID: PMC1931564 DOI: 10.1073/pnas.0608451104] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Understanding the behavior of basic biomolecular components as parts of larger systems is one of the goals of the developing field of synthetic biology. A multidisciplinary approach, involving mathematical and computational modeling in parallel with experimentation, is often crucial for gaining such insights and improving the efficiency of artificial gene network design. Here we used such an approach and developed a combinatorial promoter design strategy to characterize how the position and multiplicity of tetO(2) operator sites within the GAL1 promoter affect gene expression levels and gene expression noise in Saccharomyces cerevisiae. We observed stronger transcriptional repression and higher gene expression noise as a single operator site was moved closer to the TATA box, whereas for multiple operator-containing promoters, we found that the position and number of operator sites together determined the dose-response curve and gene expression noise. We developed a generic computational model that captured the experimentally observed differences for each of the promoters, and more detailed models to successively predict the behavior of multiple operator-containing promoters from single operator-containing promoters. Our results suggest that the independent binding of single repressors is not sufficient to explain the more complex behavior of the multiple operator-containing promoters. Taken together, our findings highlight the importance of joint experimental-computational efforts and some of the challenges of using a bottom-up approach based on well characterized, isolated biomolecular components for predicting the behavior of complex, synthetic gene networks, e.g., the whole can be different from the sum of its parts.
Collapse
Affiliation(s)
- Kevin F Murphy
- Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
89
|
Meissner M, Agop-Nersesian C, Sullivan WJ. Molecular tools for analysis of gene function in parasitic microorganisms. Appl Microbiol Biotechnol 2007; 75:963-75. [PMID: 17401559 DOI: 10.1007/s00253-007-0946-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/12/2007] [Accepted: 03/12/2007] [Indexed: 01/01/2023]
Abstract
With the completion of several genome sequences for parasitic protozoa, research in molecular parasitology entered the "post-genomic" era. Accompanied by global transcriptome and proteome analysis, huge datasets have been generated that have added many novel candidates to the list of drug and vaccine targets. The challenge is now to validate these factors and to bring science back to the bench to perform a detailed characterization. In some parasites, like Trypanosoma brucei, high-throughput genetic screens have been established using RNA interference [for a detailed review, see Motyka and Englund (2004)]. In most protozoan parasites, however, more time-consuming approaches have to be employed to identify and characterize the function of promising candidates in detail. This review aims to summarize the status of molecular genetic tools available for a variety of protozoan pathogens and discuss how they can be implemented to advance our understanding of parasite biology.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
90
|
Gilk SD, Raviv Y, Hu K, Murray JM, Beckers CJM, Ward GE. Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaphthalene-1-azide. EUKARYOTIC CELL 2006; 5:1622-34. [PMID: 17030994 PMCID: PMC1595352 DOI: 10.1128/ec.00114-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pellicle of the protozoan parasite Toxoplasma gondii is a unique triple bilayer structure, consisting of the plasma membrane and two tightly apposed membranes of the underlying inner membrane complex. Integral membrane proteins of the pellicle are likely to play critical roles in host cell recognition, attachment, and invasion, but few such proteins have been identified. This is in large part because the parasite surface is dominated by a family of abundant and highly immunogenic glycosylphosphatidylinositol (GPI)-anchored proteins, which has made the identification of non-GPI-linked proteins difficult. To identify such proteins, we have developed a radiolabeling approach using the hydrophobic, photoactivatable compound 5-[(125)I]iodonaphthalene-1-azide (INA). INA can be activated by photosensitizing fluorochromes; by restricting these fluorochromes to the pellicle, [(125)I]INA labeling will selectively target non-GPI-anchored membrane-embedded proteins of the pellicle. We demonstrate here that three known membrane proteins of the pellicle can indeed be labeled by photosensitization with INA. In addition, this approach has identified a novel 22-kDa protein, named PhIL1 (photosensitized INA-labeled protein 1), with unexpected properties. While the INA labeling of PhIL1 is consistent with an integral membrane protein, the protein has neither a transmembrane domain nor predicted sites of lipid modification. PhIL1 is conserved in apicomplexan parasites and localizes to the parasite periphery, concentrated at the apical end just basal to the conoid. Detergent extraction and immunolocalization data suggest that PhIL1 associates with the parasite cytoskeleton.
Collapse
Affiliation(s)
- Stacey D Gilk
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
91
|
Balu B, Adams JH. Advancements in transfection technologies for Plasmodium. Int J Parasitol 2006; 37:1-10. [PMID: 17113093 DOI: 10.1016/j.ijpara.2006.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022]
Abstract
Malaria is a global problem that affects millions of people annually. A relatively poor understanding of the malaria parasite biology has hindered vaccine and drug development against this disease. Robust methods for genetic analyses in Plasmodium have been lacking due to the difficulties in its genetic manipulation. Introduction of transfection technologies laid the foundation for genetic dissection of Plasmodium and recent years have seen the development of novel tools for genetic manipulation that will help us delineate the intriguing biology of this parasite. This review focuses on such recent advances in transfection technologies for Plasmodium that have improved our ability to carry out more thorough genetic analyses of the biology of the malaria parasite.
Collapse
Affiliation(s)
- Bharath Balu
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
92
|
Mazumdar J, H. Wilson E, Masek K, A. Hunter C, Striepen B. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci U S A 2006; 103:13192-7. [PMID: 16920791 PMCID: PMC1559775 DOI: 10.1073/pnas.0603391103] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apicomplexan parasites are the cause of numerous important human diseases including malaria and AIDS-associated opportunistic infections. Drug treatment for these diseases is not satisfactory and is threatened by resistance. The discovery of the apicoplast, a chloroplast-like organelle, presents drug targets unique to these parasites. The apicoplast-localized fatty acid synthesis (FAS II) pathway, a metabolic process fundamentally divergent from the analogous FAS I pathway in humans, represents one such target. However, the specific biological roles of apicoplast FAS II remain elusive. Furthermore, the parasite genome encodes additional and potentially redundant pathways for the synthesis of fatty acids. We have constructed a conditional null mutant of acyl carrier protein, a central component of the FAS II pathway in Toxoplasma gondii. Loss of FAS II severely compromises parasite growth in culture. We show FAS II to be required for the activation of pyruvate dehydrogenase, an important source of the metabolic precursor acetyl-CoA. Interestingly, acyl carrier protein knockout also leads to defects in apicoplast biogenesis and a consequent loss of the organelle. Most importantly, in vivo knockdown of apicoplast FAS II in a mouse model results in cure from a lethal challenge infection. In conclusion, our study demonstrates a direct link between apicoplast FAS II functions and parasite survival and pathogenesis. Our genetic model also offers a platform to dissect the integration of the apicoplast into parasite metabolism, especially its postulated interaction with the mitochondrion.
Collapse
Affiliation(s)
| | - Emma H. Wilson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Kate Masek
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Boris Striepen
- *Department of Cellular Biology and
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D. W. Brooks Drive, Athens, GA 30602; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
93
|
van Poppel NFJ, Welagen J, Duisters RFJJ, Vermeulen AN, Schaap D. Tight control of transcription in Toxoplasma gondii using an alternative tet repressor. Int J Parasitol 2006; 36:443-52. [PMID: 16516216 DOI: 10.1016/j.ijpara.2006.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/28/2005] [Accepted: 01/05/2006] [Indexed: 11/24/2022]
Abstract
Fusion of yellow fluorescent protein (YFP) to the N-terminus of the Escherichia coli Tn10 tet repressor (TetR) created a functional YFP-TetR repressor with the capacity of 88-fold repression of transcription when expressed in Toxoplasma gondii. As a test promoter we used the T. gondii ribosomal protein RPS13 promoter for which we provide experimental evidence of having a single major transcriptional start site, a condition favourable to the design of inducible expression systems. Integration of four tet operator (tetO) elements, 23-43 bp upstream of the RPS13 transcriptional start site, resulted in maximal repression of transcription (88-fold). Moreover, integration of these four tetO elements reduced the promoter activity only 20% in comparison with the wildtype promoter. Regulation was six-fold higher compared with an inducible expression system employing wildtype TetR. Importantly, only 0.1 microg/ml tetracycline was required for maximal induction demonstrating a higher affinity of tetracycline for YFP-TetR than for wildtype TetR which required 1 microg/ml tetracycline for maximal induction. The use of 0.1 microg/ml tetracycline allows prolonged continuous culturing of T. gondii for which levels of 1 microg/ml tetracycline are toxic. Our results show that YFP-TetR is superior to TetR for transcriptional regulation in T. gondii and we expect that its improved characteristics will be exploitable in other parasites or higher eukaryotes.
Collapse
Affiliation(s)
- Nicole F J van Poppel
- Department of Parasitology R and D, Intervet International BV, P.O. Box 31, 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | |
Collapse
|
94
|
Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005; 1:e17. [PMID: 16244709 PMCID: PMC1262624 DOI: 10.1371/journal.ppat.0010017] [Citation(s) in RCA: 326] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
Apicomplexan parasites, including Toxoplasma gondii and Plasmodium sp., are obligate intracellular protozoa. They enter into a host cell by attaching to and then creating an invagination in the host cell plasma membrane. Contact between parasite and host plasma membranes occurs in the form of a ring-shaped moving junction that begins at the anterior end of the parasite and then migrates posteriorly. The resulting invagination of host plasma membrane creates a parasitophorous vacuole that completely envelops the now intracellular parasite. At the start of this process, apical membrane antigen 1 (AMA1) is released onto the parasite surface from specialized secretory organelles called micronemes. The T. gondii version of this protein, TgAMA1, has been shown to be essential for invasion but its exact role has not previously been determined. We identify here a trio of proteins that associate with TgAMA1, at least one of which associates with TgAMA1 at the moving junction. Surprisingly, these new proteins derive not from micronemes, but from the anterior secretory organelles known as rhoptries and specifically, for at least two, from the neck portion of these club-shaped structures. Homologues for these AMA1-associated proteins are found throughout the Apicomplexa strongly suggesting that this moving junction apparatus is a conserved feature of this important class of parasites. Differences between the contributing proteins in different species may, in part, be the result of selective pressure from the different niches occupied by these parasites.
Collapse
Affiliation(s)
- David L Alexander
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Jeffrey Mital
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Peter Bradley
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
95
|
Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005; 16:4341-9. [PMID: 16000372 PMCID: PMC1196342 DOI: 10.1091/mbc.e05-04-0281] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.
Collapse
Affiliation(s)
- Jeffrey Mital
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
96
|
Meissner M, Soldati D. The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. Microbes Infect 2005; 7:1376-84. [PMID: 16087378 DOI: 10.1016/j.micinf.2005.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 02/06/2023]
Abstract
The phylum of Apicomplexa groups a large variety of obligate intracellular protozoan parasites that exhibit complicated life cycles, involving transmission and differentiation within and between different hosts. Little is known about the level of regulation and the nature of the factors controlling gene expression throughout their life stages. Unravelling the mechanisms that govern gene regulation is critical for the development of adequate tools to manipulate these parasites and modulate gene expression, in order to study their function in molecular terms in vivo. A comparative analysis of the transcriptional machinery of several apicomplexan genomes and other protozoan parasites has revealed the existence of a primitive eukaryotic transcription apparatus consisting only of a subset of the general transcription factors found in higher eukaryotes. These findings have some direct implications on development of tools.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut, abteilung parasitologie, universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
97
|
Meissner M, Krejany E, Gilson PR, de Koning-Ward TF, Soldati D, Crabb BS. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc Natl Acad Sci U S A 2005; 102:2980-5. [PMID: 15710888 PMCID: PMC548799 DOI: 10.1073/pnas.0500112102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic manipulation has revolutionized research in the Apicomplexan parasite Plasmodium falciparum, the most important causative agent of malaria. However, to date no techniques have been established that allow modifications that are deleterious to blood-stage growth, such as the disruption of essential genes or the expression of dominant-negative transgenes. The recent establishment of a screen for functional transactivators in the related parasite Toxoplasma gondii prompted us to identify transactivators in T. gondii and to examine their functionality in P. falciparum. Tetracycline-responsive minimal promoters were generated based on the characterized P. falciparum calmodulin promoter and used to assess transactivators in P. falciparum. We demonstrate that artificial tetracycline-regulated transactivators isolated in T. gondii are also functional in P. falciparum. By using the tetracycline analogue anhydrotetracycline, efficient, stage-specific gene regulation was achieved in P. falciparum. This regulatable expression technology has clear potential for the study of essential gene function in P. falciparum blood stages. On the other hand, the identified transactivators are not functional in mammalian cells, consistent with the fundamental differences in the mechanism of gene regulation between Apicomplexan parasites and their human hosts.
Collapse
Affiliation(s)
- Markus Meissner
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3050, Australia
| | | | | | | | | | | |
Collapse
|
98
|
Huang CJ, Jou TS, Ho YL, Lee WH, Jeng YT, Hsieh FJ, Tsai HJ. Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn 2005; 233:1294-303. [PMID: 15977161 DOI: 10.1002/dvdy.20485] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To develop the first heart-specific tetracycline (Tet)-On system in zebrafish, we constructed plasmids in which the cardiac myosin light chain 2 promoter of zebrafish was used to drive the reverse Tet-controlled transactivator (rtTA) and the green fluorescent protein (GFP) reporter gene was preceded by an rtTA-responsive element. In the zebrafish fibroblast cell-line, rtTA-M2, one of rtTA's derivatives, demonstrated the highest increase in luciferase activity upon doxycycline (Dox) induction. We then generated two germ lines of transgenic zebrafish: line T03 was derived from microinjection of a plasmid containing rtTA-M2 and a plasmid containing a responsive reporter gene, whereas line T21 was derived from microinjection of a single dual plasmid. Results showed that line T21 was superior to line T03 in terms of greater GFP intensity after induction and with of minimal leakiness before induction. The photographic images of induced GFP in the heart of F2 larvae showed that the fluorescent level of GFP was dose-responsive. The level of GFP expressed in the F3 3 days postfertilization larvae that were treated with Dox for 1 hr decreased gradually after the withdrawal of the inducer; and the fluorescent signal disappeared after 5 days. The GFP induction and reduction were also tightly controlled by Dox in the F3 adult fish from line T21. This Tet-On system developed in zebrafish shows much promise for the study of the gene function in a specific tissue at the later developmental stage.
Collapse
Affiliation(s)
- Chiu-Ju Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
The life cycle of the malaria parasite contains three distinct invasive forms, or zoites. For at least two of these--the sporozoite and the blood-stage merozoite--invasion into their respective host cell requires the activity of parasite proteases. This review summarizes the evidence for this, discusses selected well-described proteolytic modifications linked to invasion, and describes recent progress towards identifying the proteases involved.
Collapse
Affiliation(s)
- Michael J Blackman
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
100
|
Kim K, Weiss LM. Toxoplasma gondii: the model apicomplexan. Int J Parasitol 2004; 34:423-32. [PMID: 15003501 PMCID: PMC3086386 DOI: 10.1016/j.ijpara.2003.12.009] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.
Collapse
Affiliation(s)
- Kami Kim
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|