51
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
52
|
Schuster M, Kilaru S, Guo M, Sommerauer M, Lin C, Steinberg G. Red fluorescent proteins for imaging Zymoseptoria tritici during invasion of wheat. Fungal Genet Biol 2015; 79:132-40. [PMID: 26092800 PMCID: PMC4502450 DOI: 10.1016/j.fgb.2015.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 10/28/2022]
Abstract
The use of fluorescent proteins (FPs) in plant pathogenic fungi provides valuable insight into their intracellular dynamics, cell organization and invasion mechanisms. Compared with green-fluorescent proteins, their red-fluorescent "cousins" show generally lower fluorescent signal intensity and increased photo-bleaching. However, the combined usage of red and green fluorescent proteins allows powerful insight in co-localization studies. Efficient signal detection requires a bright red-fluorescent protein (RFP), combined with a suitable corresponding filter set. We provide a set of four vectors, suitable for yeast recombination-based cloning that carries mRFP, TagRFP, mCherry and tdTomato. These vectors confer carboxin resistance after targeted single-copy integration into the sdi1 locus of Zymoseptoria tritici. Expression of the RFPs does not affect virulence of this wheat pathogen. We tested all four RFPs in combination with four epi-fluorescence filter sets and in confocal laser scanning microscopy, both in and ex planta. Our data reveal that mCherry is the RFP of choice for investigation in Z. tritici, showing highest signal intensity in epi-fluorescence, when used with a Cy3 filter set, and laser scanning confocal microscopy. However, mCherry bleached significantly faster than mRFP, which favors this red tag in long-term observation experiments. Finally, we used dual-color imaging of eGFP and mCherry expressing wild-type strains in planta and show that pycnidia are formed by single strains. This demonstrates the strength of this method in tracking the course of Z. tritici infection in wheat.
Collapse
Affiliation(s)
- M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Guo
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Sommerauer
- AHF Analysentechnik AG, Kohlplattenweg 18, DE-72074 Tübingen, Germany
| | - C Lin
- Mathematics, University of Exeter, Exeter EX4 3QF, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
53
|
Maldonado-González MM, Bakker PAHM, Prieto P, Mercado-Blanco J. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Front Microbiol 2015; 6:266. [PMID: 25904904 PMCID: PMC4387922 DOI: 10.3389/fmicb.2015.00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.
Collapse
Affiliation(s)
- M. Mercedes Maldonado-González
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Peter A. H. M. Bakker
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Pilar Prieto
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| |
Collapse
|
54
|
Morel MA, Cagide C, Minteguiaga MA, Dardanelli MS, Castro-Sowinski S. The Pattern of Secreted Molecules During the Co-Inoculation of Alfalfa Plants With Sinorhizobium meliloti and Delftia sp. strain JD2: An Interaction That Improves Plant Yield. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:134-142. [PMID: 25353366 DOI: 10.1094/mpmi-08-14-0229-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Delftia sp. strain JD2 is a plant-growth-promoting bacterium that enhances legume nodulation and growth, acting as nodule-assisting bacterium during the co-inoculation of plants with rhizobial strains. In this work, we evaluate how the co-inoculation of alfalfa with Sinorhizobium meliloti U143 and JD2 increases plant yield under greenhouse conditions and we analyze the pattern of secreted bioactive compounds which may be involved in the microbe-plant communication. The chemical composition of extracellular cultures (EC) produced in hydroponic conditions (collected 4, 7, and 14 days after bacterial treatment) were characterized using different chromatographic and elucidation techniques. In addition, we assessed the effect that plant irrigation with cell-free EC, produced during co-inoculation experiments, would have on plant yield. Results showed increased alfalfa shoot and root matter, suggesting that U143-JD2 co-inoculation might be a beneficial agricultural practice. The pattern of secreted secondary metabolites among treatments showed important differences. Qualitative and quantitative changes in phenolic compounds (including flavonoids), organic acids, and volatile compounds were detected during the early microbe-plant interaction, suggesting that the production of some molecules positively affects the microbe-plant association. Finally, the irrigation of co-inoculated plants with cell-free EC under greenhouse conditions increased plant yield over agronomic expectations. This effect might be attributed to the bioactive secondary metabolites incorporated during the irrigation.
Collapse
|
55
|
Kumar GP, Desai S, Amalraj ELD, Reddy G. Isolation of Fluorescent Pseudomonas spp. from Diverse Agro-Ecosystems of India and Characterization of their PGPR Traits. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/bj.2015.13.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
56
|
Wolterink-van Loo S, Ayala AAE, Hooykaas PJJ, van Heusden GPH. Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones. MICROBIOLOGY-SGM 2014; 161:401-410. [PMID: 25505187 DOI: 10.1099/mic.0.083410-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil bacterium that genetically transforms plants and, under laboratory conditions, also transforms non-plant organisms, such as fungi and yeasts. During the transformation process a piece of ssDNA (T-strand) is transferred into the host cells via a type IV secretion system. The VirD2 relaxase protein, which is covalently attached at the 5' end of the T-strand through Tyr29, mediates nuclear entry as it contains a nuclear localization sequence. How the T-strand reaches the chromatin and becomes integrated in the chromosomal DNA is still far from clear. Here, we investigated whether VirD2 binds to histone proteins in the yeast Saccharomyces cerevisiae. Using immobilized GFP-VirD2 and in vitro synthesized His6-tagged S. cerevisiae proteins, interactions between VirD2 and the histones H2A, H2B, H3 and H4 were revealed. In vivo, these interactions were confirmed by bimolecular fluorescence complementation experiments. After co-cultivation of Agrobacterium strains expressing VirD2 tagged with a fragment of the yellow fluorescent protein analogue Venus with yeast strains expressing histone H2A or H2B tagged with the complementary part of Venus, fluorescence was detected in dot-shaped structures in the recipient yeast cells. The results indicated that VirD2 was transferred from Agrobacterium to yeast cells and that it interacted with histones in the host cell, and thus may help direct the T-DNA (transferred DNA) to the chromatin as a prelude to integration into the host chromosomal DNA.
Collapse
Affiliation(s)
- Suzanne Wolterink-van Loo
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Abril A Escamilla Ayala
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - G Paul H van Heusden
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
57
|
Ji SH, Gururani MA, Chun SC. Expression Analysis of Rice Pathogenesis-related Proteins Involved in Stress Response and Endophytic Colonization Properties of gfp-tagged Bacillus subtilis CB-R05. Appl Biochem Biotechnol 2014; 174:231-41. [DOI: 10.1007/s12010-014-1047-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
|
58
|
Calderón CE, de Vicente A, Cazorla FM. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiol Ecol 2014; 89:20-31. [PMID: 24641321 DOI: 10.1111/1574-6941.12319] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022] Open
Abstract
Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions.
Collapse
Affiliation(s)
- Claudia E Calderón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | | | | |
Collapse
|
59
|
Nosheen A, Bano A, Ullah F. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers. Toxicol Ind Health 2013; 32:270-7. [PMID: 24097367 DOI: 10.1177/0748233713498453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study aimed to find out the effect of plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense and Azotobacter vinelandii) either alone or in combination with different doses of nitrogen and phosphate fertilizers on growth, seed yield, and oil quality of Brassica carinata (L.) cv. Peela Raya. PGPR were applied as seed inoculation at 10(6) cells/mL(-1) so that the number of bacterial cells per seed was 2.6 × 10(5) cells/seed. The chemical fertilizers, namely, urea and diammonium phosphate (DAP) were applied in different doses (full dose (urea 160 kg ha(-1) + DAP 180 kg ha(-1)), half dose (urea 80 kg ha(-1) + DAP 90 kg ha(-1)), and quarter dose (urea 40 kg ha(-1) + DAP 45 kg ha(-1)). The chemical fertilizers at full and half dose significantly increased the chlorophyll, carotenoids, and protein content of leaves and the seed yield (in kilogram per hectare) but had no effect on the oil content of seed. The erucic acid (C22:1) content present in the seed was increased. Azospirillum performed better than Azotobacter and its effect was at par with full dose of chemical fertilizers (CFF) for pigments and protein content of leaves when inoculated in the presence of half dose of chemical fertilizers (SPH). The seed yield and seed size were greater. Supplementing Azospirillum with SPH assisted Azospirillum to augment the growth and yield, reduced the erucic acid (C22:1) and glucosinolates contents, and increased the unsaturation in seed oil. It is inferred that A. brasilense could be applied as an efficient bioinoculant for enhancing the growth, seed yield, and oil quality of Ethiopian mustard at low fertilizer costs and sustainable ways.
Collapse
Affiliation(s)
- Asia Nosheen
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asghari Bano
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faizan Ullah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
60
|
Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol 2013; 79:6795-802. [PMID: 23995928 DOI: 10.1128/aem.02296-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tunable promoters represent a pivotal genetic tool for a wide range of applications. Here we present such a system for sphingomonads, a phylogenetically diverse group of bacteria that have gained much interest for their potential in bioremediation and their use in industry and for which no dedicated inducible gene expression system has been described so far. A strong, constitutive synthetic promoter was first identified through a genetic screen and subsequently combined with the repressor and the operator sites of the Pseudomonas putida F1 cym/cmt system. The resulting promoter, termed PQ5, responds rapidly to the inducer cumate and shows a maximal induction ratio of 2 to 3 orders of magnitude in the different sphingomonads tested. Moreover, it was also functional in other Alphaproteobacteria, such as the model organisms Caulobacter crescentus, Paracoccus denitrificans, and Methylobacterium extorquens. In the noninduced state, expression from PQ5 is low enough to allow gene depletion analysis, as demonstrated with the essential gene phyP of Sphingomonas sp. strain Fr1. A set of PQ5-based plasmids has been constructed allowing fusions to affinity tags or fluorescent proteins.
Collapse
|
61
|
Workentine ML, Wang S, Ceri H, Turner RJ. Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms. BMC Microbiol 2013; 13:175. [PMID: 23890016 PMCID: PMC3734068 DOI: 10.1186/1471-2180-13-175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/24/2013] [Indexed: 11/25/2022] Open
Abstract
Background The emergence of colony morphology variants in structured environments is being recognized as important to both niche specialization and stress tolerance. Pseudomonas fluorescens demonstrates diversity in both its natural environment, the rhizosphere, and in laboratory grown biofilms. Sub-populations of these variants within a biofilm have been suggested as important contributors to antimicrobial stress tolerance given their altered susceptibility to various agents. As such it is of interest to determine how these variants might be distributed in the biofilm environment. Results Here we present an analysis of the spatial distribution of Pseudomonas fluorescens colony morphology variants in mixed-culture biofilms with the wildtype phenotype. These findings reveal that two variant colony morphotypes demonstrate a significant growth advantage over the wildtype morphotype in the biofilm environment. The two variant morphotypes out-grew the wildtype across the entire biofilm and this occurred within 24 h and was maintained through to 96 h. This competitive advantage was not observed in homogeneous broth culture. Conclusions The significant advantage that the variants demonstrate in biofilm colonization over the wildtype denotes the importance of this phenotype in structured environments.
Collapse
|
62
|
Chen H, Chou M, Wang X, Liu S, Zhang F, Wei G. Profiling of differentially expressed genes in roots of Robinia pseudoacacia during nodule development using suppressive subtractive hybridization. PLoS One 2013; 8:e63930. [PMID: 23776436 PMCID: PMC3679122 DOI: 10.1371/journal.pone.0063930] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/09/2013] [Indexed: 11/23/2022] Open
Abstract
Background Legume-rhizobium symbiosis is a complex process that is regulated in the host plant cell through gene expression network. Many nodulin genes that are upregulated during different stages of nodulation have been identified in leguminous herbs. However, no nodulin genes in woody legume trees, such as black locust (Robinia pseudoacacia), have yet been reported. Methodology/Principal findings To identify the nodulin genes involved in R. pseudoacacia-Mesorhizobium amorphae CCNWGS0123 symbiosis, a suppressive subtractive hybridization approach was applied to reveal profiling of differentially expressed genes and two subtracted cDNA libraries each containing 600 clones were constructed. Then, 114 unigenes were identified from forward SSH library by differential screening and the putative functions of these translational products were classified into 13 categories. With a particular interest in regulatory genes, twenty-one upregulated genes encoding potential regulatory proteins were selected based on the result of reverse transcription-polymerase chain reaction (RT-PCR) analysis. They included nine putative transcription genes, eight putative post-translational regulator genes and four membrane protein genes. The expression patterns of these genes were further analyzed by quantitative RT-PCR at different stages of nodule development. Conclusions The data presented here offer the first insights into the molecular foundation underlying R. pseudoacacia–M. amorphae symbiosis. A number of regulatory genes screened in the present study revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational and post-translational) that is likely essential to develop symbiosis. In addition, the possible roles of these genes in black locust nodulation are discussed.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Sisi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Feilong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
63
|
Maldonado-González MM, Prieto P, Ramos C, Mercado-Blanco J. From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots. Microb Biotechnol 2013; 6:275-87. [PMID: 23425069 PMCID: PMC3815922 DOI: 10.1111/1751-7915.12036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 11/30/2022] Open
Abstract
Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue.
Collapse
Affiliation(s)
- M Mercedes Maldonado-González
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC)Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Pilar Prieto
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC)Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de MálagaCampus de Teatinos s/n, E-29071, Málaga, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC)Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| |
Collapse
|
64
|
Poza-Carrion C, Suslow T, Lindow S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. PHYTOPATHOLOGY 2013; 103:341-51. [PMID: 23506362 DOI: 10.1094/phyto-09-12-0221-fi] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although Salmonella enterica apparently has comparatively low epiphytic fitness on plants, external factors that would influence its ability to survive on plants after contamination would be of significance in the epidemiology of human diseases caused by this human pathogen. Viable population sizes of S. enterica applied to plants preinoculated with Pseudomonas syringae or either of two Erwinia herbicola strains was ≥10-fold higher than that on control plants that were not precolonized by such indigenous bacteria when assessed 24 to 72 h after the imposition of desiccation stress. The protective effect of P. fluorescens, which exhibited antibiosis toward S. enterica in vitro, was only ≈50% that conferred by other bacterial strains. Although S. enterica could produce small cellular aggregates after incubation on wet leaves for several days, and the cells in such aggregates were less susceptible to death upon acute dehydration than solitary cells (as determined by propidium iodide staining), most Salmonella cells were found as isolated cells when it was applied to leaves previously colonized by other bacterial species. The proportion of solitary cells of S. enterica coincident with aggregates of cells of preexisting epiphytic species that subsequently were judged as nonviable by viability staining on dry leaves was as much as 10-fold less than those that had landed on uncolonized portions of the leaf. Thus, survival of immigrant cells of S. enterica on plants appears to be strongly context dependent, and the presence of common epiphytic bacteria on plants can protect such immigrants from at least one key stress (i.e., desiccation) encountered on leaf surfaces.
Collapse
Affiliation(s)
- Cesar Poza-Carrion
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
65
|
Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. PHYTOCHEMISTRY 2013; 87:65-77. [PMID: 23266268 DOI: 10.1016/j.phytochem.2012.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/08/2012] [Accepted: 11/15/2012] [Indexed: 05/21/2023]
Abstract
Azospirillum is a plant growth-promoting rhizobacterium (PGPR) able to enhance growth and yield of cereals such as rice, maize and wheat. The growth-promoting ability of some Azospirillum strains appears to be highly specific to certain plant species and cultivars. In order to ascertain the specificity of the associative symbiosis between rice and Azospirillum, the physiological response of two rice cultivars, Nipponbare and Cigalon, inoculated with two rice-associated Azospirillum was analyzed at two levels: plant growth response and plant secondary metabolic response. Each strain of Azospirillum (Azospirillum lipoferum 4B isolated from Cigalon and Azospirillum sp. B510 isolated from Nipponbare) preferentially increased growth of the cultivar from which it was isolated. This specific effect is not related to a defect in colonization of host cultivar as each strain colonizes effectively both rice cultivars, either at the rhizoplane (for 4B and B510) and inside the roots (for B510). The metabolic profiling approach showed that, in response to PGPR inoculation, profiles of rice secondary metabolites were modified, with phenolic compounds such as flavonoids and hydroxycinnamic derivatives being the main metabolites affected. Moreover, plant metabolic changes differed according to Azospirillum strain×cultivar combinations; indeed, 4B induced major secondary metabolic profile modifications only on Cigalon roots, while B510, probably due to its endophytic feature, induced metabolic variations on shoots and roots of both cultivars, triggering a systemic response. Plant secondary metabolite profiling thereby evidences the specific interaction between an Azospirillum strain and its original host cultivar.
Collapse
Affiliation(s)
- Amel Chamam
- CNRS, UMR 5557, Ecologie Microbienne, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
66
|
|
67
|
Arruebarrena Di Palma A, M. Pereyra C, Moreno Ramirez L, Xiqui Vázquez ML, Baca BE, Pereyra MA, Lamattina L, Creus CM. Denitrification-derived nitric oxide modulates biofilm formation inAzospirillum brasilense. FEMS Microbiol Lett 2012; 338:77-85. [DOI: 10.1111/1574-6968.12030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/01/2022] Open
Affiliation(s)
- Andrés Arruebarrena Di Palma
- Laboratorio de Bioquímica Vegetal y Microbiana; UIB Balcarce, FCA, Universidad Nacional de Mar del Plata-INTA; Balcarce; Argentina
| | - Cintia M. Pereyra
- Laboratorio de Bioquímica Vegetal y Microbiana; UIB Balcarce, FCA, Universidad Nacional de Mar del Plata-INTA; Balcarce; Argentina
| | | | | | - Beatriz E. Baca
- Laboratorio de la Interacción Planta-Microorganismo; ICUAP; Puebla; México
| | - María A. Pereyra
- Laboratorio de Bioquímica Vegetal y Microbiana; UIB Balcarce, FCA, Universidad Nacional de Mar del Plata-INTA; Balcarce; Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Mar del Plata; Mar del Plata; Argentina
| | - Cecilia M. Creus
- Laboratorio de Bioquímica Vegetal y Microbiana; UIB Balcarce, FCA, Universidad Nacional de Mar del Plata-INTA; Balcarce; Argentina
| |
Collapse
|
68
|
Drogue B, Thomas P, Balvay L, Prigent-Combaret C, Dorel C. Engineering adherent bacteria by creating a single synthetic curli operon. J Vis Exp 2012. [PMID: 23183588 DOI: 10.3791/4176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The method described here consists in redesigning E. coli adherence properties by assembling the minimum number of curli genes under the control of a strong and metal-overinducible promoter, and in visualizing and quantifying the resulting gain of bacterial adherence. This method applies appropriate engineering principles of abstraction and standardization of synthetic biology, and results in the BBa_K540000 Biobrick (Best new Biobrick device, engineered, iGEM 2011). The first step consists in the design of the synthetic operon devoted to curli overproduction in response to metal, and therefore in increasing the adherence abilities of the wild type strain. The original curli operon was modified in silico in order to optimize transcriptional and translational signals and escape the "natural" regulation of curli. This approach allowed to test with success our current understanding of curli production. Moreover, simplifying the curli regulation by switching the endogenous complex promoter (more than 10 transcriptional regulators identified) to a simple metal-regulated promoter makes adherence much easier to control. The second step includes qualitative and quantitative assessment of adherence abilities by implementation of simple methods. These methods are applicable to a large range of adherent bacteria regardless of biological structures involved in biofilm formation. Adherence test in 24-well polystyrene plates provides a quick preliminary visualization of the bacterial biofilm after crystal violet staining. This qualitative test can be sharpened by the quantification of the percentage of adherence. Such a method is very simple but more accurate than only crystal violet staining as described previously with both a good repeatability and reproducibility. Visualization of GFP-tagged bacteria on glass slides by fluorescence or laser confocal microscopy allows to strengthen the results obtained with the 24-well plate test by direct observation of the phenomenon.
Collapse
Affiliation(s)
- Benoît Drogue
- UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1, Université de Lyon
| | | | | | | | | |
Collapse
|
69
|
Prigent-Combaret C, Zghidi-Abouzid O, Effantin G, Lejeune P, Reverchon S, Nasser W. The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii. Mol Microbiol 2012; 86:172-86. [PMID: 22925161 DOI: 10.1111/j.1365-2958.2012.08182.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle.
Collapse
|
70
|
de Keijzer J, van den Broek LAM, Ketelaar T, van Lammeren AAM. Histological examination of horse chestnut infection by Pseudomonas syringae pv. aesculi and non-destructive heat treatment to stop disease progression. PLoS One 2012; 7:e39604. [PMID: 22808044 PMCID: PMC3392261 DOI: 10.1371/journal.pone.0039604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Since its emergence in Northwest Europe as a pathogen that infects trunks and branches of Aesculus spp. (the horse chestnuts) approximately one decade ago, Pseudomonas syringae pv. aesculi has rapidly established itself as major threat to these trees. Infected trees exhibit extensive necrosis of phloem and cambium, which can ultimately lead to dieback. The events after host entry leading to extensive necrosis are not well documented. In this work, the histopathology of this interaction is investigated and heat-treatment is explored as method to eradicate bacteria associated with established infections. The early wound-repair responses of A. hippocastanum, both in absence and presence of P. s. pv. aesculi, included cell wall lignification by a distinct layer of phloem and cortex parenchyma cells. The same cells also deposited suberin lamellae later on, suggesting this layer functions in compartmentalizing healthy from disrupted tissues. However, monitoring bacterial ingress, its construction appeared inadequate to constrain pathogen spread. Microscopic evaluation of bacterial dispersal in situ using immunolabelling and GFP-tagging of P. s. pv. aesculi, revealed two discriminative types of bacterial colonization. The forefront of lesions was found to contain densely packed bacteria, while necrotic areas housed bacterial aggregates with scattered individuals embedded in an extracellular matrix of bacterial origin containing alginate. The endophytic localization and ability of P. s. pv aesculi to create a protective matrix render it poorly accessible for control agents. To circumvent this, a method based on selective bacterial lethality at 39 °C was conceived and successfully tested on A. hippocastanum saplings, providing proof of concept for controlling this disease by heat-treatment. This may be applicable for curing other tree cankers, caused by related phytopathogens.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - André A. M. van Lammeren
- Laboratory of Cell Biology, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
71
|
Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM. Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 2012; 78:3214-20. [PMID: 22389379 PMCID: PMC3346461 DOI: 10.1128/aem.07968-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/23/2012] [Indexed: 01/22/2023] Open
Abstract
This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz(+)) and 2,4-diacetylphloroglucinol (Phl(+)) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization frequencies of Phz(+) and Phl(+) Pseudomonas spp. were determined in winter and spring wheat collected during the growing seasons from 2008 to 2009 from selected commercial dryland and irrigated fields in central Washington State. Only Phz(+) bacteria were detected on dryland winter wheat, with populations ranging from 4.8 to 6.3 log CFU g(-1) of root and rhizosphere colonization frequencies of 67 to 100%. The ranges of population densities of Phl(+) and Phz(+) Pseudomonas spp. recovered from wheat grown under irrigation were similar, but 58 to 100% of root systems were colonized by Phl(+) bacteria whereas only 8 to 50% of plants harbored Phz(+) bacteria. In addition, Phz(+) Pseudomonas spp. were abundant in the rhizosphere of native plant species growing in nonirrigated areas adjacent to the sampled dryland wheat fields. This is the first report that documents the impact of irrigation on indigenous populations of two closely related groups of antibiotic-producing pseudomonads that coinhabit the rhizosphere of an economically important cereal crop. These results demonstrate how crop management practices can influence indigenous populations of antibiotic-producing pseudomonads with the capacity to suppress soilborne diseases of wheat.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA.
| | | | | | | | | |
Collapse
|
72
|
Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J Control Release 2012; 161:109-15. [PMID: 22516094 DOI: 10.1016/j.jconrel.2012.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/19/2012] [Accepted: 03/31/2012] [Indexed: 11/24/2022]
Abstract
Microencapsulation and controlled release of the biocontrol agent Pantoea agglomerans strain E325 (E325), an antagonist to the bacterial plant pathogen Erwinia amylovora that causes fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 μm in diameter, were fabricated to encapsulate E325 within the core, along with nutrients, to preserve viability and promote proliferation. Controlled release of E325 was achieved by separately adjusting alginate concentrations in the shell and core solutions, and by modifying the AMC size. Viability of E325 was monitored via fluorescent staining, revealing either lack of or minimal stress during or after encapsulation. Proliferation of E325 within AMCs, followed by their subsequent release, and colonization activities within confines of apple flowers were studied under different encapsulation conditions using rfp-labeled E325 to obtain highly promising results. This study provided a 'proof of concept' of the successful use of a microencapsulated biocontrol agent, E325, against E. amylovora, and could serve as a model for further studies on the development of effective plant disease management strategies.
Collapse
|
73
|
Wenke K, Weise T, Warnke R, Valverde C, Wanke D, Kai M, Piechulla B. Bacterial Volatiles Mediating Information Between Bacteria and Plants. BIOCOMMUNICATION OF PLANTS 2012. [DOI: 10.1007/978-3-642-23524-5_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
74
|
Schwachtje J, Karojet S, Thormählen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Köhl K, van Dongen JT. A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS One 2011; 6:e29382. [PMID: 22216267 PMCID: PMC3247267 DOI: 10.1371/journal.pone.0029382] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022] Open
Abstract
Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion.
Collapse
Affiliation(s)
- Jens Schwachtje
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail: (JS); (JTvD)
| | - Silke Karojet
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ina Thormählen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Carolin Bernholz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sabine Kunz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stephan Brouwer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Melanie Schwochow
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joost T. van Dongen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail: (JS); (JTvD)
| |
Collapse
|
75
|
Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 2011; 7:e1002430. [PMID: 22216014 PMCID: PMC3245306 DOI: 10.1371/journal.pgen.1002430] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022] Open
Abstract
Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land. Genome sequencing and analysis of plant-associated beneficial soil bacteria Azospirillum spp. reveals that these organisms transitioned from aquatic to terrestrial environments significantly later than the suggested major Precambrian divergence of aquatic and terrestrial bacteria. Separation of Azospirillum from their close aquatic relatives coincided with the emergence of vascular plants on land. Nearly half of the Azospirillum genome has been acquired horizontally, from distantly related terrestrial bacteria. The majority of horizontally acquired genes encode functions that are critical for adaptation to the rhizosphere and interaction with host plants.
Collapse
|
76
|
Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. PLANT PHYSIOLOGY 2011; 157:815-30. [PMID: 21813654 PMCID: PMC3192561 DOI: 10.1104/pp.111.182931] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/01/2011] [Indexed: 05/18/2023]
Abstract
Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity. A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci. This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins. The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol. The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P. syringae. In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity. It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance. The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth. The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Thomas Roitsch
- Institute for Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (D.K.G., H.P., E.v.d.G., U.S., T.R.); Department of Pharmaceutical Biology, University of Würzburg, 97082 Wuerzburg, Germany (M.N., U.R.A., N.P., T.E.); Department of Biology, University of Düsseldorf, 40225 Duesseldorf, Germany (T.G., J.Z.); Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, 78371 Olomouc, Czech Republic (O.N., M.S.)
| |
Collapse
|
77
|
Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. MICROBIAL ECOLOGY 2011; 62:435-45. [PMID: 21347721 PMCID: PMC3155037 DOI: 10.1007/s00248-011-9827-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/08/2011] [Indexed: 05/05/2023]
Abstract
The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnotobiotic study system using in vitro propagated olive plants, differential fluorescent-protein tagging of bacteria, and confocal laser scanning microscopy analysis have been successfully used to examine olive roots-Pseudomonas spp. interactions at the single-cell level. In vivo simultaneous visualization of PICF7 and PICP2 cells on/in root tissues enabled to discard competition between the two bacterial strains during root colonization. Results demonstrated that both BCAs are able to endophytically colonized olive root tissues. Moreover, results suggest a pivotal role of root hairs in root colonization by both biocontrol Pseudomonas spp. However, colonization of root hairs appeared to be a highly specific event, and only a very low number of root hairs were effectively colonized by introduced bacteria. Strains PICF7 and PICP2 can simultaneously colonize the same root hair, demonstrating that early colonization of a given root hair by one strain did not hinder subsequent attachment and penetration by the other. Since many environmental factors can affect the number, anatomy, development, and physiology of root hairs, colonization competence and biocontrol effectiveness of BCAs may be greatly influenced by root hair's fitness. Finally, the in vitro study system here reported has shown to be a suitable tool to investigate colonization processes of woody plant roots by microorganisms with biocontrol potential.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Elisabetta Schilirò
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - María Mercedes Maldonado-González
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Raquel Valderrama
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | | | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| |
Collapse
|
78
|
Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier MA, Rohr R, Comte G, Moënne-Loccoz Y, Prigent-Combaret C. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology (Reading) 2011; 157:1694-1705. [DOI: 10.1099/mic.0.043943-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonads producing the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) can control soil-borne phytopathogens, but their impact on other plant-beneficial bacteria remains poorly documented. Here, the effects of synthetic Phl and Phl+
Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators were investigated. Most A. brasilense strains were moderately sensitive to Phl. In vitro, Phl induced accumulation of carotenoids and poly-β-hydroxybutyrate-like granules, cytoplasmic membrane damage and growth inhibition in A. brasilense Cd. Experiments with P. fluorescens F113 and a Phl− mutant indicated that Phl production ability contributed to in vitro growth inhibition of A. brasilense Cd and Sp245. Under gnotobiotic conditions, each of the three strains, P. fluorescens F113 and A. brasilense Cd and Sp245, stimulated wheat growth. Co-inoculation of A. brasilense Sp245 and Pseudomonas resulted in the same level of phytostimulation as in single inoculations, whereas it abolished phytostimulation when A. brasilense Cd was used. Pseudomonas Phl production ability resulted in lower Azospirillum cell numbers per root system (based on colony counts) and restricted microscale root colonization of neighbouring Azospirillum cells (based on confocal microscopy), regardless of the A. brasilense strain used. Therefore, this work establishes that Phl+ pseudomonads have the potential to interfere with A. brasilense phytostimulators on roots and with their plant growth promotion capacity.
Collapse
Affiliation(s)
- Olivier Couillerot
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Emeline Combes-Meynet
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Joël F. Pothier
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Floriant Bellvert
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Elita Challita
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Marie-Andrée Poirier
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - René Rohr
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Gilles Comte
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Yvan Moënne-Loccoz
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Claire Prigent-Combaret
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| |
Collapse
|
79
|
Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One 2011; 6:e16791. [PMID: 21347422 PMCID: PMC3036657 DOI: 10.1371/journal.pone.0016791] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 01/12/2011] [Indexed: 11/19/2022] Open
Abstract
Microbial consortia constitute a majority of the earth's biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it self-organizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles.
Collapse
|
80
|
Godfrey SAC, Mansfield JW, Corry DS, Lovell HC, Jackson RW, Arnold DL. Confocal imaging of Pseudomonas syringae pv. phaseolicola colony development in bean reveals reduced multiplication of strains containing the genomic island PPHGI-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1294-1302. [PMID: 20672876 DOI: 10.1094/mpmi-05-10-0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Pseudomonas syringae pv. phaseolicola is the seed borne causative agent of halo blight in the common bean Phaseolus vulgaris. Pseudomonas syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene hopAR1 (located on a 106-kb genomic island, PPHGI-1, and earlier named avrPphB), which matches resistance gene R3 in P. vulgaris cultivar Tendergreen (TG) and causes a rapid hypersensitive reaction (HR). Here, we have fluorescently labeled selected Pseudomonas syringae pv. phaseolicola 1302A and 1448A strains (with and without PPHGI-1) to enable confocal imaging of in-planta colony formation within the apoplast of resistant (TG) and susceptible (Canadian Wonder [CW]) P. vulgaris leaves. Temporal quantification of fluorescent Pseudomonas syringae pv. phaseolicola colony development correlated with in-planta bacterial multiplication (measured as CFU/ml) and is, therefore, an effective means of monitoring Pseudomonas syringae pv. phaseolicola endophytic colonization and survival in P. vulgaris. We present advances in the application of confocal microscopy for in-planta visualization of Pseudomonas syringae pv. phaseolicola colony development in the leaf mesophyll to show how the HR defense response greatly affects colony morphology and bacterial survival. Unexpectedly, the presence of PPHGI-1 was found to cause a reduction of colony development in susceptible P. vulgaris CW leaf tissue. We discuss the evolutionary consequences that the acquisition and retention of PPHGI-1 brings to Pseudomonas syringae pv. phaseolicola in planta.
Collapse
Affiliation(s)
- S A C Godfrey
- Centre for Research in Plant Science, The University of the West of England, Bristol, UK
| | | | | | | | | | | |
Collapse
|
81
|
Liao CH, Cooke PH, Niemira BA. Localization, growth, and inactivation of Salmonella Saintpaul on jalapeño peppers. J Food Sci 2010; 75:M377-82. [PMID: 20722940 DOI: 10.1111/j.1750-3841.2010.01667.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Consumption of Salmonella-contaminated jalapeño peppers has been implicated in one of the largest foodborne illness outbreaks in the summer of 2008. The objective of this study was to investigate representative groups of native microflora and the distribution, growth, and inactivation of experimentally-inoculated Salmonella Saintpaul on jalapeño peppers. Two genetically modified strains of Salm. Saintpaul producing either green- or red-fluorescent protein were constructed and used in the study. Microbiological analyses showed that jalapeño peppers contained an average of 5.6 log units of total aerobic count and 3.5, 1.8, and 1.9 log units, respectively, of enterobacteriaceae, lactic acid bacteria, and yeast/mold per gram of tissue. Strains typical of Pseudomonas accounted for 8.3% of total aerobic count, and 0.2% of which exhibited pectolytic activity. On inoculated peppers, a vast majority (>90%) of Salm. Saintpaul was recovered from stem/calyx and only a small proportion recovered from fleshy pods. Growth of Salm. Saintpaul on peppers was indicated by an increase in the population of 3 log units after incubation of samples at 20 degrees C for 48 h. Fluorescent Salm. Saintpaul aggregates could be readily detected on stem/calyx using stereofluorescence imaging microscopy and scanning electron microscopy. Data presented showed that Salm. Saintpaul could survive for at least 8 wk on peppers stored at 4 degrees C. Immersion of inoculated peppers in 200 ppm of sodium hypochlorite, acidified sodium chlorite, or peroxy acetic acid for 10 min could reduce the number of Salm. Saintpaul on stem/calyx by 1.5 to 1.7 and that on flesh by 2.1 to 2.4 log units. Practical Application: Consumption of Salmonella-contaminated jalapeño peppers has been implicated in foodborne illness outbreaks. The vast majority of Salmonella Saintpaul recovered from inoculated jalapeño peppers (>90%) was from stem/calyx. Salmonella increased by 3 log units during storage at 68 degrees F (20 degrees C) for 48 h. Salmonella could survive for at least 8 wk on peppers stored at 4 degrees C. Immersion of inoculated peppers in 200 ppm of sodium hypochlorite, acidified sodium chlorite, or peroxyacetic acid for 10 min reduced Salmonella on stem/calyx by 1.5 to 1.7 log units, compared with reductions of 2.1 to 2.4 log units on flesh. These results highlight the need to consider the stem/calyx as the most likely area for contamination of jalapeño peppers, and to process this commodity accordingly to minimize exposure and cross-contaminations.
Collapse
Affiliation(s)
- C-H Liao
- Eastern Regional Research Center, U.S. Dept. of Agriculture, Wyndmoor, PA 19038, USA
| | | | | |
Collapse
|
82
|
Bayesian network expansion identifies new ROS and biofilm regulators. PLoS One 2010; 5:e9513. [PMID: 20209085 PMCID: PMC2831072 DOI: 10.1371/journal.pone.0009513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/07/2010] [Indexed: 11/19/2022] Open
Abstract
Signaling and regulatory pathways that guide gene expression have only been partially defined for most organisms. However, given the increasing number of microarray measurements, it may be possible to reconstruct such pathways and uncover missing connections directly from experimental data. Using a compendium of microarray gene expression data obtained from Escherichia coli, we constructed a series of Bayesian network models for the reactive oxygen species (ROS) pathway as defined by EcoCyc. A consensus Bayesian network model was generated using those networks sharing the top recovered score. This microarray-based network only partially agreed with the known ROS pathway curated from the literature and databases. A top network was then expanded to predict genes that could enhance the Bayesian network model using an algorithm we termed ‘BN+1’. This expansion procedure predicted many stress-related genes (e.g., dusB and uspE), and their possible interactions with other ROS pathway genes. A term enrichment method discovered that biofilm-associated microarray data usually contained high expression levels of both uspE and gadX. The predicted involvement of gene uspE in the ROS pathway and interactions between uspE and gadX were confirmed experimentally using E. coli reporter strains. Genes gadX and uspE showed a feedback relationship in regulating each other's expression. Both genes were verified to regulate biofilm formation through gene knockout experiments. These data suggest that the BN+1 expansion method can faithfully uncover hidden or unknown genes for a selected pathway with significant biological roles. The presently reported BN+1 expansion method is a generalized approach applicable to the characterization and expansion of other biological pathways and living systems.
Collapse
|
83
|
Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML, Kennedy IR. Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action. PLANT GROWTH AND HEALTH PROMOTING BACTERIA 2010. [DOI: 10.1007/978-3-642-13612-2_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
84
|
Barret M, Frey-Klett P, Guillerm-Erckelboudt AY, Boutin M, Guernec G, Sarniguet A. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1611-1623. [PMID: 19888826 DOI: 10.1094/mpmi-22-12-1611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.
Collapse
Affiliation(s)
- Matthieu Barret
- Institut National de la Recherche Agronomique, Agrocampus Rennes-Université Rennes 1, UMR 1099 Biologie des Organismes et des Populations appliquée à la Protection des Plantes, Le Rheu, France
| | | | | | | | | | | |
Collapse
|
85
|
Affiliation(s)
- Ben Lugtenberg
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| | - Faina Kamilova
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| |
Collapse
|
86
|
Prieto P, Navarro‐Raya C, Valverde‐Corredor A, Amyotte SG, Dobinson KF, Mercado‐Blanco J. Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb Biotechnol 2009; 2:499-511. [PMID: 21255281 PMCID: PMC3815910 DOI: 10.1111/j.1751-7915.2009.00105.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/05/2009] [Indexed: 11/29/2022] Open
Abstract
The colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V. dahliae in olive tissues. Olive plants were bacterized with PICF7 and then transferred to V. dahliae-infested soil. Monitoring olive colonization events by V. dahliae and its interaction with PICF7 was conducted using a non-gnotobiotic system, confocal laser scanner microscopy and tissue vibratoming sections. A yellow fluorescently tagged V. dahliae derivative (VDAT-36I) was obtained by Agrobacterium tumefaciens-mediated transformation. Isolate VDAT-36I quickly colonized olive root surface, successfully invaded root cortex and vascular tissues via macro- and micro-breakages, and progressed to the aerial parts of the plant through xylem vessel cells. Strain PICF7 used root hairs as preferred penetration site, and once established on/in root tissues, hindered pathogen colonization. For the first time using this approach, the entire colonization process of a woody plant by V. dahliae is reported. Early and localized root surface and root endophytic colonization by P. fluorescens PICF7 is needed to impair full progress of verticillium wilt epidemics in olive.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080 Córdoba, Spain
| | - Carmen Navarro‐Raya
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080 Córdoba, Spain
| | - Antonio Valverde‐Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080 Córdoba, Spain
| | - Stefan G. Amyotte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7 Canada
| | - Katherine F. Dobinson
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7 Canada
- Southern Crop Protection and Food Research Centre, AAFC, London, ON, N5V 4T3 Canada
| | - Jesús Mercado‐Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080 Córdoba, Spain
| |
Collapse
|
87
|
Baum MM, Kainović A, O'Keeffe T, Pandita R, McDonald K, Wu S, Webster P. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil. BMC Microbiol 2009; 9:103. [PMID: 19460161 PMCID: PMC2697165 DOI: 10.1186/1471-2180-9-103] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 05/21/2009] [Indexed: 02/03/2023] Open
Abstract
Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology in vivo. Results A Pseudomonas spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight) calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets. Conclusion Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat.
Collapse
Affiliation(s)
- Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 2275 E, Foothill Blvd, Pasadena, CA 91107, USA.
| | | | | | | | | | | | | |
Collapse
|
88
|
Rodríguez-Moreno L, Jiménez AJ, Ramos C. Endopathogenic lifestyle of Pseudomonas savastanoi pv. savastanoi in olive knots. Microb Biotechnol 2009; 2:476-88. [PMID: 21255279 PMCID: PMC3815908 DOI: 10.1111/j.1751-7915.2009.00101.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The endophytic phase of Pseudomonas savastanoi pv. savastanoi in olive stems and the structural and ultrastructural histogenesis of olive knots have been studied. Construction of a stable plasmid vector expressing the green fluorescent protein, in combination with the use of in vitro olive plants, allowed real‐time monitoring of P. savastanoi pv. savastanoi infection. The infection process was also examined by bright field and epifluorescence microscopy as well as by scanning and transmission electron microscopy. Hypertrophy of the stem tissue was concomitant with the formation of bacterial aggregates, microcolonies and multilayer biofilms, over the cell surfaces and the interior of plasmolysed cells facing the air‐tissue interface of internal opened fissures, and was followed by invasion of the outer layers of the hypertrophied tissue. Pathogenic invasion of the internal lumen of newly formed xylem vessels, which were connected with the stem vascular system, was also observed in late stages of infection. Ultrastructural analysis of knot sections showed the release of outer membrane vesicles from the pathogen surface, a phenomenon not described before for bacterial phytopathogens during host infection. This is the first real‐time monitoring of P. savastanoi disease development and the first illustrated description of the ultrastructure of P. savastanoi‐induced knots.
Collapse
Affiliation(s)
- Luis Rodríguez-Moreno
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | | | | |
Collapse
|
89
|
Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol 2009; 75:1723-33. [PMID: 19168650 DOI: 10.1128/aem.02171-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.
Collapse
|
90
|
Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JPW, Sprent JI, James EK. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 2008; 11:762-78. [PMID: 19040456 DOI: 10.1111/j.1462-2920.2008.01799.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria isolated from Mimosa nodules in Taiwan, Papua New Guinea, Mexico and Puerto Rico were identified as belonging to either the alpha- or beta-proteobacteria. The beta-proteobacterial Burkholderia and Cupriavidus strains formed effective symbioses with the common invasive species Mimosa diplotricha, M. pigra and M. pudica, but the alpha-proteobacterial Rhizobium etli and R. tropici strains produced a range of symbiotic phenotypes from no nodulation through ineffective to effective nodulation, depending on Mimosa species. Competition studies were performed between three of the alpha-proteobacteria (R. etli TJ167, R. tropici NGR181 and UPRM8021) and two of the beta-rhizobial symbionts (Burkholderia mimosarum PAS44 and Cupriavidus taiwanensis LMG19424) for nodulation of these invasive Mimosa species. Under flooded conditions, B. mimosarum PAS44 out-competed LMG19424 and all three alpha-proteobacteria to the point of exclusion. This advantage was not explained by initial inoculum levels, rates of bacterial growth, rhizobia-rhizobia growth inhibition or individual nodulation rate. However, the competitive domination of PAS44 over LMG19424 was reduced in the presence of nitrate for all three plant hosts. The largest significant effect was for M. pudica, in which LMG19424 formed 57% of the nodules in the presence of 0.5 mM potassium nitrate. In this host, ammonium also had a similar, but lesser, effect. Comparable results were also found using an N-containing soil mixture, and environmental N levels are therefore suggested as a factor in the competitive success of the bacterial symbiont in vivo.
Collapse
|
91
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
92
|
Klayman BJ, Klapper I, Stewart PS, Camper AK. Measurements of accumulation and displacement at the single cell cluster level in Pseudomonas aeruginosa biofilms. Environ Microbiol 2008; 10:2344-54. [PMID: 18557771 DOI: 10.1111/j.1462-2920.2008.01660.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative descriptions of biofilm growth and dynamics at the individual cell level are largely missing from the literature. To fill this gap, research was done to describe growth, accumulation and displacement patterns in developing Pseudomonas aeruginosa biofilms. A parent strain of PAO1 was labelled with either a cyan or yellow fluorescent protein. These were then grown in a flow cell biofilm together so that pockets of dividing cells could be identified and their accumulation and displacement tracked. This analysis revealed a pattern of exponential accumulation for all clusters followed by a stationary accumulation phase. A background 'carpet' layer of cells uniformly colonizing the surface exhibited zero net accumulation of bio-volume. The individual clusters were found to have a mean accumulation rate of 0.34 h(-1) with a range of 0.28-0.41 h(-1). Cluster accumulation rates were negatively correlated with cluster size; larger clusters accumulated volume at a slower rate (P < 0.001). Pockets of cells on the inside of clusters initially accumulated at a comparable rate to the cluster within which they resided, but later invariably exhibited zero to slightly negative accumulation despite continued exponential (positive) accumulation of the cluster. Expanding clusters were able to displace neighbouring cells from the surface, and larger clusters displaced smaller clusters. This work provides a more detailed quantitative experimental observation of biofilm behaviour than has been described previously.
Collapse
Affiliation(s)
- Benjamin J Klayman
- Center for Biofilm Engineering, 366 EPS Building, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
93
|
Abstract
Among the many bacteria present on and around the root, Pseudomonas bacteria are (among) the best root colonizers and therefore very suitable to apply for beneficial purposes. In this chapter, we discuss the possibilities to use such bacteria for the following purposes: fertilization of the plant, stimulation of plant growth and yield, reduction of plant stress, and reduction of plant diseases. This research was supported by numerous grants, especially from the Dutch Organization for scientific research (NWO), EET, the European Commission and INTAS.
Collapse
|
94
|
van Bruggen AHC, Semenov AM, Zelenev VV, Semenov AV, Raaijmakers JM, Sayler RJ, de Vos O. Wave-like distribution patterns of gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils. MICROBIAL ECOLOGY 2008; 55:466-475. [PMID: 17934689 DOI: 10.1007/s00248-007-9292-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/06/2007] [Accepted: 06/18/2007] [Indexed: 05/25/2023]
Abstract
Culturable rhizosphere bacterial communities had been shown to exhibit wave-like distribution patterns along wheat roots. In the current work we show, for the first time, significant wave-like oscillations of an individual bacterial strain, the biocontrol agent Pseudomonas fluorescens 32 marked with gfp, along 3-week-old wheat roots in a conventionally managed and an organically managed soil. Significant wave-like fluctuations were observed for colony forming units (CFUs) on selective media and direct fluorescent counts under the microscope. Densities of fluorescent cells and of CFUs fluctuated in a similar manner along wheat roots in the conventional soil. The frequencies of the first, second, and third harmonics were similar for direct cell counts and CFUs. Survival of P. fluorescens 32-gfp introduced into organically managed soil was lower than that of the same strain added to conventionally managed soil. Thus, when root tips reached a depth of 10-35 cm below soil level, the majority of the introduced cells may have died, so that no cells or CFU"s were detected in this region at the time of sampling. As a result, significant waves in CFUs or direct counts along roots were not found in organically managed soil, except when a sufficiently long series with detectable CFUs were obtained. In this last case the wave-like fluctuation in CFUs was damped toward the root tip. In conclusion, when cells of a single bacterial strain randomly mixed in soil survived until a root tip passed, growth and death cycles after passage of the root tip resulted in oscillating patterns of population densities of this strain along 3-week-old wheat roots.
Collapse
Affiliation(s)
- Ariena H C van Bruggen
- Department of Plant Sciences, Biological Farming Systems Group, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
95
|
Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 2007; 74:1339-49. [PMID: 18165366 DOI: 10.1128/aem.02126-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.
Collapse
|
96
|
Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A 2007; 104:17300-4. [PMID: 17959781 DOI: 10.1073/pnas.0704256104] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial consortia form when multiple species colocalize and communally generate a function that none is capable of alone. Consortia abound in nature, and their cooperative metabolic activities influence everything from biodiversity in the global food chain to human weight gain. Here, we present an engineered consortium in which the microbial members communicate with each other and exhibit a "consensus" gene expression response. Two colocalized populations of Escherichia coli converse bidirectionally by exchanging acyl-homoserine lactone signals. The consortium generates the gene-expression response if and only if both populations are present at sufficient cell densities. Because neither population can respond without the other's signal, this consensus function can be considered a logical AND gate in which the inputs are cell populations. The microbial consensus consortium operates in diverse growth modes, including in a biofilm, where it sustains its response for several days.
Collapse
|
97
|
Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. MICROBIOLOGY (READING, ENGLAND) 2007; 153:3608-3622. [PMID: 17906157 DOI: 10.1099/mic.0.2007/009381-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Azospirillum strains have been used as plant-growth-promoting rhizobacteria (PGPR) of cereal crops, but their adaptation to the root remains poorly understood. Here, we used a global approach based on differential fluorescence induction (DFI) promoter trapping to identify genes of the wheat isolate Azospirillum brasilense Sp245 that are induced in the presence of spring wheat seed extracts. Fluorescence-based flow cytometry sorting of Sp245 cells was validated using PlacZ, PsbpA and PnifH promoters and egfp. A random promoter library was constructed by cloning 1-3 kb Sp245 fragments upstream of a promoterless version of egfp in the promoter-trap plasmid pOT1e (genome coverage estimated at threefold). Exposure to spring wheat seed extracts obtained using a methanol solution led to the detection of 300 induced DFI clones, and upregulation by seed extracts was confirmed in vitro for 46 clones. Sequencing of 21 clones enabled identification of seven promoter regions. Five of them displayed upregulation once inoculated onto spring wheat seedlings. Their downstream sequence was similar to (i) a predicted transcriptional regulator, (ii) a serine/threonine protein kinase, (iii) two conserved hypothetical proteins, or (iv) the copper-containing dissimilatory nitrite reductase NirK. Two of them were also upregulated when inoculated on winter wheat and pea but not on maize, whereas the three others (including PnirK) were upregulated on the three hosts. The amounts of nitrate and/or nitrite present in spring wheat seed extracts were sufficient for PnirK upregulation. Overall, DFI promoter trapping was useful to reveal Azospirillum genes involved in the interaction with the plant.
Collapse
Affiliation(s)
- Joël F Pothier
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Florence Wisniewski-Dyé
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Michèle Weiss-Gayet
- CNRS, UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Yvan Moënne-Loccoz
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Claire Prigent-Combaret
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| |
Collapse
|
98
|
Martino E, Murat C, Vallino M, Bena A, Perotto S, Spanu P. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Curr Genet 2007; 52:65-75. [PMID: 17589849 DOI: 10.1007/s00294-007-0139-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 01/22/2023]
Abstract
Ericoid endomycorrhizal fungi form intracellular associations with the epidermal root cells of plants belonging to Ericales. In natural environments, these fungi increase the ability of their host plants to colonise soils polluted with toxic metals, although the underlying mechanisms are not clearly understood. Genetic transformation is a powerful tool to study the function of specific genes involved in the interaction of symbiotic fungi with the host plants and with the environment. Here, we investigated the possibility to genetically transform an ericoid endomycorrhizal strain. A metal tolerant mycorrhizal Oidiodendron maius strain isolated from a contaminated area was chosen to develop the transformation system. Two different protocols were used: protoplasts and Agrobacterium-mediated transformation. Stable transformants were obtained with both techniques. They remained competent for mycorrhizal formation and GFP-transformed fungi were visualised in planta. This is the first report of stable transformation of an ericoid endomycorrhizal fungus. The protocol set up could represent a good starting point for the identification of genes important in the ericoid mycorrhiza formation and in the understanding of how this symbiosis is established and functions. The success in the genetic transformation of this strain will allow us to better define its potential use in bioremediation strategies.
Collapse
Affiliation(s)
- Elena Martino
- Dipartimento di Biologia Vegetale dell'Università di Torino, Centre of Excellence for Plant and Microbial Biosensing (CEBIOVEM) and Istituto per la Protezione delle Piante del CNR, Sezione di Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
99
|
Bowen B, Woodbury N. Single-molecule Fluorescence Lifetime and Anisotropy Measurements of the Red Fluorescent Protein, DsRed, in Solution ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770362sflaam2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
100
|
Wang K, Kang L, Anand A, Lazarovits G, Mysore KS. Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. THE NEW PHYTOLOGIST 2007; 174:212-223. [PMID: 17335510 DOI: 10.1111/j.1469-8137.2007.01999.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
* Green fluorescent protein (GFP) labeling of bacteria has been used to study their infection of and localization in plants, but strong autofluorescence from leaves and the relatively weak green fluorescence of GFP-labeled bacteria restrict its broader application to investigations of plant-bacterial interactions. * A stable and broad-host-range plasmid vector (pDSK-GFPuv) that strongly expresses GFPuv protein was constructed not only for in vivo monitoring of bacterial infection, localization, activity, and movement at the cellular level under fluorescence microscopy, but also for monitoring bacterial disease development at the whole-plant level under long-wavelength ultraviolet (UV) light. * The presence of pDSK-GFPuv did not have significant impact on the in vitro or in planta growth and virulence of phytobacteria. A good correlation between bacterial cell number and fluorescence intensity was observed, which allowed us to rapidly estimate the bacterial population in plant leaf tissue. We demonstrated that GFPuv-expressing bacteria can be used to screen plants that are compromised for nonhost disease resistance and Agrobacterium attachment. * The use of GFPuv-labeled bacteria has a wide range of applications in host-bacterial interaction studies and bacterial ecology-related research.
Collapse
Affiliation(s)
- Keri Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Li Kang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - George Lazarovits
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|