51
|
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y, Zhao W. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2277-2290. [PMID: 34197672 PMCID: PMC8541779 DOI: 10.1111/pbi.13659] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/06/2023]
Abstract
Lesion mimic mutants are used to elucidate mechanisms controlling plant responses to pathogen attacks and environmental stresses. Although dozens of genes had been functionally demonstrated to be involved in lesion mimic phenotype in several plant species, the molecular mechanisms underlying the hypersensitive response are largely unknown. Here, a rice (Oryza sativa) lesion mimic mutant natural blight leaf 3 (nbl3) was identified from T-DNA insertion lines. The causative gene, OsNBL3, encodes a mitochondrion-localized pentatricopeptide repeat (PPR) protein. The nbl3 mutant exhibited spontaneous cell death response and H2 O2 accumulation, and displayed enhanced resistance to the fungal and bacterial pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. This resistance was consistent with the up-regulation of several defence-related genes; thus, defence responses were induced in nbl3. RNA interference lines of OsNBL3 exhibited enhanced disease resistance similar to that of nbl3, while the disease resistance in overexpression lines did not differ from that of the wild type. In addition, nbl3 displayed improved tolerance to salt, accompanied by up-regulation of several salt-associated marker genes. OsNBL3 was found to mainly participate in the splicing of mitochondrial gene nad5 intron 4. Disruption of OsNBL3 leads to the reduction in complex I activity, the elevation of alternative respiratory pathways and the destruction of mitochondrial morphology. Overall, the results demonstrated that the PPR protein-coding gene OsNBL3 is essential for mitochondrial development and functions, and its disruption causes the lesion mimic phenotype and enhances disease resistance and tolerance to salt in rice.
Collapse
Affiliation(s)
- Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
52
|
Kong W, Sun T, Zhang C, Deng X, Li Y. Comparative Transcriptome Analysis Reveals the Mechanisms Underlying Differences in Salt Tolerance Between indica and japonica Rice at Seedling Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:725436. [PMID: 34777413 PMCID: PMC8578091 DOI: 10.3389/fpls.2021.725436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/07/2021] [Indexed: 05/23/2023]
Abstract
Screening and breeding more salt-tolerant varieties is an effective way to deal with the global reduction in rice (Oryza sativa L.) yield caused by salt stress. However, the molecular mechanism underlying differences in salt tolerance between varieties, especially between the subspecies, is still unclear. We herein performed a comparative transcriptomic analysis under salt stress in contrasting two rice genotypes, namely RPY geng (japonica, tolerant variety) and Luohui 9 (named as Chao 2R in this study, indica, susceptible variety). 7208 and 3874 differentially expressed genes (DEGs) were identified under salt stress in Chao 2R and RPY geng, separately. Of them, 2714 DEGs were co-expressed in both genotypes, while 4494 and 1190 DEGs were specifically up/down-regulated in Chao 2R and RPY geng, respectively. Gene ontology (GO) analysis results provided a more reasonable explanation for the salt tolerance difference between the two genotypes. The expression of normal life process genes in Chao 2R were severely affected under salt stress, but RPY geng regulated the expression of multiple stress-related genes to adapt to the same intensity of salt stress, such as secondary metabolic process (GO:0019748), oxidation-reduction process (GO:0009067), etc. Furthermore, we highlighted important pathways and transcription factors (TFs) related to salt tolerance in RPY geng specific DEGs sets based on MapMan annotation and TF identification. Through Meta-QTLs mapping and homologous analysis, we screened out 18 salt stress-related candidate genes (RPY geng specific DEGs) in 15 Meta-QTLs. Our findings not only offer new insights into the difference in salt stress tolerance between the rice subspecies but also provide critical target genes to facilitate gene editing to enhance salt stress tolerance in rice.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
53
|
Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice. PLANTS 2021; 10:plants10091864. [PMID: 34579397 PMCID: PMC8473081 DOI: 10.3390/plants10091864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Cold stress, including freezing stress and chilling stress, is one of the major environmental factors that limit the growth and productivity of plants. As a temperate dicot model plant species, Arabidopsis develops a capability to freezing tolerance through cold acclimation. The past decades have witnessed a deep understanding of mechanisms underlying cold stress signal perception, transduction, and freezing tolerance in Arabidopsis. In contrast, a monocot cereal model plant species derived from tropical and subtropical origins, rice, is very sensitive to chilling stress and has evolved a different mechanism for chilling stress signaling and response. In this review, the authors summarized the recent progress in our understanding of cold stress response mechanisms, highlighted the convergent and divergent mechanisms between Arabidopsis and rice plasma membrane cold stress perceptions, calcium signaling, phospholipid signaling, MAPK cascade signaling, ROS signaling, and ICE-CBF regulatory network, as well as light-regulated signal transduction system. Genetic engineering approaches of developing freezing tolerant Arabidopsis and chilling tolerant rice were also reviewed. Finally, the future perspective of cold stress signaling and tolerance in rice was proposed.
Collapse
|
54
|
López-Cordova A, Ramírez-Medina H, Silva-Martinez GA, González-Cruz L, Bernardino-Nicanor A, Huanca-Mamani W, Montero-Tavera V, Tovar-Aguilar A, Ramírez-Pimentel JG, Durán-Figueroa NV, Acosta-García G. LEA13 and LEA30 Are Involved in Tolerance to Water Stress and Stomata Density in Arabidopsis thaliana. PLANTS 2021; 10:plants10081694. [PMID: 34451739 PMCID: PMC8400336 DOI: 10.3390/plants10081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are a large protein family that mainly function in protecting cells from abiotic stress, but these proteins are also involved in regulating plant growth and development. In this study, we performed a functional analysis of LEA13 and LEA30 from Arabidopsis thaliana. The results showed that the expression of both genes increased when plants were subjected to drought-stressed conditions. The insertional lines lea13 and lea30 were identified for each gene, and both had a T-DNA element in the regulatory region, which caused the genes to be downregulated. Moreover, lea13 and lea30 were more sensitive to drought stress due to their higher transpiration and stomatal spacing. Microarray analysis of the lea13 background showed that genes involved in hormone signaling, stomatal development, and abiotic stress responses were misregulated. Our results showed that LEA proteins are involved in drought tolerance and participate in stomatal density.
Collapse
Affiliation(s)
- Abigael López-Cordova
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Humberto Ramírez-Medina
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Guillermo-Antonio Silva-Martinez
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Leopoldo González-Cruz
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Aurea Bernardino-Nicanor
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Wilson Huanca-Mamani
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Víctor Montero-Tavera
- Biotechnology Department, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya 38110, Guanajuato, Mexico;
| | - Andrea Tovar-Aguilar
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, México City 07340, Mexico; (A.T.-A.); (N.-V.D.-F.)
| | | | - Noé-Valentín Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, México City 07340, Mexico; (A.T.-A.); (N.-V.D.-F.)
| | - Gerardo Acosta-García
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
- Correspondence: ; Tel.: +52-4616117575 (ext. 5471)
| |
Collapse
|
55
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
56
|
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, Liu G, Shi H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:847-860. [PMID: 34022096 DOI: 10.1111/tpj.15350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
57
|
Lin J, Liu D, Wang X, Ahmed S, Li M, Kovinich N, Sui S. Transgene CpNAC68 from Wintersweet ( Chimonanthus praecox) Improves Arabidopsis Survival of Multiple Abiotic Stresses. PLANTS 2021; 10:plants10071403. [PMID: 34371606 PMCID: PMC8309309 DOI: 10.3390/plants10071403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
The NAC (NAM, ATAFs, CUC) family of transcription factors (TFs) play a pivotal role in regulating all processes of the growth and development of plants, as well as responses to biotic and abiotic stresses. Yet, the functions of NACs from non-model plant species remains largely uncharacterized. Here, we characterized the stress-responsive effects of a NAC gene isolated from wintersweet, an ornamental woody plant that blooms in winter when temperatures are low. CpNAC68 is clustered in the NAM subfamily. Subcellular localization and transcriptional activity assays demonstrated a nuclear protein that has transcription activator activities. qRT-PCR analyses revealed that CpNAC68 was ubiquitously expressed in old flowers and leaves. Additionally, the expression of CpNAC68 is induced by disparate abiotic stresses and hormone treatments, including drought, heat, cold, salinity, GA, JA, and SA. Ectopic overexpression of CpNAC68 in Arabidopsis thaliana enhanced the tolerance of transgenic plants to cold, heat, salinity, and osmotic stress, yet had no effect on growth and development. The survival rate and chlorophyll amounts following stress treatments were significantly higher than wild type Arabidopsis, and were accompanied by lower electrolyte leakage and malondialdehyde (MDA) amounts. In conclusion, our study demonstrates that CpNAC68 can be used as a tool to enhance plant tolerance to multiple stresses, suggesting a role in abiotic stress tolerance in wintersweet.
Collapse
Affiliation(s)
- Jie Lin
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
| | - Xia Wang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
| | - Sajjad Ahmed
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
| | - Nik Kovinich
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
- Correspondence: (N.K.); (S.S.); Tel.: +1-416-736-2100 (N.K.); +86-23-6825-0086 (S.S.)
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
- Correspondence: (N.K.); (S.S.); Tel.: +1-416-736-2100 (N.K.); +86-23-6825-0086 (S.S.)
| |
Collapse
|
58
|
Ribeiro TP, Lourenço-Tessutti IT, de Melo BP, Morgante CV, Filho AS, Lins CBJ, Ferreira GF, Mello GN, Macedo LLP, Lucena WA, Silva MCM, Oliveira-Neto OB, Grossi-de-Sa MF. Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods. PLANTA 2021; 254:20. [PMID: 34216275 DOI: 10.1007/s00425-021-03666-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The combined Agrobacterium- and biolistic-mediated methods of cotton transformation provide a straightforward and highly efficient protocol for obtaining transgenic cotton. Cotton (Gossypium spp.) is the most important crop for natural textile fiber production worldwide. Nonetheless, one of the main challenges in cotton production are the losses resulting from insect pests, pathogens, and abiotic stresses. One effective way to solve these issues is to use genetically modified (GM) varieties. Herein, we describe an improved protocol for straightforward and cost-effective genetic transformation of cotton embryo axes, merging biolistics and Agrobacterium. The experimental steps include (1) Agrobacterium preparation, (2) seed sterilization, (3) cotton embryo excision, (4) lesion of shoot-cells by tungsten bombardment, (5) Agrobacterium-mediated transformation, (6) embryo co-culture, (7) regeneration and selection of transgenic plants in vitro, and (8) molecular characterization of plants. Due to the high regenerative power of the embryonic axis and the exceptional ability of the meristem cells for plant regeneration through organogenesis in vitro, this protocol can be performed in approximately 4-10 weeks, with an average plant regeneration of about 5.5% (± 0.53) and final average transformation efficiency of 60% (± 0.55). The transgene was stably inherited, and most transgenic plants hold a single copy of the transgene, as desirable and expected in Agrobacterium-mediated transformation. Additionally, the transgene was stably expressed over generations, and transgenic proteins could be detected at high levels in the T2 generation of GM cotton plants. The T2 progeny showed no phenotypic or productivity disparity compared to wild-type plants. Collectively, the use of cotton embryo axes and the enhanced DNA-delivery system by combining particle bombardment and Agrobacterium infection enabled efficient transgenic plant recovery, overcoming usual limitations associated with the recalcitrance of several cotton genotypes subjected to somatic embryogenesis. The improved approach states this method's success for cotton genetic modification, allowing us to obtain GM cotton plants carrying traits, which are of fundamental relevance for the advancement of global agribusiness.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Cellular Biology Department, Brasilia University, Brasília, DF, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes de Melo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Viçosa, UFV, Viçosa, MG, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Embrapa Semiarid, Petrolina, PE, Brazil
| | - Alvaro Salles Filho
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Catholic University of Brasília, Brasília, DF, Brazil
- Federal University of Paraná, Curitiba, PR, Brazil
| | - Camila Barrozo Jesus Lins
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
| | - Gilanna Falcão Ferreira
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
| | - Glênia Nunes Mello
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Wagner Alexandre Lucena
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasília, DF, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil.
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil.
- Catholic University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
59
|
Wang N, Cheng M, Chen Y, Liu B, Wang X, Li G, Zhou Y, Luo P, Xi Z, Yong H, Zhang D, Li M, Zhang X, Vicente FS, Hao Z, Li X. Natural variations in the non-coding region of ZmNAC080308 contributes maintaining grain yield under drought stress in maize. BMC PLANT BIOLOGY 2021; 21:305. [PMID: 34193036 PMCID: PMC8243440 DOI: 10.1186/s12870-021-03072-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural variations derived from both evolutionary selection and genetic recombination, presume to have important functions to respond to various abiotic stresses, which could be used to improve drought tolerance via genomic selection. RESULTS In the present study, the NAC-encoding gene of ZmNAC080308 was cloned and sequenced in 199 inbred lines in maize. Phylogenetic analysis showed that ZmNAC080308 is closely clusteredinto the same group with other well-known NAC genes responding to improve drought tolerance. In total, 86 SNPs and 47 InDels were identified in the generic region of ZmNAC080308, 19 of these variations were associated with GY (grain yield) in different environments. Nine variations in the 5'-UTR region of ZmNAC080308 are closely linked, they might regulate the gene expression and respond to improve GY under drought condition via Sp1-mediated transactivation. Two haplotypes (Hap1 and Hap2) identified in the, 5'-UTR region using the nine variations, and Hap2 containing insertion variants, exhibited 15.47 % higher GY under drought stress condition. Further, a functional marker was developed to predict the drought stress tolerance in a US maize inbred line panel. Lines carrying Hap2 exhibited > 10 % higher GY than those carrying Hap1 under drought stress condition. In Arabidopsis, overexpression ZmNAC080308 enhanced drought tolerance. CONCLUSIONS ZmNAC080308 is an important gene responding to drought tolerance, a functional marker is developed for improving maize drought tolerance by selecting this gene.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- College of Agronomy, Hebei Agricultural University, Baoding, P.R. China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, P.R. China
| | - Ming Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou, P.R. China
| | - Yong Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bojuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiaonan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Guojun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yueheng Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ping Luo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhangying Xi
- College of Agronomy, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Felix San Vicente
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
60
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
61
|
Wang R, Zhang Y, Wang C, Wang YC, Wang LQ. ThNAC12 from Tamarix hispida directly regulates ThPIP2;5 to enhance salt tolerance by modulating reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:27-35. [PMID: 33812224 DOI: 10.1016/j.plaphy.2021.03.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
NAC (NAM, ATAF1/2 and CUC2) transcription factors play critical roles in plant development and abiotic stress responses, and aquaporins have diverse functions in environmental stress responses. In this study, we described the salt-induced transcriptional responses of ThNAC12 and ThPIP2;5 in Tamarix hispida, and their regulatory mechanisms in response to salt stress. Using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays, we identified that ThNAC12 directly binds to the NAC recognition sequence (NACRS) of the ThPIP2;5 promoter and then activates the ThPIP2;5 expression. Subcellular localization and transcriptional activation assays demonstrated that ThNAC12 was a nuclear protein with a C-terminal transactivation domain. Compared with the corresponding control plants, transgenic plants overexpressing ThNAC12 exhibited enhanced salt tolerance and displayed increased reactive oxygen species (ROS) scavenging capability and antioxidant enzyme activity levels under salt stress. All results suggested that overexpression of ThNAC12 in plants enhanced salt tolerance through modulation of ROS scavenging via direct regulation of ThPIP2;5 expression in T. hispida.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yu-Cheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
62
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
63
|
Melo BP, Lourenço-Tessutti IT, Fraga OT, Pinheiro LB, de Jesus Lins CB, Morgante CV, Engler JA, Reis PAB, Grossi-de-Sá MF, Fontes EPB. Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Sci Rep 2021; 11:11178. [PMID: 34045652 PMCID: PMC8160357 DOI: 10.1038/s41598-021-90767-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
NACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.
Collapse
Affiliation(s)
- Bruno Paes Melo
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil.
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil.
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France.
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil.
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Otto Teixeira Fraga
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil
| | - Luanna Bezerra Pinheiro
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Camila Barrozo de Jesus Lins
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Janice Almeida Engler
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France
| | - Pedro Augusto Braga Reis
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil
| | - Maria Fátima Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil.
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil.
| |
Collapse
|
64
|
Wang H, Li T, Li W, Wang W, Zhao H. Identification and analysis of Chrysanthemum nankingense NAC transcription factors and an expression analysis of OsNAC7 subfamily members. PeerJ 2021; 9:e11505. [PMID: 34123596 PMCID: PMC8164415 DOI: 10.7717/peerj.11505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022] Open
Abstract
NAC (NAM, ATAF1-2, and CUC2) transcription factors (TFs) play a vital role in plant growth and development, as well as in plant response to biotic and abiotic stressors (Duan et al., 2019; Guerin et al., 2019). Chrysanthemum is a plant with strong stress resistance and adaptability; therefore, a systematic study of NAC TFs in chrysanthemum is of great significance for plant breeding. In this study, 153 putative NAC TFs were identified based on the Chrysanthemum nankingense genome. According to the NAC family in Arabidopsis and rice, a rootless phylogenetic tree was constructed, in which the 153 CnNAC TFs were divided into two groups and 19 subfamilies. Moreover, the expression levels of 12 CnNAC TFs belonging to the OsNAC7 subfamily were analyzed in C. nankingense under osmotic and salt stresses, and different tissues were tested during different growth periods. The results showed that these 12 OsNAC7 subfamily members were involved in the regulation of root and stem growth, as well as in the regulation of drought and salt stresses. Finally, we investigated the function of the CHR00069684 gene, and the results showed that CHR00069684 could confer improved salt and low temperature resistance, enhance ABA sensitivity, and lead to early flowering in tobacco. It was proved that members of the OsNAC7 subfamily have dual functions including the regulation of resistance and the mediation of plant growth and development. This study provides comprehensive information on analyzing the function of CnNAC TFs, and also reveals the important role of OsNAC7 subfamily genes in response to abiotic stress and the regulation of plant growth. These results provide new ideas for plant breeding to control stress resistance and growth simultaneously.
Collapse
Affiliation(s)
- Hai Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tong Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wang Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huien Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
65
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
66
|
Moin M, Saha A, Bakshi A, Madhav MS, Kirti PB. Constitutive expression of Ribosomal Protein L6 modulates salt tolerance in rice transgenic plants. Gene 2021; 789:145670. [PMID: 33892070 DOI: 10.1016/j.gene.2021.145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
We have functionally characterized the RPL6, a Ribosomal Protein Large subunit gene for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl). The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of higher chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4378 DAPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly accumulated proteins (HAPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HAPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affect the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and productivity in response to salt stress. Our overall findings identified a novel candidate, RPL6, whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - M S Madhav
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India; Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad 500030, India
| |
Collapse
|
67
|
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. PHYSIOLOGIA PLANTARUM 2021; 171:578-594. [PMID: 32770745 DOI: 10.1111/ppl.13185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na+ /H+ exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India
| | - Mudasir A Mir
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Wasia Wani
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
68
|
Zhang G, Huang S, Zhang C, Wu Y, Li D, Deng J, Shan S, Qi J. Comparative transcriptome sequencing analysis and functional identification of a NAM-2-like gene in jute (Corchorus capsularis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:25-35. [PMID: 33561658 DOI: 10.1016/j.plaphy.2021.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Jute (Corchorus capsularis L.) is one of the most important sources of natural fibre. Drought is among the main factors affecting the production of jute. It is essential for drought tolerance improvement to discover the genes associated with jute development during drought stress. In this study, we analyzed the transcriptome of jute under drought stress and identified new genes involved in drought stress response. In total, 120,219 transcripts with an average length of 764 bp were obtained, these transcripts included 94,246 unigenes (average length, 622 bp). Differentially expressed genes (DEGs) were discovered in drought stress (1329), among which 903 genes showed up-regulated expression, while 426 genes showed down-regulated expression. GO enrichment analyses indicated most of the enriched biological pathways were biosynthesis pathways of organic ring compounds and cellular nitrogen compounds. KEGG enrichment analyses indicated 573 DEGs were involved in 157 metabolic pathways. RT-qPCR experiments indicated that the expression trends were consistent with the results of the high-throughput sequencing. Over-expression of no apical meristem (NAM) -2-like gene increased drought tolerance and knockdown plants were drought sensitive. It has expression peaks after 6 h of drought stress and regulate 3-ketoacyl-CoA synthase gene expression. Yeast-2-Hybrid assays validated the physical interaction between NAM-2-like protein and KCS. The results provide relatively comprehensive information regarding genes and metabolic pathways that lays the foundation for the breeding of drought-resistant varieties, and represent the first identification of NAM-2-like gene and provides new insight into the regulatory network of drought tolerance in Corchorus capsularis L.
Collapse
Affiliation(s)
- Gaoyang Zhang
- Shangrao Normal University, Shangrao, China; Chinese Academy of Agricultural Sciences Institute of Bast Fiber Crops, Changsha, China
| | - Siqi Huang
- Chinese Academy of Agricultural Sciences Institute of Bast Fiber Crops, Changsha, China
| | - Chao Zhang
- Shangrao Normal University, Shangrao, China
| | - Yingbao Wu
- Shangrao Normal University, Shangrao, China
| | - Defang Li
- Chinese Academy of Agricultural Sciences Institute of Bast Fiber Crops, Changsha, China.
| | | | | | - Jianmin Qi
- Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
69
|
Mohanty B. Promoter Architecture and Transcriptional Regulation of Genes Upregulated in Germination and Coleoptile Elongation of Diverse Rice Genotypes Tolerant to Submergence. Front Genet 2021; 12:639654. [PMID: 33796132 PMCID: PMC8008075 DOI: 10.3389/fgene.2021.639654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Rice has the natural morphological adaptation to germinate and elongate its coleoptile under submerged flooding conditions. The phenotypic deviation associated with the tolerance to submergence at the germination stage could be due to natural variation. However, the molecular basis of this variation is still largely unknown. A comprehensive understanding of gene regulation of different genotypes that have diverse rates of coleoptile elongation can provide significant insights into improved rice varieties. To do so, publicly available transcriptome data of five rice genotypes, which have different lengths of coleoptile elongation under submergence tolerance, were analyzed. The aim was to identify the correlation between promoter architecture, associated with transcriptional and hormonal regulation, in diverse genotype groups of rice that have different rates of coleoptile elongation. This was achieved by identifying the putative cis-elements present in the promoter sequences of genes upregulated in each group of genotypes (tolerant, highly tolerant, and extremely tolerant genotypes). Promoter analysis identified transcription factors (TFs) that are common and unique to each group of genotypes. The candidate TFs that are common in all genotypes are MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF, MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF. However, the highly tolerant genotypes interestingly possess binding sites associated with HY5 (bZIP), GBF3, GBF4 and GBF5 (bZIP), DPBF-3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR, in addition to the common TFs. Besides, the extremely tolerant genotypes possess binding sites associated with bHLH TFs such as BEE2, BIM1, BIM3, BM8 and BAM8, and ABF1, in addition to the TFs identified in the tolerant and highly tolerant genotypes. The transcriptional regulation of these TFs could be linked to phenotypic variation in coleoptile elongation in response to submergence tolerance. Moreover, the results indicate a cross-talk between the key TFs and phytohormones such as gibberellic acid, abscisic acid, ethylene, auxin, jasmonic acid, and brassinosteroids, for an altered transcriptional regulation leading to differences in germination and coleoptile elongation under submergence. The information derived from the current in silico analysis can potentially assist in developing new rice breeding targets for direct seeding.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
70
|
Zhang G, Huang S, Zhang C, Li D, Wu Y, Deng J, Shan S, Qi J. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.). PROTOPLASMA 2021; 258:337-345. [PMID: 33079225 DOI: 10.1007/s00709-020-01569-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Drought is the main factor that significantly affects plant growth and has devastating effects on crop production of jute. NAC (NAM, ATAF, and CUC2) transcription factors (TFs) are a large gene family in plants that have been shown to play many important roles in regulating developmental processes and abiotic stress resistance. In this study, a NAC transcription factor, CcNAC1, was cloned and characterized its function in jute. RT-qPCR analysis showed that CcNAC1 expression peaks after 8 h of drought stress. CcNAC1 overexpression and knockdown plants were created by Agrobacterium-mediated genetic transformation. PCR and southern hybridization results indicate that the CcNAC1 gene was integrated into the genome of jute. Overexpression of the CcNAC1 gene sped up the plant growth, promoted early flowering, and increased drought tolerance compared to the control plants. 3-Ketoacyl-CoA synthase (KCS) gene expression level increased significantly in the CcNAC1-overexpression plants and decreased in knockdown plants, which showed that CcNAC1 transcription factor regulated KCS gene expression. Yeast-2-Hybrid (Y2H) assays validated the physical interaction between CcNAC1 and KCS. The results provide relatively comprehensive information on the molecular mechanisms of CcNAC1 gene underlying the regulation of plant growth and drought stress resistance, and indicate that CcNAC1 acts as a positive regulator in drought tolerance in jute (Corchorus capsularis L.).
Collapse
Affiliation(s)
- Gaoyang Zhang
- Chinese Academy of Agricultural Sciences, Institute of Bast Fiber Crops, Changsha, China
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Siqi Huang
- Chinese Academy of Agricultural Sciences, Institute of Bast Fiber Crops, Changsha, China
| | - Chao Zhang
- Chinese Academy of Agricultural Sciences, Institute of Bast Fiber Crops, Changsha, China
| | - Defang Li
- Chinese Academy of Agricultural Sciences, Institute of Bast Fiber Crops, Changsha, China.
| | - Yingbao Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Jielou Deng
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Shilian Shan
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Jianmin Qi
- Institute of Genetics and Breeding, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
71
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
72
|
Wang J, Bao J, Zhou B, Li M, Li X, Jin J. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. THE NEW PHYTOLOGIST 2021; 229:1566-1581. [PMID: 32964416 PMCID: PMC7821251 DOI: 10.1111/nph.16939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/22/2023]
Abstract
The specification of the meristem/organ boundary is critical for plant development. Here, we investigate two previously uncharacterized NAC transcription factors: the first, OsCUC1, which is negatively regulated by osa-miR164c, dimerizes with the second, OsCUC3, and functions partially redundantly in meristem/organ boundary specification in rice (Oryza sativa). We produced knockout lines for rice OsCUC1 (the homolog of Arabidopsis CUC1 and CUC2) and OsCUC3 (the homolog of Arabidopsis CUC3), as well as an overexpression line for osa-miR164c, to study the molecular mechanism of boundary specification in rice. A single mutation in either OsCUC1 or OsCUC3 leads to defects in the establishment of the meristem/organ boundary, resulting in reduced stamen numbers and the fusion of leaves and filaments, and the defects are greatly enhanced in the double mutant. Transgenic plants overexpressing osa-miR164c showed a phenotype similar to that of the OsCUC1 knockout line. In addition, knockout of OsCUC1 leads to multiple defects, including dwarf plant architecture, male sterility and twisted-rolling leaves. Further study indicated that OsCUC1 physically interacts with leaf-rolling related protein CURLED LEAF AND DWARF 1 (CLD1) and stabilizes it in the nucleus to control leaf morphology. This work demonstrated that the interplay of osa-miR164c, OsCUC1 and OsCUC3 controls boundary specification in rice.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Jinlin Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Beibei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Min Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Xizhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| |
Collapse
|
73
|
Soltabayeva A, Ongaltay A, Omondi JO, Srivastava S. Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:243. [PMID: 33513682 PMCID: PMC7912532 DOI: 10.3390/plants10020243] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
Plant growth and development is adversely affected by different kind of stresses. One of the major abiotic stresses, salinity, causes complex changes in plants by influencing the interactions of genes. The modulated genetic regulation perturbs metabolic balance, which may alter plant's physiology and eventually causing yield losses. To improve agricultural output, researchers have concentrated on identification, characterization and selection of salt tolerant varieties and genotypes, although, most of these varieties are less adopted for commercial production. Nowadays, phenotyping plants through Machine learning (deep learning) approaches that analyze the images of plant leaves to predict biotic and abiotic damage on plant leaves have increased. Here, we review salinity stress related markers on molecular, physiological and morphological levels for crops such as maize, rice, ryegrass, tomato, salicornia, wheat and model plant, Arabidopsis. The combined analysis of data from stress markers on different levels together with image data are important for understanding the impact of salt stress on plants.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Nur Sultan Z05H0P9, Kazakhstan;
| | - Assel Ongaltay
- Biology Department, School of Science and Humanities, Nazarbayev University, Nur Sultan Z05H0P9, Kazakhstan;
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, PO Box 30258 Lilongwe 3, Malawi; or
| | - Sudhakar Srivastava
- Beijing Advanced Innovative Center For Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China;
| |
Collapse
|
74
|
Ma J, Wang LY, Dai JX, Wang Y, Lin D. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:11. [PMID: 33407148 PMCID: PMC7788707 DOI: 10.1186/s12870-020-02764-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND The NAC (NAM, ATAF1/ATAF2, and CUC2) transcription factors belong to a large family of plant-specific transcription factors in monocot and dicot species. These transcription factors regulate the expression of stress tolerance-related genes that protect plants from various abiotic stresses, including drought, salinity, and low temperatures. RESULTS In this study, we identified the CaNAC46 transcription factor gene in Capsicum annuum. Its open reading frame was revealed to comprise 921 bp, encoding a protein consisting of 306 amino acids, with an isoelectric point of 6.96. A phylogenetic analysis indicated that CaNAC46 belongs to the ATAF subfamily. The expression of CaNAC46 was induced by heat, cold, high salt, drought, abscisic acid, salicylic acid, and methyl jasmonate treatments. Thus, CaNAC46 may be important for the resistance of dry pepper to abiotic stresses. A subcellular localization analysis confirmed that CaNAC46 is localized in the nucleus. The overexpression of CaNAC46 improved the tolerance of transgenic Arabidopsis thaliana plants to drought and salt stresses. The CaNAC46-overexpressing lines had longer roots and more lateral roots than wild-type lines under prolonged drought and high salt stress conditions. Additionally, CaNAC46 affected the accumulation of reactive oxygen species (ROS). Moreover, CaNAC46 promoted the expression of SOD, POD, RD29B, RD20, LDB18, ABI, IAA4, and P5CS. The malondialdehyde contents were higher in TRV2-CaNAC46 lines than in wild-type plants in response to drought and salt stresses. Furthermore, the expression levels of stress-responsive genes, such as ABA2, P5CS, DREB, RD22, CAT, and POD, were down-regulated in TRV2-CaNAC46 plants. CONCLUSIONS Under saline and drought conditions, CaNAC46 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation. The results of our study indicate CaNAC46 is a transcriptional regulator responsible for salinity and drought tolerance and suggest the abiotic stress-related gene regulatory mechanisms controlling this NAC transcription factor are conserved between A. thaliana and pepper.
Collapse
Affiliation(s)
- Jing Ma
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Li-yue Wang
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Jia-xi Dai
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Ying Wang
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| | - Duo Lin
- College of Horticulture, Qingdao Agricultural University, Key Laboratory of Horticultural Plant Genetic Improvement and Breeding of Qingdao, 700 Changcheng Road, Qingdao, 266109 China
| |
Collapse
|
75
|
Nie H, Wang Y, Wei C, Grover CE, Su Y, Wendel JF, Hua J. Embryogenic Calli Induction and Salt Stress Response Revealed by RNA-Seq in Diploid Wild Species Gossypium sturtianum and Gossypium raimondii. FRONTIERS IN PLANT SCIENCE 2021; 12:715041. [PMID: 34512696 PMCID: PMC8424188 DOI: 10.3389/fpls.2021.715041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
Wild cotton species can contribute to a valuable gene pool for genetic improvement, such as genes related to salt tolerance. However, reproductive isolation of different species poses an obstacle to produce hybrids through conventional breeding. Protoplast fusion technology for somatic cell hybridization provides an opportunity for genetic manipulation and targeting of agronomic traits. Transcriptome sequencing analysis of callus under salt stress is conducive to study salt tolerance genes. In this study, calli were induced to provide materials for extracting protoplasts and also for screening salt tolerance genes. Calli were successfully induced from leaves of Gossypium sturtianum (C1 genome) and hypocotyls of G. raimondii (D5 genome), and embryogenic calli of G. sturtianum and G. raimondii were induced on a differentiation medium with different concentrations of 2, 4-D, KT, and IBA, respectively. In addition, embryogenic calli were also induced successfully from G. raimondii through suspension cultivation. Transcriptome sequencing analysis was performed on the calli of G. raimondii and G. sturtianum, which were treated with 200 mM NaCl at 0, 6, 12, 24, and 48 h, and a total of 12,524 genes were detected with different expression patterns under salt stress. Functional analysis showed that 3,482 genes, which were differentially expressed in calli of G. raimondii and G. sturtianum, were associated with biological processes of nucleic acid binding, plant hormone (such as ABA) biosynthesis, and signal transduction. We demonstrated that DEGs or TFs which related to ABA metabolism were involved in the response to salt stress, including xanthoxin dehydrogenase genes (ABA2), sucrose non-fermenting 1-related protein kinases (SnRK2), NAM, ATAT1/2, and CUC2 transcription factors (NAC), and WRKY class of zinc-finger proteins (WRKY). This research has successfully induced calli from two diploid cotton species and revealed new genes responding to salt stress in callus tissue, which will lay the foundation for protoplast fusion for further understanding of salt stress responses in cotton.
Collapse
Affiliation(s)
- Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yali Wang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chengcheng Wei
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua
| |
Collapse
|
76
|
Hou D, Zhao Z, Hu Q, Li L, Vasupalli N, Zhuo J, Zeng W, Wu A, Lin X. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. TREE PHYSIOLOGY 2020; 40:1792-1806. [PMID: 32761243 DOI: 10.1093/treephys/tpaa099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2020] [Indexed: 05/16/2023]
Abstract
NAC (NAM, AFAT and CUC) proteins play necessary roles in plant response to environmental stresses. However, the functional roles of NAC genes in moso bamboo (Phyllostachys edulis), an essential economic perennial woody bamboo species, are not well documented. In this study, we retrieved 152 PeNAC genes from the moso bamboo V2 genome, and PeSNAC-1 was isolated and functionally characterized. PeSNAC-1 was localized in the nucleus and had no transactivation activity in yeast. PeSNAC-1 extremely expressed in rhizome and young roots (0.1 and 0.5 cm) and was significantly induced by drought and salt treatments but repressed by abscisic acid (ABA), methyl jasmonate and high temperature (42 °C) in moso bamboo. Under water shortage and salinity conditions, survival ratios, Fv/Fm values, physiological indexes such as activities of superoxide dismutase, peroxidase and catalase and contents of malondialdehyde, H2O2 and proline were significantly higher in transgenic rice than the wild type, which suggests enhanced tolerance to drought and salt stress in PeSANC-1 overexpressed plants. Transcript levels of Na+/H+ antiporter and Na+ transporter genes (OsSOS1, OsNHX1 and OsHKT1;5), ABA signaling and biosynthesis genes (OsABI2, OsRAB16, OsPP2C68, OsLEA3-1, OsLEA3, OsNCED3, OsNCED4 and OsNCED5) and ABA-independent genes (OsDREB1A, OsDREB1B and OsDREB2A) were substantially higher in transgenic as compared with the wild type. Moreover, protein interaction analysis revealed that PeSNAC-1 could interact with stress responsive PeSNAC-2/4 and PeNAP-1/4/5 in both yeast and plant cells, which indicates a synergistic effect of those proteins in regulating the moso bamboo stress response. Our data demonstrate that PeSNAC-1 likely improved salt and drought stress tolerance via modulating gene regulation in both ABA-dependent and independent signaling pathways in transgenic rice. In addition, PeSNAC-1 functions as an important positive stress regulator in moso bamboo, participating in PeSNAC-1 and PeSNAC-2/4 or PeSNAC-1 and PeNAP-1/4/5 interaction networks.
Collapse
Affiliation(s)
- Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Zhongyu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Qiutao Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Ling Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| |
Collapse
|
77
|
Ji XL, Li HL, Qiao ZW, Zhang JC, Sun WJ, Wang CK, Yang K, You CX, Hao YJ. The BTB-TAZ protein MdBT2 negatively regulates the drought stress response by interacting with the transcription factor MdNAC143 in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110689. [PMID: 33218647 DOI: 10.1016/j.plantsci.2020.110689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Drought stress is a severe source of abiotic stress that can affect apple yield and quality, yet the underlying molecular mechanism of the drought stress response and the role of MdBT2 in the process remain unclear. Here, we find that MdBT2 negatively regulates the drought stress response. Both in vivo and in vitro assays indicated that MdBT2 interacted physically with and ubiquitinated MdNAC143, a member of the NAC TF family that is a positive regulator under drought stress. In addition, MdBT2 promotes the degradation of MdNAC143 via the 26S proteasome system. A series of transgenic assays in apple calli and Arabidopsis verify that MdBT2 confers susceptibility to drought stress at least in part by the regulation of MdNAC143. Overall, our findings provide new insight into the mechanism of MdBT2, which functions antagonistically to MdNAC143 in regulating drought stress by regulating the potential downstream target protein MdNAC143 for proteasomal degradation in apple.
Collapse
Affiliation(s)
- Xing-Long Ji
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Chu-Kun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Kuo Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai-An, 271018, Shandong, China.
| |
Collapse
|
78
|
Zhang Z, Liu C, Guo Y. Wheat Transcription Factor TaSNAC11-4B Positively Regulates Leaf Senescence through Promoting ROS Production in Transgenic Arabidopsis. Int J Mol Sci 2020; 21:ijms21207672. [PMID: 33081330 PMCID: PMC7589474 DOI: 10.3390/ijms21207672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Senescence is the final stage of leaf development which is accompanied by highly coordinated and complicated reprogramming of gene expression. Genetic manipulation of leaf senescence in major crops including wheat has been shown to be able to increase stress tolerance and grain yield. NAC(No apical meristem (NAM), ATAF1/2, and cup-shaped cotyledon (CUC)) transcription factors (TFs) play important roles in regulating gene expression changes during leaf senescence and in response to abiotic stresses. Here, we report the characterization of TaSNAC11-4B (Uniprot: A0A1D5XI64), a wheat NAC family member that acts as a functional homolog of AtNAP, a key regulator of leaf senescence in Arabidopsis. The expression of TaSNAC11-4B was up-regulated with the progression of leaf senescence, in response to abscisic acid (ABA) and drought treatments in wheat. Ectopic expression of TaSNAC11-4B in Arabidopsis promoted ROS accumulation and significantly accelerated age-dependent as well as drought- and ABA-induced leaf senescence. Results from transcriptional activity assays indicated that the TaSNAC11-4B protein displayed transcriptional activation activities that are dependent on its C terminus. Furthermore, qRT-PCR and dual-Luciferase assay results suggested that TaSNAC11-4B could positively regulate the expression of AtrbohD and AtrbohF, which encode catalytic subunits of the ROS-producing NADPH oxidase. Further analysis of TaSNAC11-4B in wheat senescence and the potential application of this gene in manipulating leaf senescence with the purpose of yield increase and stress tolerance is discussed.
Collapse
|
79
|
Diao P, Chen C, Zhang Y, Meng Q, Lv W, Ma N. The role of NAC transcription factor in plant cold response. PLANT SIGNALING & BEHAVIOR 2020; 15:1785668. [PMID: 32662739 PMCID: PMC8550289 DOI: 10.1080/15592324.2020.1785668] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The NAC transcription factor (TF) is one of the largest families of TFs in plants and plays an important role in plant growth, development, and response to environmental stress. The structural and functional characteristics of NAC TFs have been uncovered in the past years, including sequence binding features of the DNA-binding domain located in the N-terminus and dynamic interplay between the domain located at the C-terminus and other proteins. Studies on NAC TF are increasing in number; these studies distinctly contribute to our understanding of the regulatory networks of NAC-mediated complex signaling and transcriptional reprogramming. Previous studies have indicated that NAC TFs are key regulators of the plant stress response. However, these studies have been for six years so far and mainly focused on drought and salt stress. There are relatively few reports about NAC TFs in plant cold signal pathway and no related reviews have been published. In this review article, we summarize the structural features of NAC TFs, the target genes, upstream regulators and interaction proteins of stress-responsive NAC TFs, and the roles NAC TFs play in plant cold stress signal pathway.
Collapse
Affiliation(s)
- Pengfei Diao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- Nana Ma State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, Shandong, 271018, China
| | - Yuzhen Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- CONTACT Wei Lv
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- Nana Ma State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, Shandong, 271018, China
| |
Collapse
|
80
|
Lim C, Kang K, Shim Y, Sakuraba Y, An G, Paek NC. Rice ETHYLENE RESPONSE FACTOR 101 Promotes Leaf Senescence Through Jasmonic Acid-Mediated Regulation of OsNAP and OsMYC2. FRONTIERS IN PLANT SCIENCE 2020; 11:1096. [PMID: 32765572 PMCID: PMC7378735 DOI: 10.3389/fpls.2020.01096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/03/2020] [Indexed: 05/02/2023]
Abstract
Leaf senescence is the final stage of leaf development and an important step that relocates nutrients for grain filling in cereal crops. Senescence occurs in an age-dependent manner and under unfavorable environmental conditions such as deep shade, water deficit, and high salinity stresses. Although many transcription factors that modulate leaf senescence have been identified, the mechanisms that regulate leaf senescence in response to environmental conditions remain elusive. Here, we show that rice (Oryza sativa) ETHYLENE RESPONSE FACTOR 101 (OsERF101) promotes the onset and progression of leaf senescence. OsERF101 encodes a predicted transcription factor and OsERF101 transcript levels rapidly increased in rice leaves during dark-induced senescence (DIS), indicating that OsERF101 is a senescence-associated transcription factor. Compared with wild type, the oserf101 T-DNA knockout mutant showed delayed leaf yellowing and higher chlorophyll contents during DIS and natural senescence. Consistent with its delayed-yellowing phenotype, the oserf101 mutant exhibited downregulation of genes involved in chlorophyll degradation, including rice NAM, ATAF1/2, and CUC2 (OsNAP), STAY-GREEN (SGR), NON-YELLOW COLORING 1 (NYC1), and NYC3 during DIS. After methyl jasmonate treatment to induce rapid leaf de-greening, the oserf101 leaves retained more chlorophyll compared with wild type, indicating that OsERF101 is involved in promoting jasmonic acid (JA)-induced leaf senescence. Consistent with the involvement of JA, the expression of the JA signaling genes OsMYC2/JA INSENSITIVE 1 (OsJAI1) and CORONATINE INSENSITIVE 1a (OsCOI1a), was downregulated in the oserf101 leaves during DIS. Transient transactivation and chromatin immunoprecipitation assays revealed that OsERF101 directly binds to the promoter regions of OsNAP and OsMYC2, which activate genes involved in chlorophyll degradation and JA signaling-mediated leaf senescence. These results demonstrate that OsERF101 promotes the onset and progression of leaf senescence through a JA-mediated signaling pathway.
Collapse
Affiliation(s)
- Chaemyeong Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, South Korea
| | - Yejin Shim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yasuhito Sakuraba
- Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
81
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
82
|
Liu Q, Sun C, Han J, Li L, Wang K, Wang Y, Chen J, Zhao M, Wang Y, Zhang M. Identification, characterization and functional differentiation of the NAC gene family and its roles in response to cold stress in ginseng, Panax ginseng C.A. Meyer. PLoS One 2020; 15:e0234423. [PMID: 32525906 PMCID: PMC7289381 DOI: 10.1371/journal.pone.0234423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
The NAC gene family is one of the important plant-specific transcription factor families involved in variety of physiological processes. It has been found in several plant species; however, little is known about the gene family in ginseng, Panax ginseng C.A. Meyer. Here we report identification and systematic analysis of this gene family in ginseng. A total of 89 NAC genes, designated PgNAC01 to PgNAC89, are identified. These genes are alternatively spliced into 251 transcripts at fruiting stage of a four-year-old ginseng plant. The genes of this gene family have five conserved motifs and are clustered into 11 subfamilies, all of which are shared with the genes of the NAC gene families identified in the dicot and monocot model plant species, Arabidopsis and rice. This result indicates that the PgNAC gene family is an ancient and evolutionarily inactive gene family. Gene ontology (GO) analysis shows that the functions of the PgNAC gene family have been substantially differentiated; nevertheless, over 86% the PgNAC transcripts remain functionally correlated. Finally, five of the PgNAC genes, PgNAC05-2, PgNAC41-2, PgNAC48, PgNAC56-1, and PgNAC59, are identified to be involved in plant response to cold stress, suggesting that this gene family plays roles in response to cold stress in ginseng. These results, therefore, provide new insights into functional differentiation and evolution of a gene family in plants and gene resources necessary to comprehensively determine the functions of the PgNAC gene family in response to cold and other abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Jiazhuang Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Yanfang Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
- * E-mail: (YW); (MZ)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
- * E-mail: (YW); (MZ)
| |
Collapse
|
83
|
Su L, Fang L, Zhu Z, Zhang L, Sun X, Wang Y, Wang Q, Li S, Xin H. The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:621-634. [PMID: 32107612 DOI: 10.1007/s00299-020-02519-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
Collapse
Affiliation(s)
- Lingye Su
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, People's Republic of China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhenfei Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
84
|
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. PLANTS (BASEL, SWITZERLAND) 2020; 9:E491. [PMID: 32290272 PMCID: PMC7238037 DOI: 10.3390/plants9040491] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Increasing vulnerability of crops to a wide range of abiotic and biotic stresses can have a marked influence on the growth and yield of major crops, especially sugarcane (Saccharum spp.). In response to various stresses, plants have evolved a variety of complex defense systems of signal perception and transduction networks. Transcription factors (TFs) that are activated by different pathways of signal transduction and can directly or indirectly combine with cis-acting elements to modulate the transcription efficiency of target genes, which play key regulators for crop genetic improvement. Over the past decade, significant progresses have been made in deciphering the role of plant TFs as key regulators of environmental responses in particular important cereal crops; however, a limited amount of studies have focused on sugarcane. This review summarizes the potential functions of major TF families, such as WRKY, NAC, MYB and AP2/ERF, in regulating gene expression in the response of plants to abiotic and biotic stresses, which provides important clues for the engineering of stress-tolerant cultivars in sugarcane.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Rubab Shabbir
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - Irfan Afzal
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| |
Collapse
|
85
|
Xie L, Cai M, Li X, Zheng H, Xie Y, Cheng Z, Bai Y, Li J, Mu S, Gao J. Overexpression of PheNAC3 from moso bamboo promotes leaf senescence and enhances abiotic stress tolerance in Arabidopsis. PeerJ 2020; 8:e8716. [PMID: 32266114 PMCID: PMC7120055 DOI: 10.7717/peerj.8716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022] Open
Abstract
The NAC family is one of the largest transcription factor families unique to plants, which regulates the growth and development, biotic and abiotic stress responses, and maturation and senescence in plants. In this study, PheNAC3, a NAC gene, was isolated and characterized from moso bamboo (Phyllostachys edulis). PheNAC3 belong to the NAC1 subgroup and has a conserved NAC domain on the N-terminus, which with 88.74% similarity to ONAC011 protein. PheNAC3 localized in the nucleus and exhibited transactivation activity. PheNAC3 was upregulated during the process of senescence of leaves and detected shoots. PheNAC3 was also induced by ABA, MeJA, NaCl and darkness, but it had no remarkable response to PEG and SA treatments. Overexpression of PheNAC3 could cause precocious senescence in Arabidopsis. Transgenic Arabidopsis displayed faster seed germination, better seedling growth, and a higher survival rate than the wild-type under salt or drought stress conditions. Moreover, AtSAG12 associated with senescence and AtRD29A and AtRD29b related to ABA were upregulated by PheNAC3 overexpression, but AtCAB was inhibited. These findings show that PheNAC3 may participate in leaf senescence and play critical roles in the salt and drought stress response.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China.,Pingdingshan University, Pingdingshan, Henan, China
| | - Miaomiao Cai
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Xiangyu Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Huifang Zheng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Yali Xie
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Zhanchao Cheng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Yucong Bai
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Juan Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Shaohua Mu
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
86
|
Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 2020; 10:5855. [PMID: 32246044 PMCID: PMC7125087 DOI: 10.1038/s41598-020-62725-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Phosphorus (P) availability and salinity stress are two major constraints for agriculture productivity. A combination of salinity and P starvation is known to be more deleterious to plant health. Plant growth promoting rhizobacteria are known to ameliorate abiotic stress in plants by increasing the availability of different nutrients. However, interaction mechanisms of plant grown under salinity and P stress condition and effect of beneficial microbe for stress alleviation is still obscure. Earlier we reported the molecular insight of auxin producing, phosphate solubilising Pseudomonas putida MTCC 5279 (RAR) mediated plant growth promotion in Arabidopsis thaliana. In present study new trait of proline and phosphatase production of RAR and its impact on modulation of physiological phenomenon under phosphate starved-salinity stress condition in A. thaliana has been investigated. Different physiological and molecular determinants under RAR- A. thaliana interaction showed that auxin producing RAR shows tryptophan dependence for growth and proline production in ATP dependant manner under salinity stress. However, under P deprived conditions growth and proline production are independent of tryptophan. RAR mediated lateral root branching and root hair density through modulation of abscisic acid signalling was observed. Acidic phosphatase activity under P starved and salinity stress condition was majorly modulated along with ROS metabolism and expression of stress responsive/phosphate transporter genes. A strong correlation of different morpho-physiological factor with RAR + salt conditions, showed We concluded that enhanced adverse effect of salinity with unavailability of P was dampened in presence of P. putida MTCC 5279 (RAR) in A. thaliana, though more efficiently salinity stress conditions. Therefore, alleviation of combined stress of salinity induced phosphate nutrient deficiency by inoculation of beneficial microbe, P. putida MTCC 5279 offer good opportunities for enhancing the agricultural productivity.
Collapse
|
87
|
Mao H, Li S, Wang Z, Cheng X, Li F, Mei F, Chen N, Kang Z. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1078-1092. [PMID: 31617659 PMCID: PMC7061879 DOI: 10.1111/pbi.13277] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 05/18/2023]
Abstract
Wheat is a staple crop produced in arid and semi-arid areas worldwide, and its production is frequently compromised by water scarcity. Thus, increased drought tolerance is a priority objective for wheat breeding programmes, and among their targets, the NAC transcription factors have been demonstrated to contribute to plant drought response. However, natural sequence variations in these genes have been largely unexplored for their potential roles in drought tolerance. Here, we conducted a candidate gene association analysis of the stress-responsive NAC gene subfamily in a wheat panel consisting of 700 varieties collected worldwide. We identified a drought responsive gene, TaSNAC8-6A, that is tightly associated with drought tolerance in wheat seedlings. Further analysis found that a favourable allele TaSNAC8-6AIn-313 , carrying an insertion in the ABRE promoter motif, is targeted by TaABFs and confers enhanced drought-inducible expression of TaSNAC8-6A in drought-tolerant genotypes. Transgenic wheat and Arabidopsis TaSNAC8-6A overexpression lines exhibited enhanced drought tolerance through induction of auxin- and drought-response pathways, confirmed by transcriptomic analysis, that stimulated lateral root development, subsequently improving water-use efficiency. Taken together, our findings reveal that natural variation in TaSNAC8-6A and specifically the TaSNAC8-6AIn-313 allele strongly contribute to wheat drought tolerance and thus represent a valuable genetic resource for improvement of drought-tolerant germplasm for wheat production.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhongxue Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xinxiu Cheng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
88
|
Overexpression of a Malus baccata NAC Transcription Factor Gene MbNAC25 Increases Cold and Salinity Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21041198. [PMID: 32054040 PMCID: PMC7072804 DOI: 10.3390/ijms21041198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
NAC (no apical meristem (NAM), Arabidopsis thaliana transcription activation factor (ATAF1/2) and cup shaped cotyledon (CUC2)) transcription factors play crucial roles in plant development and stress responses. Nevertheless, to date, only a few reports regarding stress-related NAC genes are available in Malus baccata (L.) Borkh. In this study, the transcription factor MbNAC25 in M. baccata was isolated as a member of the plant-specific NAC family that regulates stress responses. Expression of MbNAC25 was induced by abiotic stresses such as drought, cold, high salinity and heat. The ORF of MbNAC25 is 1122 bp, encodes 373 amino acids and subcellular localization showed that MbNAC25 protein was localized in the nucleus. In addition, MbNAC25 was highly expressed in new leaves and stems using real-time PCR. To analyze the function of MbNAC25 in plants, we generated transgenic Arabidopsis plants that overexpressed MbNAC25. Under low-temperature stress (4 °C) and high-salt stress (200 mM NaCl), plants overexpressing MbNAC25 enhanced tolerance against cold and drought salinity conferring a higher survival rate than that of wild-type (WT). Correspondingly, the chlorophyll content, proline content, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly increased, while malondialdehyde (MDA) content was lower. These results indicated that the overexpression of MbNAC25 in Arabidopsis plants improved the tolerance to cold and salinity stress via enhanced scavenging capability of reactive oxygen species (ROS).
Collapse
|
89
|
Li X, Xie L, Zheng H, Cai M, Cheng Z, Bai Y, Li J, Gao J. Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. TREE PHYSIOLOGY 2019; 39:2027-2044. [PMID: 31595958 DOI: 10.1093/treephys/tpz100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The juvenile shoots of Phyllostachys edulis have been used as a food source for thousands of years, and it is recognized as a potential source of nutraceuticals. However, its rapid senescence restricts bamboo production and consumption, and the underlying molecular mechanisms of rapid shoot senescence remain largely unclear. In the present study, transcriptome profiling was employed to investigate the molecular regulation of postharvest senescence in shoots, along with physiological assays and anatomical dissections. Results revealed a distinct shift in expression postharvest, specifically transitions from cellular division and differentiation to the relocation of nutrients and programmed cell death. A number of regulatory and signaling factors were induced during postharvest senescence. Moreover, transcription factors, including NAM, ATAF and CUC (NAC) transcription factors, basic helix-loop-helix transcription factors, basic region/leucine zipper transcription factors, MYB transcription factors and WRKY transcription factors, were critical for shoot postharvest senescence, of which NACs were the most abundant. PheNAP2 and PheNAP3 were induced in postharvest shoots and found to promote leaf senescence in Arabidopsis by inducing the expression of AtSAG12 and AtSAG113. PheNAP2 and PheNAP3 could both restore the stay-green Arabidopsis nap to the wild-type phenotype either under normal growth condition or under abscisic acid treatment. Collectively, these results suggest that PheNAPs may promote shoot senescence. These findings provide a systematic view of shoot senescence and will inform future studies on the underlying molecular mechanisms responsible for shoot degradation during storage.
Collapse
Affiliation(s)
- Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Huifang Zheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Miaomiao Cai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Yucong Bai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Juan Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| |
Collapse
|
90
|
Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. RICE (NEW YORK, N.Y.) 2019; 12:76. [PMID: 31637532 PMCID: PMC6803609 DOI: 10.1186/s12284-019-0334-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/30/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The NAC (NAM, AFAT, and CUC) transcription factors play critical roles in rice (Oryza sativa) development and stress regulation. Overexpressing a microRNA (miR164b)-resistant OsNAC2 mutant gene, which generates transcripts that cannot be targeted by miR164b, improves rice plant architecture and yield; however, the performance of these mOsNAC2-overexpressing lines, named ZUOErN3 and ZUOErN4, under abiotic stress conditions such as drought have not yet been fully characterized. RESULTS In this study, we showed that the germination of ZUOErN3 and ZUOErN4 seeds was delayed in comparison with the wild-type (WT) seeds, although the final germination rates of all lines were over 95%. The quantification of the endogenous ABA levels revealed that the germinating mOsNAC2-overexpressing seeds had elevated ABA levels, which resulted in their slower germination. The mOsNAC2-overexpressing plants were significantly more drought tolerance than the WT plants, with the survival rate increasing from 11.2% in the WT to nearly 70% in ZUOErN3 and ZUOErN4 plants after a drought treatment. Salt (NaCl) tolerance was also increased in the ZUOErN3 and ZUOErN4 plants due to significantly increased ABA levels. A reverse transcription quantitative PCR (RT-qPCR) analysis showed a significant increase in the expression of the ABA biosynthesis genes OsNCED1 and OsNCED3 in the mOsNAC2-overexpressing lines, and the expression levels of the stress-responsive genes OsP5CS1, OsLEA3, and OsRab16 were significantly increased in these plants. Moreover, OsNAC2 directly interacted with the promoters of OsLEA3 and OsNCED3 in yeast one-hybrid assays. CONCLUSIONS Taken together, our results show that OsNAC2 plays a positive regulatory role in drought and salt tolerance in rice through ABA-mediated pathways.
Collapse
Affiliation(s)
- Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Lingyan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Laboratory Center of Basic Biology and Biotechnology, Education Department of Guangdong Province, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Weiting Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128 China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
91
|
Bengoa Luoni S, Astigueta FH, Nicosia S, Moschen S, Fernandez P, Heinz R. Transcription Factors Associated with Leaf Senescence in Crops. PLANTS (BASEL, SWITZERLAND) 2019; 8:E411. [PMID: 31614987 PMCID: PMC6843677 DOI: 10.3390/plants8100411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables. Different crops present a delay in leaf senescence with an important impact on grain yield trough the maintenance of the photosynthetic leaf area during the reproductive stage. Additionally, because of the temporal gap between the onset and phenotypic detection of the senescence process, candidate genes are key tools to enable the early detection of this process. In this sense and given the importance of some transcription factors as hub genes in senescence pathways, we present a comprehensive review on senescence-associated transcription factors, in model plant species and in agronomic relevant crops. This review will contribute to the knowledge of leaf senescence process in crops, thus providing a valuable tool to assist molecular crop breeding.
Collapse
Affiliation(s)
- Sofia Bengoa Luoni
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Salvador Nicosia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Universidad Nacional de Lujan, Cruce Rutas Nac. 5 y 7, Lujan, Buenos Aires 6700, Argentina.
| | - Sebastian Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, Tucumán 4142, Argentina.
| | - Paula Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
| | - Ruth Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina.
| |
Collapse
|
92
|
Trupkin SA, Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lía VV, Fernández P, Heinz RA. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110195. [PMID: 31481223 DOI: 10.1016/j.plantsci.2019.110195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/23/2023]
Abstract
Progression of leaf senescence depends on several families of transcription factors. In Arabidopsis, the NAC family plays crucial roles in the modulation of leaf senescence; however, the mechanisms involved in this NAC-mediated regulation have not been extensively explored in agronomic species. Petunia hybrida is an ornamental plant that is commonly found worldwide. Decreasing the rate of leaf and petal senescence in P. hybrida is essential for maintaining plant quality. In this study, we examined the NAC-mediated networks involved in regulating senescence in this species. From 41 NAC genes, the expression of which changed in Arabidopsis during leaf senescence, we identified 29 putative orthologs in P. hybrida. Analysis using quantitative real-time-PCR indicated that 24 genes in P. hybrida changed their transcript levels during natural leaf senescence. Leaf-expressed genes were subsequently assessed in petals undergoing natural and pollination-induced senescence. Expression data and phylogenetic analysis were used to generate a list of 10-15 candidate genes; 7 of these were considered key regulatory candidates in senescence because of their consistent upregulation in the three senescence processes examined. Altogether, we identified common and distinct patterns of gene expression at different stages of leaf and petal development and during progression of senescence. The results obtained in this study will contribute to the understanding of NAC-mediated regulatory networks in petunia.
Collapse
Affiliation(s)
- Santiago A Trupkin
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Amilcar H Baigorria
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín N García
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Verónica C Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Sergio A González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Cecilia Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica V Lía
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Fernández
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Ruth A Heinz
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
93
|
Huang Y, Jiao Y, Xie N, Guo Y, Zhang F, Xiang Z, Wang R, Wang F, Gao Q, Tian L, Li D, Chen L, Liang M. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110188. [PMID: 31481229 DOI: 10.1016/j.plantsci.2019.110188] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 05/08/2023]
Abstract
9-cis-epoxycarotenoid dioxygenase (NCED) is a rate-limiting enzyme for abscisic acid (ABA) biosynthesis. However, the molecular mechanisms of NCED5 that modulate plant development and abiotic stress tolerance are still unclear, particular in rice. Here, we demonstrate that a rice NCED gene, OsNCED5, was expressed in all tissues we tested, and was induced by exposure to salt stress, water stress, and darkness. Mutational analysis showed that nced5 mutants reduced ABA level and decreased tolerance to salt and water stress and delayed leaf senescence. However, OsNCED5 overexpression increased ABA level, enhanced tolerance to the stresses, and accelerated leaf senescence. Transcript analysis showed that OsNCED5 regulated ABA-dependent abiotic stress and senescence-related gene expression. Additionally, ectopic expression of OsNCED5 tested in Arabidopsis thaliana altered plant size and leaf morphology and delayed seed germination and flowering time. Thus, OsNCED5 may regulate plant development and stress resistance through control of ABA biosynthesis. These findings contribute to our understanding of the molecular mechanisms by which NCED regulates plant development and responses to abiotic stress in different crop species.
Collapse
Affiliation(s)
- Yuan Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Yang Jiao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Ningkun Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Yiming Guo
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Feng Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Zhipan Xiang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Rong Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China.
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
94
|
Kokkanti RR, Hindu V, Latha P, Vasanthi R, Sudhakar P, Usha R. Assessment of genetic variability and molecular characterization of heat stress tolerant genes in Arachis hypogaea L. through qRT-PCR. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
Yuan X, Wang H, Cai J, Bi Y, Li D, Song F. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC PLANT BIOLOGY 2019; 19:278. [PMID: 31238869 PMCID: PMC6593515 DOI: 10.1186/s12870-019-1883-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/12/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND NAC (NAM, ATAF and CUC) transcriptional factors constitute a large family with more than 150 members in rice and several members of this family have been demonstrated to play crucial roles in rice abiotic stress response. In the present study, we report the function of a novel stress-responsive NAC gene, ONAC066, in rice drought and oxidative stress tolerance. RESULTS ONAC066 was localized in nuclei of cells when transiently expressed in Nicotiana benthamiana and is a transcription activator with the binding ability to NAC recognition sequence (NACRS) and AtJUB1 binding site (JBS). Expression of ONAC066 was significantly induced by PEG, NaCl, H2O2 and abscisic acid (ABA). Overexpression of ONAC066 in transgenic rice improved drought and oxidative stress tolerance and increased ABA sensitivity, accompanied with decreased rate of water loss, increased contents of proline and soluble sugars, decreased accumulation of reactive oxygen species (ROS) and upregulated expression of stress-related genes under drought stress condition. By contrast, RNAi-mediated suppression of ONAC066 attenuated drought and oxidative stress tolerance and decreased ABA sensitivity, accompanied with increased rate of water loss, decreased contents of proline and soluble sugars, elevated accumulation of ROS and downregulated expression of stress-related genes under drought stress condition. Furthermore, yeast one hybrid and chromatin immunoprecipitation-PCR analyses revealed that ONAC066 bound directly to a JBS-like cis-elements in OsDREB2A promoter and activated the transcription of OsDREB2A. CONCLUSION ONAC066 is a nucleus-localized transcription activator that can respond to multiple abiotic stress factors. Functional analyses using overexpression and RNAi-mediated suppression transgenic lines demonstrate that ONAC066 is a positive regulator of drought and oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jiating Cai
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
96
|
Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum. PLANT CELL REPORTS 2019; 38:361-376. [PMID: 30627770 DOI: 10.1007/s00299-019-02371-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/02/2019] [Indexed: 05/25/2023]
Abstract
SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Shahbazi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
97
|
Amin AB, Rathnayake KN, Yim WC, Garcia TM, Wone B, Cushman JC, Wone BWM. Crassulacean Acid Metabolism Abiotic Stress-Responsive Transcription Factors: a Potential Genetic Engineering Approach for Improving Crop Tolerance to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:129. [PMID: 30853963 PMCID: PMC6395430 DOI: 10.3389/fpls.2019.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
This perspective paper explores the utilization of abiotic stress-responsive transcription factors (TFs) from crassulacean acid metabolism (CAM) plants to improve abiotic stress tolerance in crop plants. CAM is a specialized type of photosynthetic adaptation that enhances water-use efficiency (WUE) by shifting CO2 uptake to all or part of the nighttime when evaporative water losses are minimal. Recent studies have shown that TF-based genetic engineering could be a useful approach for improving plant abiotic stress tolerance because of the role of TFs as master regulators of clusters of stress-responsive genes. Here, we explore the use of abiotic stress-responsive TFs from CAM plants to improve abiotic stress tolerance and WUE in crops by controlling the expression of gene cohorts that mediate drought-responsive adaptations. Recent research has revealed several TF families including AP2/ERF, MYB, WRKY, NAC, NF-Y, and bZIP that might regulate water-deficit stress responses and CAM in the inducible CAM plant Mesembryanthemum crystallinum under water-deficit stress-induced CAM and in the obligate CAM plant Kalanchoe fedtschenkoi. Overexpression of genes from these families in Arabidopsis thaliana can improve abiotic stress tolerance in A. thaliana in some instances. Therefore, we propose that TF-based genetic engineering with a small number of CAM abiotic stress-responsive TFs will be a promising strategy for improving abiotic stress tolerance and WUE in crop plants in a projected hotter and drier landscape in the 21st-century and beyond.
Collapse
Affiliation(s)
- Atia B. Amin
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Kumudu N. Rathnayake
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Travis M. Garcia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Beate Wone
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
98
|
Islam MS, Ontoy J, Subudhi PK. Meta-Analysis of Quantitative Trait Loci Associated with Seedling-Stage Salt Tolerance in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E33. [PMID: 30699967 PMCID: PMC6409918 DOI: 10.3390/plants8020033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 12/23/2022]
Abstract
Soil and water salinity is one of the major abiotic stresses that reduce growth and productivity in major food crops including rice. The lack of congruence of salt tolerance quantitative trait loci (QTLs) in multiple genetic backgrounds and multiple environments is a major hindrance for undertaking marker-assisted selection (MAS). A genome-wide meta-analysis of QTLs controlling seedling-stage salt tolerance was conducted in rice using QTL information from 12 studies. Using a consensus map, 11 meta-QTLs for three traits with smaller confidence intervals were localized on chromosomes 1 and 2. The phenotypic variance of 3 meta-QTLs was ≥20%. Based on phenotyping of 56 diverse genotypes and breeding lines, six salt-tolerant genotypes (Bharathy, I Kung Ban 4-2 Mutant, Langmanbi, Fatehpur 3, CT-329, and IARI 5823) were identified. The perusal of the meta-QTL regions revealed several candidate genes associated with salt-tolerance attributes. The lack of association between meta-QTL linked markers and the level of salt tolerance could be due to the low resolution of meta-QTL regions and the genetic complexity of salt tolerance. The meta-QTLs identified in this study will be useful not only for MAS and pyramiding, but will also accelerate the fine mapping and cloning of candidate genes associated with salt-tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- School of Plant, Environment, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - John Ontoy
- School of Plant, Environment, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Prasanta K Subudhi
- School of Plant, Environment, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
99
|
Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-030-30926-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
100
|
Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2019; 39:MB-2019-s11032-019-0954-y. [PMID: 32803201 PMCID: PMC7413041 DOI: 10.1007/s11032-019-0954-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
Salinity is one of the most important abiotic stress affecting the world rice production. The cultivation of salinity-tolerant cultivars is the most cost-effective and environmentally friendly approach for salinity control. In recent years, CRISPR/Cas9 systems have been widely used for target-site genome editing; however, their application for the improvement of elite rice cultivars has rarely been reported. Here, we report the improvement of the rice salinity tolerance by engineering a Cas9-OsRR22-gRNA expressing vector, targeting the OsRR22 gene in rice. Nine mutant plants were identified from 14 T0 transgenic plants. Sequencing showed that these plants had six mutation types at the target site, all of which were successfully transmitted to the next generations. Mutant plants without transferred DNA (T-DNA) were obtained via segregation in the T1 generations. Two T2 homozygous mutant lines were further examined for their salinity tolerance and agronomic traits. The results showed that, at the seedling stage, the salinity tolerance of T2 homozygous mutant lines was significantly enhanced compared to wild-type plants. Furthermore, no significantly different agronomic traits were found between T2 homozygous mutant lines and wild-type plants. Our results indicate CRISPR/ Cas9 as a useful approach to enhance the salinity tolerance of rice.
Collapse
Affiliation(s)
- Anning Zhang
- Huazhong Agricultural University, Wuhan 430070, People’s Republic
of China
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Yi Liu
- Huazhong Agricultural University, Wuhan 430070, People’s Republic
of China
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Feiming Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Zhihao Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Fenyun Zhang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Xingxing Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Jiahong Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Jinjuan Tang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
- e-mail:
| | - Lijun Luo
- Huazhong Agricultural University, Wuhan 430070, People’s Republic
of China
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
- e-mail:
| |
Collapse
|