51
|
Shi W, Zhao SL, Liu K, Sun YB, Ni ZB, Zhang GY, Tang HS, Zhu JW, Wan BJ, Sun HQ, Dai JY, Sun MF, Yan GH, Wang AM, Zhu GY. Comparison of leaf transcriptome in response to Rhizoctonia solani infection between resistant and susceptible rice cultivars. BMC Genomics 2020; 21:245. [PMID: 32188400 PMCID: PMC7081601 DOI: 10.1186/s12864-020-6645-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sheath blight (SB), caused by Rhizoctonia solani, is a common rice disease worldwide. Currently, rice cultivars with robust resistance to R. solani are still lacking. To provide theoretic basis for molecular breeding of R. solani-resistant rice cultivars, the changes of transcriptome profiles in response to R. solani infection were compared between a moderate resistant cultivar (Yanhui-888, YH) and a susceptible cultivar (Jingang-30, JG). Results In the present study, 3085 differentially express genes (DEGs) were detected between the infected leaves and the control in JG, with 2853 DEGs in YH. A total of 4091 unigenes were significantly upregulated in YH than in JG before infection, while 3192 were significantly upregulated after infection. Further analysis revealed that YH and JG showed similar molecular responses to R. solani infection, but the responses were earlier in JG than in YH. Expression levels of trans-cinnamate 4-monooxygenase (C4H), ethylene-insensitive protein 2 (EIN2), transcriptome factor WRKY33 and the KEGG pathway plant-pathogen interaction were significantly affected by R. solani infection. More importantly, these components were all over-represented in YH cultivar than in JG cultivar before and/or after infection. Conclusions These genes possibly contribute to the higher resistance of YH to R. solani than JG and were potential target genes to molecularly breed R. solani-resistant rice cultivar.
Collapse
Affiliation(s)
- Wei Shi
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Shao-Lu Zhao
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Kai Liu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Yi-Biao Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Zheng-Bin Ni
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Gui-Yun Zhang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Hong-Sheng Tang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Jing-Wen Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Bai-Jie Wan
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Hong-Qin Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Jin-Ying Dai
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Ming-Fa Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Guo-Hong Yan
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Ai-Min Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Guo-Yong Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| |
Collapse
|
52
|
Alber AV, Renault H, Basilio-Lopes A, Bassard JE, Liu Z, Ullmann P, Lesot A, Bihel F, Schmitt M, Werck-Reichhart D, Ehlting J. Evolution of coumaroyl conjugate 3-hydroxylases in land plants: lignin biosynthesis and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:924-936. [PMID: 31038800 DOI: 10.1111/tpj.14373] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 05/16/2023]
Abstract
Multiple adaptations were necessary when plants conquered the land. Among them were soluble phenylpropanoids related to plant protection and lignin necessary for upright growth and long-distance water transport. Cytochrome P450 monooxygenase 98 (CYP98) catalyzes a rate-limiting step in phenylpropanoid biosynthesis. Phylogenetic reconstructions suggest that a single copy of CYP98 founded each major land plant lineage (bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms), and was maintained as a single copy in all lineages but the angiosperms. In angiosperms, a series of independent gene duplications and losses occurred. Biochemical assays in four angiosperm species tested showed that 4-coumaroyl-shikimate, a known intermediate in lignin biosynthesis, was the preferred substrate of one member in each species, while independent duplicates in Populus trichocarpa and Amborella trichopoda each showed broad substrate ranges, accepting numerous 4-coumaroyl-esters and -amines, and were thus capable of producing a wide range of hydroxycinnamoyl conjugates. The gymnosperm CYP98 from Pinus taeda showed a broad substrate range, but preferred 4-coumaroyl-shikimate as its best substrate. In contrast, CYP98s from the lycophyte Selaginella moellendorffii and the fern Pteris vittata converted 4-coumaroyl-shikimate poorly in vitro, but were able to use alternative substrates, in particular 4-coumaroyl-anthranilate. Thus, caffeoyl-shikimate appears unlikely to be an intermediate in monolignol biosynthesis in non-seed vascular plants, including ferns. The best substrate for CYP98A34 from the moss Physcomitrella patens was also 4-coumaroyl-anthranilate, while 4-coumaroyl-shikimate was converted to lower extents. Despite having in vitro activity with 4-coumaroyl-shikimate, CYP98A34 was unable to complement the Arabidopsis thaliana cyp98a3 loss-of-function phenotype, suggesting distinct properties also in vivo.
Collapse
Affiliation(s)
- Annette V Alber
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| | - Hugues Renault
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | | | - Jean-Etienne Bassard
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Zhenhua Liu
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Pascaline Ullmann
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Agnès Lesot
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR CNRS 7200, Illkirch, France
| | - Martine Schmitt
- Laboratoire d'Innovation Thérapeutique, UMR CNRS 7200, Illkirch, France
| | | | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
53
|
Herbert RA, Eng T, Martinez U, Wang B, Langley S, Wan K, Pidatala V, Hoffman E, Chen JC, Bissell MJ, Brown JB, Mukhopadhyay A, Mortimer JC. Rhizobacteria Mediate the Phytotoxicity of a Range of Biorefinery-Relevant Compounds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1911-1922. [PMID: 31107972 PMCID: PMC6711798 DOI: 10.1002/etc.4501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 05/08/2023]
Abstract
Advances in engineering biology have expanded the list of renewable compounds that can be produced at scale via biological routes from plant biomass. In most cases, these chemical products have not been evaluated for effects on biological systems, defined in the present study as bioactivity, that may be relevant to their manufacture. For sustainable chemical and fuel production, the industry needs to transition from fossil to renewable carbon sources, resulting in unprecedented expansion in the production and environmental distribution of chemicals used in biomanufacturing. Further, although some chemicals have been assessed for mammalian toxicity, environmental and agricultural hazards are largely unknown. We assessed 6 compounds that are representative of the emerging biofuel and bioproduct manufacturing process for their effect on model plants (Arabidopsis thaliana, Sorghum bicolor) and show that several alter plant seedling physiology at submillimolar concentrations. However, these responses change in the presence of individual bacterial species from the A. thaliana root microbiome. We identified 2 individual microbes that change the effect of chemical treatment on root architecture and a pooled microbial community with different effects relative to its constituents individually. The present study indicates that screening industrial chemicals for bioactivity on model organisms in the presence of their microbiomes is important for biologically and ecologically relevant risk analyses. Environ Toxicol Chem 2019;38:1911-1922. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Robin A. Herbert
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
| | - Thomas Eng
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
| | - Uriel Martinez
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- College of Science and EngineeringSan Francisco State University, San FranciscoCaliforniaUSA
| | - Brenda Wang
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Sasha Langley
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Kenneth Wan
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Venkataramana Pidatala
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
| | - Elijah Hoffman
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Joseph C. Chen
- College of Science and EngineeringSan Francisco State University, San FranciscoCaliforniaUSA
| | - Mina J. Bissell
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - James B. Brown
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Environmental Genomics and System Biology DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
- Environmental Genomics and System Biology DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Jenny C. Mortimer
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
- Environmental Genomics and System Biology DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| |
Collapse
|
54
|
Vanholme R, De Meester B, Ralph J, Boerjan W. Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 2019; 56:230-239. [PMID: 30913460 DOI: 10.1016/j.copbio.2019.02.018] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Lignin is a principal structural component of cell walls in higher terrestrial plants. It reinforces the cell walls, facilitates water transport, and acts as a physical barrier to pathogens. Lignin is typically described as being composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units that derive from the polymerization of the hydroxycinnamyl alcohols, p-coumaryl, coniferyl, and sinapyl alcohol, respectively. However, lignin also derives from various other aromatic monomers. Here, we review the biosynthetic pathway to the lignin monomers, and how flux through the pathway is regulated. Upon perturbation of the phenylpropanoid pathway, pathway intermediates may successfully incorporate into the lignin polymer, thereby affecting its physicochemical properties, or may remain soluble as such or as derivatized molecules that might interfere with physiological processes.
Collapse
Affiliation(s)
- Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
55
|
Beyraghdar Kashkooli A, van der Krol AR, Rabe P, Dickschat JS, Bouwmeester H. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab Eng 2019; 54:12-23. [PMID: 30822491 DOI: 10.1016/j.ymben.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
56
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
57
|
Liang Y, Eudes A, Yogiswara S, Jing B, Benites VT, Yamanaka R, Cheng-Yue C, Baidoo EE, Mortimer JC, Scheller HV, Loqué D. A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:130. [PMID: 31143243 PMCID: PMC6532251 DOI: 10.1186/s13068-019-1467-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Single guide RNA (sgRNA) selection is important for the efficiency of CRISPR/Cas9-mediated genome editing. However, in plants, the rules governing selection are not well established. RESULTS We developed a facile transient assay to screen sgRNA efficiency. We then used it to test top-performing bioinformatically predicted sgRNAs for two different Arabidopsis genes. In our assay, these sgRNAs had vastly different editing efficiencies, and these efficiencies were replicated in stably transformed Arabidopsis lines. One of the genes, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT), is an essential gene, required for lignin biosynthesis. Previously, HCT function has been studied using gene silencing. Here, to avoid the negative growth effects that are due to the loss of HCT activity in xylem vessels, we used a fiber-specific promoter to drive CAS9 expression. Two independent transgenic lines showed the expected lignin decrease. Successful editing was confirmed via the observation of mutations at the HCT target loci, as well as an approximately 90% decrease in HCT activity. Histochemical analysis and a normal growth phenotype support the fiber-specific knockout of HCT. For the targeting of the second gene, Golgi-localized nucleotide sugar transporter2 (GONST2), a highly efficient sgRNA drastically increased the rate of germline editing in T1 generation. CONCLUSIONS This screening method is widely applicable, and the selection and use of efficient sgRNAs will accelerate the process of expanding germplasm for both molecular breeding and research. In addition, this, to the best of our knowledge, is the first application of constrained genome editing to obtain chimeric plants of essential genes, thereby providing a dominant method to avoid lethal growth phenotypes.
Collapse
Affiliation(s)
- Yan Liang
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sasha Yogiswara
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Beibei Jing
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Veronica T. Benites
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Reo Yamanaka
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- School of Public Health, University of California, Berkeley, CA 94720 USA
| | - Clarabelle Cheng-Yue
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Edward E. Baidoo
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jenny C. Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
58
|
Molecular Identification and Characterization of Hydroxycinnamoyl Transferase in Tea Plants ( Camellia sinensis L.). Int J Mol Sci 2018; 19:ijms19123938. [PMID: 30544591 PMCID: PMC6321142 DOI: 10.3390/ijms19123938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/02/2022] Open
Abstract
Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.
Collapse
|
59
|
Renault H, Werck-Reichhart D, Weng JK. Harnessing lignin evolution for biotechnological applications. Curr Opin Biotechnol 2018; 56:105-111. [PMID: 30439673 DOI: 10.1016/j.copbio.2018.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that facilitated early plants' adaptation to terrestrial environments. The first true lignin was constructed via oxidative coupling of a number of simple phenylpropanoid alcohols to form a sturdy polymer that supports long-distance water transport. This invention has directly contributed to the dominance of vascular plants in the Earth's flora, and has had a profound impact on the establishment of the rich terrestrial ecosystems as we know them today. Within vascular plants, new lignin traits continued to emerge with expanded biological functions pertinent to host fitness under complex environmental niches. Understanding the chemical and biochemical basis for lignin's evolution in diverse plants therefore offers new opportunities and tools for engineering desirable lignin traits in crops with economic significance.
Collapse
Affiliation(s)
- Hugues Renault
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, F-67000 Strasbourg, France.
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, F-67000 Strasbourg, France.
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
60
|
Wu YF, Zhao Y, Liu XY, Gao S, Cheng AX, Lou HX. Isolation and functional characterization of hydroxycinnamoyltransferases from the liverworts Plagiochasma appendiculatum and Marchantia paleacea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:400-410. [PMID: 30691636 DOI: 10.1016/j.plaphy.2018.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 06/09/2023]
Abstract
Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT, EC: 2.3.1.133) is a key metabolic entry point for the synthesis of monolignols in vascular plants; however, little is known about HCT in liverworts. Here, the isolation and characterization of HCTs encoded by the two liverwort species, Plagiochasma appendiculatum and Marchantia paleacea, are described. The sequences of the two enzymes harbor features typical of BAHD family members, except for the presence of a stretch of >100 residues that are not represented in higher plant HCTs. When truncated versions of both genes, which were constructed to clarify the significance of these extra residues, were investigated, it became apparent that the full-length and the truncated gene products shared similar catalytic activity and recognized the same substrates in vitro. They also functioned equivalently in vivo either when transiently expressed in tobacco to cause a higher total production of CGA (5-CQA) and 4-CQA or stably expressed in liverworts to accumulate the lignin-like contents. A structural model of MpHCT suggests that its active site bind to its substrate similar to that of Arabidopsis thaliana HCT. While truncated forms of HCT were deposited in the nucleocytoplasm, the full-length versions occurred exclusively in the cytoplasm. The conclusion is that liverworts produce bona fide HCTs that represent a point of departure in studying the evolution of lignin synthesis in plants.
Collapse
Affiliation(s)
- Yi-Feng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Zhao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
61
|
Eudes A, Berthomieu R, Hao Z, Zhao N, Benites VT, Baidoo EEK, Loqué D. Production of muconic acid in plants. Metab Eng 2018; 46:13-19. [PMID: 29474840 DOI: 10.1016/j.ymben.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/06/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of alternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous hosts for engineered metabolic pathways towards the manufacturing of chemicals. In this work, we engineered Arabidopsis to demonstrate that plants can serve as green factories for the bio-manufacturing of MA. In particular, dual expression of plastid-targeted bacterial salicylate hydroxylase (NahG) and catechol 1,2-dioxygenase (CatA) resulted in the conversion of the endogenous salicylic acid (SA) pool into MA via catechol. Sequential increase of SA derived from the shikimate pathway was achieved by expressing plastid-targeted versions of bacterial salicylate synthase (Irp9) and feedback-resistant 3-deoxy-D-arabino-heptulosonate synthase (AroG). Introducing this SA over-producing strategy into engineered plants that co-express NahG and CatA resulted in a 50-fold increase in MA titers. Considering that MA was easily recovered from senesced plant biomass after harvest, we envision the phytoproduction of MA as a beneficial option to add value to bioenergy crops.
Collapse
Affiliation(s)
- Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Roland Berthomieu
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91120, France
| | - Zhangying Hao
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Nanxia Zhao
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Department of Bioengineering, Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France.
| |
Collapse
|
62
|
Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:2. [PMID: 29321811 PMCID: PMC5759196 DOI: 10.1186/s13068-017-1007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/23/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. RESULTS We have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase and the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. CONCLUSION The results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.
Collapse
Affiliation(s)
- Aude Aznar
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Camille Chalvin
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Ecole Normale Supérieure de Cachan, 94230 Cachan, France
| | - Patrick M. Shih
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael Maimann
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Berit Ebert
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Devon S. Birdseye
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Dominique Loqué
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Henrik V. Scheller
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
63
|
Pereira JH, McAndrew RP, Tomaleri GP, Adams PD. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization. J Appl Crystallogr 2017; 50:1352-1358. [PMID: 29021733 PMCID: PMC5627680 DOI: 10.1107/s1600576717011347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 01/29/2023] Open
Abstract
Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography program at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens.
Collapse
Affiliation(s)
- Jose H. Pereira
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Ryan P. McAndrew
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | | | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
64
|
Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. Curr Opin Struct Biol 2017; 47:105-112. [PMID: 28822280 DOI: 10.1016/j.sbi.2017.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Specialized metabolic enzymes and metabolite diversity evolve through a variety of mechanisms including promiscuity, changes in substrate specificity, modifications of gene expression and gene duplication. For example, gene duplication and substrate binding site changes led to the evolution of the glucosinolate biosynthetic enzyme, AtIPMDH1, from a Leu biosynthetic enzyme. BAHD acyltransferases illustrate how enzymatic promiscuity leads to metabolite diversity. The examples 4-coumarate:CoA ligase and aromatic acid methyltransferases illustrate how promiscuity can potentiate the evolution of these specialized metabolic enzymes.
Collapse
|
65
|
Nancolas B, Bull ID, Stenner R, Dufour V, Curnow P. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro. Yeast 2017; 34:239-251. [PMID: 28160314 PMCID: PMC5484351 DOI: 10.1002/yea.3229] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Ian D Bull
- School of Chemistry, University of Bristol, Bristol, UK
| | - Richard Stenner
- School of Biochemistry, University of Bristol, Bristol, UK.,Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, UK
| | - Virginie Dufour
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| |
Collapse
|
66
|
Tartaglio V, Rennie EA, Cahoon R, Wang G, Baidoo E, Mortimer JC, Cahoon EB, Scheller HV. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:278-290. [PMID: 27643972 DOI: 10.1111/tpj.13382] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 05/05/2023]
Abstract
Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids has been slow as a result of challenges associated with the extractability of GIPCs, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway. Plants homozygous for the iput1 loss-of-function mutation were unobtainable, and so the developmental effects of reduced GIPC glucuronosylation could not be analyzed in planta. Using a pollen-specific rescue construct, we have here isolated homozygous iput1 mutants. The iput1 mutants show severe dwarfism, compromised pollen tube guidance, and constitutive activation of salicyclic acid-mediated defense pathways. The mutants also possess reduced GIPCs, increased ceramides, and an increased incorporation of short-chain fatty acids and dihydroxylated bases into inositol phosphorylceramides and GIPCs. The assignment of a direct role for GIPC glycan head groups in the impaired processes in iput1 mutants is complicated by the vast compensatory changes in the sphingolipidome; however, our results reveal that the glycosylation steps of GIPC biosynthesis are important regulated components of sphingolipid metabolism. This study corroborates previously suggested roles for GIPC glycans in plant growth and defense, suggests important roles for them in reproduction and demonstrates that the entire sphingolipidome is sensitive to their status.
Collapse
Affiliation(s)
- Virginia Tartaglio
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Rebecca Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - George Wang
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward Baidoo
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
67
|
Eudes A, Mouille M, Robinson DS, Benites VT, Wang G, Roux L, Tsai YL, Baidoo EEK, Chiu TY, Heazlewood JL, Scheller HV, Mukhopadhyay A, Keasling JD, Deutsch S, Loqué D. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microb Cell Fact 2016; 15:198. [PMID: 27871334 PMCID: PMC5117604 DOI: 10.1186/s12934-016-0593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals. RESULTS For the synthesis of valuable metabolites in the yeast Saccharomyces cerevisiae, we selected BAHD acyltransferases based on their preferred donor and acceptor substrates. In particular, BAHDs that use hydroxycinnamoyl-CoAs and/or benzoyl-CoA as donors were targeted because a large number of molecules beneficial to humans belong to this family of hydroxycinnamate and benzoate conjugates. The selected BAHD coding sequences were synthesized and cloned individually on a vector containing the Arabidopsis gene At4CL5, which encodes a promiscuous 4-coumarate:CoA ligase active on hydroxycinnamates and benzoates. The various S. cerevisiae strains obtained for co-expression of At4CL5 with the different BAHDs effectively produced a wide array of valuable hydroxycinnamate and benzoate conjugates upon addition of adequate combinations of donors and acceptor molecules. In particular, we report here for the first time the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters. Similarly, we achieved for the first time the microbial production of polyamine hydroxycinnamate amides; monolignol, malate and fatty alcohol hydroxycinnamate esters; tropane alkaloids; and benzoate/caffeate alcohol esters. In some instances, the additional expression of Flavobacterium johnsoniae tyrosine ammonia-lyase (FjTAL) allowed the synthesis of p-coumarate conjugates and eliminated the need to supplement the culture media with 4-hydroxycinnamate. CONCLUSION We demonstrate in this study the effectiveness of expressing members of the plant BAHD acyltransferase family in yeast for the synthesis of numerous valuable hydroxycinnamate and benzoate conjugates.
Collapse
Affiliation(s)
- Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maxence Mouille
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | | | - Veronica T Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Graduate Program, San Francisco State University, San Francisco, CA, 94132, USA
| | - George Wang
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Lucien Roux
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Master Program, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Yi-Lin Tsai
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tsan-Yu Chiu
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Joshua L Heazlewood
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Henrik V Scheller
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Chemical & Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle´, 2970, Hørsholm, Denmark
| | | | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St., 4th Floor, Emeryville, CA, 94608, USA. .,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA. .,CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, INSA de Lyon, 10 rue Raphaël Dubois, 69622, Villeurbanne, France.
| |
Collapse
|
68
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
69
|
Moglia A, Acquadro A, Eljounaidi K, Milani AM, Cagliero C, Rubiolo P, Genre A, Cankar K, Beekwilder J, Comino C. Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke. FRONTIERS IN PLANT SCIENCE 2016; 7:1424. [PMID: 27721818 PMCID: PMC5033976 DOI: 10.3389/fpls.2016.01424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/07/2016] [Indexed: 05/25/2023]
Abstract
Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong to the large family of BAHD acyltransferases. Following a survey of the globe artichoke genome, we identified 69 BAHD proteins carrying the catalytic site (HXXXD). Their phylogenetic analysis together with another 43 proteins, from 21 species, representative of the BAHD family, highlighted their grouping in seven major clades. Nine globe artichoke acyltransferases clustered in a sub-group of Clade V, with 3 belonging to hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) and 2 to hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) like proteins. We focused our attention on the former, HQT1, HQT2, and HQT3, as they are known to play a key role in CGA biosynthesis. The expression of genes coding for the three HQTs and correlation of expression with the CQA content is reported for different globe artichoke tissues. For the first time in the globe artichoke, we developed and applied the virus-induced gene silencing approach with the goal of assessing in vivo the effect of HQT1 silencing, which resulted in a marked reduction of both CGA and diCQAs. On the other hand, when the role of the three HQTs was assessed in leaves of Nicotiana benthamiana through their transient overexpression, significant increases in mono- and diCQAs content were observed. Using transient GFP fusion proteins expressed in N. benthamiana leaves we also established the sub-cellular localization of these three enzymes.
Collapse
Affiliation(s)
- Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of TorinoGrugliasco, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, University of TorinoGrugliasco, Italy
| | - Kaouthar Eljounaidi
- Department of Agricultural, Forest and Food Sciences, University of TorinoGrugliasco, Italy
| | - Anna M. Milani
- Department of Agricultural, Forest and Food Sciences, University of TorinoGrugliasco, Italy
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of TorinoTorino, Italy
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of TorinoTorino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| | | | | | - Cinzia Comino
- Department of Agricultural, Forest and Food Sciences, University of TorinoGrugliasco, Italy
| |
Collapse
|
70
|
Shih PM, Liang Y, Loqué D. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:103-17. [PMID: 27030440 DOI: 10.1111/tpj.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 05/26/2023]
Abstract
The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs.
Collapse
Affiliation(s)
- Patrick M Shih
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| |
Collapse
|