51
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
52
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
53
|
Singh S, Singh UB, Malviya D, Paul S, Sahu PK, Trivedi M, Paul D, Saxena AK. Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against Rhizoctonia solani Causing Banded Leaf and Sheath Blight in Maize ( Zea mays L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1396. [PMID: 32098185 PMCID: PMC7068308 DOI: 10.3390/ijerph17041396] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Plant growth promoting rhizobacteria Pseudomonas aeruginosa strain MF-30 isolated from maize rhizosphere was characterized for several plant growth stimulating attributes. The strain MF-30 was also evaluated for antifungal properties against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.) under in vitro conditions and was found to have higher mycelial growth suppression in the culture suspension (67.41%) followed by volatile organic compounds (62.66%) and crude extract (51.20%) in a dual plate assay. The endophytic and epiphytic colonization ability was tested using Green Fluorescent Protein (GFP)-tagging. Visualization through confocal scanning laser microscope clearly indicated that strain MF-30 colonizes the root and foliar parts of the plants. Further, the effects of seed bio-priming with P. aeruginosa MF-30 was evaluated in the induction and bioaccumulation of defense-related biomolecules, enzymes, natural antioxidants, and other changes in maize under pot trial. This not only provided protection from R. solani but also ensured growth promotion under pathogenic stress conditions in maize. The maximum concentration of hydrogen peroxide (H2O2) was reported in the root and shoot of the plants treated with R. solani alone (8.47 and 17.50 mmol mg-1 protein, respectively) compared to bioagent, P. aeruginosa MF-30 bio-primed plants (3.49 and 7.50 mmol mg-1 protein, respectively). Effects on total soluble sugar content, total protein, and total proline were also found to enhanced significantly due to inoculation of P. aeruginosa MF-30. The activities of anti-oxidative defense enzymes phenylalanine ammonia lyase (PAL), ascorbate peroxidase, peroxidase, superoxide dismutase, and catalase increased significantly in the plants bio-primed with P. aeruginosa MF-30 and subsequent foliar spray of culture suspension of MF-30 compared to pathogen alone inoculated plants. qRT-PCR analysis revealed that seed bio-priming and foliar application of P. aeruginosa MF-30 significantly increased the expression of PR-1 and PR-10 genes with the simultaneous decrease in the disease severity and lesion length in the maize plants under pathogenic stress conditions. A significant enhancement of shoot and root biomass was recorded in MF-30 bio-primed plants as compared to untreated control (p < 0.05). Significant increase in plant growth and antioxidant content, as well as decreased disease severity in the P. aeruginosa MF-30 bio-primed plants, suggested the possibility of an eco-friendly and economical means of achieving antioxidants-rich, healthier maize plants.
Collapse
Affiliation(s)
- Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 227105, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Pramod Kumar Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 227105, India
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA;
| | - Anil Kumar Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| |
Collapse
|
54
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
55
|
Pršić J, Ongena M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:594530. [PMID: 33304371 PMCID: PMC7693457 DOI: 10.3389/fpls.2020.594530] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
The molecular basis of plant immunity triggered by microbial pathogens is being well-characterized as a complex sequential process leading to the activation of defense responses at the infection site, but which may also be systemically expressed in all organs, a phenomenon also known as systemic acquired resistance (SAR). Some plant-associated and beneficial bacteria are also able to stimulate their host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic resistance phenomenon. Induced systemic resistance resembles SAR considering its mechanistic principle as it successively involves recognition at the plant cell surface, stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to restrict pathogen invasion. However, according to our current vision, induced systemic resistance is specific considering some molecular aspects underpinning these different steps. Here we overview the chemical diversity of compounds that have been identified as induced systemic resistance elicitors and thereby illustrating the diversity of plants species that are responsive as well as the range of pathogens that can be controlled via this phenomenon. We also point out the need for further investigations allowing better understanding how these elicitors are sensed by the host and the diversity and nature of the stimulated defense mechanisms.
Collapse
|
56
|
Abstract
The phytohormone jasmonate (JA) modulates various defense and developmental responses of plants, and is implied in the integration of multiple environmental signals. Given its centrality in regulating plant physiology according to external stimuli, JA influences the establishment of interactions between plant roots and beneficial bacteria or fungi. In many cases, moderate JA signaling promotes the onset of mutualism, while massive JA signaling inhibits it. The output also depends on the compatibility between microbe and host plant and on nutritional or environmental cues. Also, JA biosynthesis and perception participate in the systemic regulation of mutualistic interactions and in microbe-induced resistance to biotic and abiotic stress. Here, we review our current knowledge of the role of JA biosynthesis, signaling, and responses during mutualistic root-microbe interactions.
Collapse
Affiliation(s)
- Veronica Basso
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France
| | - Claire Veneault-Fourrey
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France.
| |
Collapse
|
57
|
Balthazar C, Cantin G, Novinscak A, Joly DL, Filion M. Expression of Putative Defense Responses in Cannabis Primed by Pseudomonas and/or Bacillus Strains and Infected by Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2020; 11:572112. [PMID: 33324431 PMCID: PMC7723895 DOI: 10.3389/fpls.2020.572112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 05/06/2023]
Abstract
Cannabis (Cannabis sativa L.) offers many industrial, agricultural, and medicinal applications, but is commonly threatened by the gray mold disease caused by the fungus Botrytis cinerea. With few effective control measures currently available, the use of beneficial rhizobacteria represents a promising biocontrol avenue for cannabis. To counter disease development, plants rely on a complex network of inducible defense pathways, allowing them to respond locally and systemically to pathogens attacks. In this study, we present the first attempt to control gray mold in cannabis using beneficial rhizobacteria, and the first investigation of cannabis defense responses at the molecular level. Four promising Pseudomonas (LBUM223 and WCS417r) and Bacillus strains (LBUM279 and LBUM979) were applied as single or combined root treatments to cannabis seedlings, which were subsequently infected by B. cinerea. Symptoms were recorded and the expression of eight putative defense genes was monitored in leaves by reverse transcription quantitative polymerase chain reaction. The rhizobacteria did not significantly control gray mold and all infected leaves were necrotic after a week, regardless of the treatment. Similarly, no systemic activation of putative cannabis defense genes was reported, neither triggered by the pathogen nor by the rhizobacteria. However, this work identified five putative defense genes (ERF1, HEL, PAL, PR1, and PR2) that were strongly and sustainably induced locally at B. cinerea's infection sites, as well as two stably expressed reference genes (TIP41 and APT1) in cannabis. These markers will be useful in future researches exploring cannabis defense pathways.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Gabrielle Cantin
- Institute of Health Sciences, Collège La Cité, Ottawa, ON, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC, Canada
- *Correspondence: Martin Filion,
| |
Collapse
|
58
|
Plant Defence Related Enzymes in Rice (Oryzae sativa L.,) Induced by Pseudomonas sp VSMKU2. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
59
|
Perry EK, Newman DK. The transcription factors ActR and SoxR differentially affect the phenazine tolerance of Agrobacterium tumefaciens. Mol Microbiol 2019; 112:199-218. [PMID: 31001852 PMCID: PMC6615960 DOI: 10.1111/mmi.14263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Bacteria in soils encounter redox-active compounds, such as phenazines, that can generate oxidative stress, but the mechanisms by which different species tolerate these compounds are not fully understood. Here, we identify two transcription factors, ActR and SoxR, that play contrasting yet complementary roles in the tolerance of the soil bacterium Agrobacterium tumefaciens to phenazines. We show that ActR promotes phenazine tolerance by proactively driving expression of a more energy-efficient terminal oxidase at the expense of a less efficient alternative, which may affect the rate at which phenazines abstract electrons from the electron transport chain (ETC) and thereby generate reactive oxygen species. SoxR, on the other hand, responds to phenazines by inducing expression of several efflux pumps and redox-related genes, including one of three copies of superoxide dismutase and five novel members of its regulon that could not be computationally predicted. Notably, loss of ActR is far more detrimental than loss of SoxR at low concentrations of phenazines, and also increases dependence on the otherwise functionally redundant SoxR-regulated superoxide dismutase. Our results thus raise the intriguing possibility that the composition of an organism's ETC may be the driving factor in determining sensitivity or tolerance to redox-active compounds.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
60
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
61
|
Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yadav AN, Rastegari AA, Singh K. Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
62
|
Balado M, Lages MA, Fuentes-Monteverde JC, Martínez-Matamoros D, Rodríguez J, Jiménez C, Lemos ML. The Siderophore Piscibactin Is a Relevant Virulence Factor for Vibrio anguillarum Favored at Low Temperatures. Front Microbiol 2018; 9:1766. [PMID: 30116232 PMCID: PMC6083037 DOI: 10.3389/fmicb.2018.01766] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes vibriosis, a hemorrhagic septicaemia that affects many cultured marine fish species worldwide. Two catechol siderophores, vanchrobactin and anguibactin, were previously identified in this bacterium. While vanchrobactin is a chromosomally encoded system widespread in all pathogenic and environmental strains, anguibactin is a plasmid-encoded system restricted to serotype O1 strains. In this work, we have characterized, from a serotype O2 strain producing vanchrobactin, a novel genomic island containing a cluster of genes that would encode the synthesis of piscibactin, a siderophore firstly described in the fish pathogen Photobacterium damselae subsp. piscicida. The chemical characterization of this siderophore confirmed that some strains of V. anguillarum produce piscibactin. An in silico analysis of the available genomes showed that this genomic island is present in many of the highly pathogenic V. anguillarum strains lacking the anguibactin system. The construction of single and double biosynthetic mutants for vanchrobactin and piscibactin allowed us to study the contribution of each siderophore to iron uptake, cell fitness, and virulence. Although both siderophores are simultaneously produced, piscibactin constitute a key virulence factor to infect fish, while vanchrobactin seems to have a secondary role in virulence. In addition, a transcriptional analysis of the gene cluster encoding piscibactin in V. anguillarum showed that synthesis of this siderophore is favored at low temperatures, being the transcriptional activity of the biosynthetic genes three-times higher at 18°C than at 25°C. We also show that iron levels and temperature contribute to balance the synthesis of both siderophores.
Collapse
Affiliation(s)
- Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan C Fuentes-Monteverde
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Diana Martínez-Matamoros
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jaime Rodríguez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Carlos Jiménez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
63
|
Anderson AJ, McLean JE, Jacobson AR, Britt DW. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6513-6524. [PMID: 28481096 DOI: 10.1021/acs.jafc.7b01302] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.
Collapse
Affiliation(s)
- Anne J Anderson
- Department of Biology , Utah State University , Logan , Utah 84322-5305 , United States
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory , Utah State University , Logan , Utah 84322-8200 , United States
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate , Utah State University , Logan , Utah 84322-4820 , United States
| | - David W Britt
- Department of Bioengineering , Utah State University , Logan , Utah 84322-4105 , United States
| |
Collapse
|
64
|
Cela J, Tweed JKS, Sivakumaran A, Lee MRF, Mur LAJ, Munné-Bosch S. An altered tocopherol composition in chloroplasts reduces plant resistance to Botrytis cinerea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:200-210. [PMID: 29609176 DOI: 10.1016/j.plaphy.2018.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/23/2023]
Abstract
Tocopherols are lipid-soluble antioxidants that contribute to plant resistance to abiotic stresses. However, it is still unknown to what extent alterations in tocopherol composition can affect the plant response to biotic stresses. The response to bacterial and fungal attack of the vte1 mutant of Arabidopsis thaliana, which lacks both α- and γ-tocopherol, was compared to that of the vte4 mutant (which lacks α- but accumulates γ-tocopherol) and the wild type (with accumulates α-tocopherol in leaves). Both mutants exhibited similar kinetics of cell death and resistance in response to Pseudomonas syringae. In contrast, both mutants exhibited delayed resistance when infected with Botrytis cinerea. Lipid and hormonal profiling was employed with the aim of assessing the underlying cause of this differential phenotype. Although an altered tocopherol composition in both mutants strongly influenced fatty acid composition, and strongly altered jasmonic acid and cytokinin contents upon infection with B. cinerea, differences between genotypes in these phytohormones were observed during late stages of infection only. By contrast, genotype-related effects on lipid peroxidation, as indicated by malondialdehyde accumulation, were observed early upon infection with B. cinerea. We conclude that an altered tocopherol composition in chloroplasts may negatively influence the plant response to biotic stress in Arabidopsis thaliana through changes in the membrane fatty acid composition, enhanced lipid peroxidation and delayed defence activation when challenged with B. cinerea.
Collapse
Affiliation(s)
- Jana Cela
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain
| | - John K S Tweed
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, SY23 3EB, UK
| | - Anushen Sivakumaran
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3DA, UK
| | - Michael R F Lee
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, SY23 3EB, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3DA, UK
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain.
| |
Collapse
|
65
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
66
|
Maksimov IV, Maksimova TI, Sarvarova ER, Blagova DK, Popov VO. Endophytic Bacteria as Effective Agents of New-Generation Biopesticides (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The Chemistry of Plant-Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:112. [PMID: 29479360 PMCID: PMC5811519 DOI: 10.3389/fpls.2018.00112] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Plant roots communicate with microbes in a sophisticated manner through chemical communication within the rhizosphere, thereby leading to biofilm formation of beneficial microbes and, in the case of plant growth-promoting rhizomicrobes/-bacteria (PGPR), resulting in priming of defense, or induced resistance in the plant host. The knowledge of plant-plant and plant-microbe interactions have been greatly extended over recent years; however, the chemical communication leading to priming is far from being well understood. Furthermore, linkage between below- and above-ground plant physiological processes adds to the complexity. In metabolomics studies, the main aim is to profile and annotate all exo- and endo-metabolites in a biological system that drive and participate in physiological processes. Recent advances in this field has enabled researchers to analyze 100s of compounds in one sample over a short time period. Here, from a metabolomics viewpoint, we review the interactions within the rhizosphere and subsequent above-ground 'signalomics', and emphasize the contributions that mass spectrometric-based metabolomic approaches can bring to the study of plant-beneficial - and priming events.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
68
|
Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 2017; 12:e0187412. [PMID: 29161274 PMCID: PMC5697883 DOI: 10.1371/journal.pone.0187412] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are found to control the plant diseases by adopting various mechanisms. Induced systemic resistance (ISR) is an important defensive strategy manifested by plants against numerous pathogens especially infecting at aerial parts. Rhizobacteria elicit ISR by inducing different pathways in plants through production of various metabolites. In the present study, potential of Bacillus spp. KFP-5, KFP-7, KFP-17 was assessed to induce antioxidant enzymes against Pyricularia oryzae infection in rice. The antagonistic Bacillus spp. significantly induced antioxidant defense enzymes i-e superoxide dismutase (1.7–1.9-fold), peroxidase (3.5–4.1-fold), polyphenol oxidase (3.0–3.8-fold), phenylalanine ammonia-lyase (3.9–4.4-fold), in rice leaves and roots under hydroponic and soil conditions respectively. Furthermore, the antagonistic Bacillus spp significantly colonized the rice plants (2.0E+00–9.1E+08) and secreted multiple biocontrol determinants like protease (1.1–5.5 U/mg of soil or U/mL of hydroponic solution), glucanase, (1.0–1.3 U/mg of soil or U/mL of hydroponic solution), siderophores (6.5–42.8 μg/mL or mg) in the rhizosphere of different rice varieties. The results showed that treatment with Bacillus spp. enhanced the antioxidant defense activities in infected rice, thus alleviating P. oryzae induced oxidative damage and suppressing blast disease incidence.
Collapse
Affiliation(s)
- Afroz Rais
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Faluk Shair
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Fauzia Yusuf Hafeez
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
69
|
Cheng Q, Parvin B. Buckyballs conjugated with nucleic acid sequences identifies microorganisms in live cell assays. J Nanobiotechnology 2017; 15:78. [PMID: 29121930 PMCID: PMC5679147 DOI: 10.1186/s12951-017-0315-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rapid identification of bacteria can play an important role at the point of care, evaluating the health of the ecosystem, and discovering spatiotemporal distributions of a bacterial community. We introduce a method for rapid identification of bacteria in live cell assays based on cargo delivery of a nucleic acid sequence and demonstrate how a mixed culture can be differentiated using a simple microfluidic system. METHODS C60 Buckyballs are functionalized with nucleic acid sequences and a fluorescent reporter to show that a diversity of microorganisms can be detected and identified in live cell assays. The nucleic acid complexes include an RNA detector, targeting a species-specific sequence in the 16S rRNA, and a complementary DNA with an attached fluorescent reporter. As a result, each bacterium can be detected and visualized at a specific emission frequency through fluorescence microscopy. RESULTS The C60 probe complexes can detect and identify a diversity of microorganisms that include gram-position and negative bacteria, yeast, and fungi. More specifically, nucleic-acid probes are designed to identify mixed cultures of Bacillus subtilis and Streptococcus sanguinis, or Bacillus subtilis and Pseudomonas aeruginosa. The efficiency, cross talk, and accuracy for the C60 probe complexes are reported. Finally, to demonstrate that mixed cultures can be separated, a microfluidic system is designed that connects a single source-well to multiple sinks wells, where chemo-attractants are placed in the sink wells. The microfluidic system allows for differentiating a mixed culture. CONCLUSIONS The technology allows profiling of bacteria composition, at a very low cost, for field studies and point of care.
Collapse
Affiliation(s)
- Qingsu Cheng
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Bahram Parvin
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
70
|
Cheng X, Etalo DW, van de Mortel JE, Dekkers E, Nguyen L, Medema MH, Raaijmakers JM. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environ Microbiol 2017; 19:4638-4656. [PMID: 28892231 DOI: 10.1111/1462-2920.13927] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Collapse
Affiliation(s)
- Xu Cheng
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.,Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands
| | - Judith E van de Mortel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.,HAS University of Applied Sciences, Spoorstraat 61, Venlo 5911 KJ, The Netherlands
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Linh Nguyen
- Bioinformatics Group Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands.,Institute of Biology (IBL) Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| |
Collapse
|
71
|
Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P. The Endophytic Symbiont- Pseudomonas aeruginosa Stimulates the Antioxidant Activity and Growth of Achyranthes aspera L. Front Microbiol 2017; 8:1897. [PMID: 29021789 PMCID: PMC5623812 DOI: 10.3389/fmicb.2017.01897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
A plant growth promoting bacterial endophyte designated as AL2-14B isolated from the leaves of Achyranthes aspera L. was identified as Pseudomonas aeruginosa based on its phenotypic and physiological features, and 16S rRNA gene sequence analysis. AL2-14B had plant growth stimulating attributes including siderophore and indole acetic acid release, inorganic phosphate solubilization, along with nitrogenase, ammonification, and protease activities. It also exhibited antifungal property against Rhizoctonia solani. The plantlets grown in germ-free condition were inoculated with AL2-14B and studied for the colonization of endophyte. Significant increase in population of AL2-14B between 3rd and 5th days after inoculation was recorded. The treatment of plants with endophytic P. aeruginosa AL2-14B increased nitrogen, phosphorus, potassium (NPK) contents in plant by 3.8, 12.59, and 19.15%, respectively. Significant enhancement of shoot and root length, dry leaf, dry shoot and dry root weight, and leaf surface area as compared to control (P < 0.05) was recorded in AL2-14B inoculated plants. The antioxidant activities increased in plants grown in germ-free conditions and inoculated with AL2-14B. The present study emphasizes on the role of diazotrophic endophyte P. aeruginosa AL2-14B in stimulating growth of A. aspera L. and improvement of its medicinal properties. Significant increase in growth and antioxidant content of P. aeruginosa AL2-14B treated plants suggests the possibility of an economical and eco-friendly mean of achieving antioxidants rich, healthier A. aspera plants.
Collapse
Affiliation(s)
- Khaidem A. Devi
- Department of Microbiology, Assam University, Silchar, India
| | - Garima Pandey
- Pharmacognosy and Ethnopharmacology Division, Council of Scientific & Industrial Research-National Botanical Research Institute, Lucknow, India
| | - A. K. S. Rawat
- Pharmacognosy and Ethnopharmacology Division, Council of Scientific & Industrial Research-National Botanical Research Institute, Lucknow, India
| | | | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
72
|
Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 2017; 8:1895. [PMID: 29018437 PMCID: PMC5622989 DOI: 10.3389/fmicb.2017.01895] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide evidence that novel secondary metabolites produced by BRp3 may contribute to its activity as a biological control agent against Xoo and its potential to promote the growth and yield of Super Basmati rice.
Collapse
Affiliation(s)
- Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Fauzia Y Hafeez
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad S Mirza
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hafiz M I Arshad
- Plant Protection Division, Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Zubair
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Mazhar Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
73
|
Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the Core Microbiota Be Functional. TRENDS IN PLANT SCIENCE 2017; 22:583-595. [PMID: 28549621 DOI: 10.1016/j.tplants.2017.04.008] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
The microbial community that is systematically associated with a given host plant is called the core microbiota. The definition of the core microbiota was so far based on its taxonomic composition, but we argue that it should also be based on its functions. This so-called functional core microbiota encompasses microbial vehicles carrying replicators (genes) with essential functions for holobiont (i.e., plant plus microbiota) fitness. It builds up from enhanced horizontal transfers of replicators as well as from ecological enrichment of their vehicles. The transmission pathways of this functional core microbiota vary over plant generations according to environmental constraints and its added value for holobiont fitness.
Collapse
Affiliation(s)
- Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Manuel Blouin
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Daniel Muller
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
74
|
Ilangumaran G, Stratton G, Ravichandran S, Shukla PS, Potin P, Asiedu S, Prithiviraj B. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management. Front Microbiol 2017; 8:781. [PMID: 28529501 PMCID: PMC5418339 DOI: 10.3389/fmicb.2017.00781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, "S223" and "S224" isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg-1 protein and 12.3 and 11.2 μg ml-1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml-1 of N-Acetylglucosamine on day 3, while S224 had 27.3 μg ml-1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces. The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa) was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes (PR1 > 500-fold, PDF1.2 > 40-fold) upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection.
Collapse
Affiliation(s)
- Gayathri Ilangumaran
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, TruroNS, Canada
| | - Glenn Stratton
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, TruroNS, Canada
| | - Sridhar Ravichandran
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, TruroNS, Canada
| | - Pushp S. Shukla
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, TruroNS, Canada
| | | | - Samuel Asiedu
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, TruroNS, Canada
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, TruroNS, Canada
| |
Collapse
|
75
|
Zhang L, Tian X, Kuang S, Liu G, Zhang C, Sun C. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model. Front Microbiol 2017; 8:289. [PMID: 28289406 PMCID: PMC5326748 DOI: 10.3389/fmicb.2017.00289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA.
Collapse
Affiliation(s)
- Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- College of Earth Science, University of Chinese Academy of SciencesBeijing, China
| | - Xueying Tian
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao, China
| | - Shan Kuang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- College of Earth Science, University of Chinese Academy of SciencesBeijing, China
| | - Chengsheng Zhang
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
76
|
Kunova A, Bonaldi M, Saracchi M, Pizzatti C, Chen X, Cortesi P. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol 2016; 16:272. [PMID: 27829359 PMCID: PMC5103511 DOI: 10.1186/s12866-016-0886-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/03/2016] [Indexed: 01/27/2023] Open
Abstract
Background In the search for new natural resources for crop protection, streptomycetes are gaining interest in agriculture as plant growth promoting bacteria and/or biological control agents. Because of their peculiar life cycle, in which the production of secondary metabolites is synchronized with the development of aerial hyphae and sporulation, the commonly used methods to screen for bacterial antagonists need to be adapted. Results The dual culture assay was standardized in terms of inoculation timing of Streptomyces antagonist and pathogen, and growth rate of different fungal pathogens. In case of fast-growing fungi, inoculation of the antagonist 2 or 3 days prior to the pathogen resulted in significantly stronger inhibition of mycelium growth. One hundred and thirty Streptomyces strains were evaluated against six destructive soil borne pathogens. The activity of strains varied from broad-spectrum to highly specific inhibition of individual pathogens. All strains inhibited at least one tested pathogen. Three strains, which combined the largest broad-spectrum with the highest inhibition activity, were selected for further characterization with four vegetable species. All of them were able to colonize seed surface of all tested vegetable crops. They mostly improved radicle and hypocotyl growth in vitro, although no statistically significant enhancement of biomass weight was observed in vivo. Occasionally, transient negative effects on germination and plant growth were observed. Conclusions The adapted dual culture assay allowed us to compare the inhibition of individual Streptomyces strains against six fungal soil borne pathogens. The best selected strains were able to colonize the four vegetable crops and have a potential to be developed into biocontrol products. Although they occasionally negatively influenced plant growth, these effects did not persist during the further development. Additional in vivo studies are needed to confirm their potential as biological control or plant growth promoting agents. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0886-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy.
| | - Maria Bonaldi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Xiaoyulong Chen
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Giovanni Celoria, 2, 20133, Milan, Italy
| |
Collapse
|
77
|
Thomashow LS. Induced systemic resistance: a delicate balance. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:560-563. [PMID: 27656865 DOI: 10.1111/1758-2229.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Linda S Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, 365 Johnson Hall, Washington State University, Pullman, Washington, 99164-6430, USA
| |
Collapse
|
78
|
Ma Z, Hua GKH, Ongena M, Höfte M. Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:896-904. [PMID: 27557735 DOI: 10.1111/1758-2229.12454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2-2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine-1-carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent.
Collapse
Affiliation(s)
- Zongwang Ma
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gia Khuong Hoang Hua
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
79
|
Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:426-39. [PMID: 26526683 PMCID: PMC5028193 DOI: 10.1111/jipb.12446] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance (ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here, by comparing small RNA profiles of Pseudomonas syringae pv. tomato (Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis microRNAs (miRNAs) that are differentially regulated by AR156 pretreatment. miR825 and miR825* are two miRNA generated from a single miRNA gene. Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. miR825 targets two ubiquitin-protein ligases, while miR825* targets toll-interleukin-like receptor (TIR)-nucleotide binding site (NBS) and leucine-rich repeat (LRR) type resistance (R) genes. The expression of these target genes negatively correlated with the expression of miR825 and miR825*. Moreover, transgenic plants showing reduced expression of miR825 and miR825* displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing miR825 and miR825* were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing miR825 and miR825* and activating the defense related genes they targeted.
Collapse
Affiliation(s)
- Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, California, CA-92521, USA
| | - Jing Xia
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, Missouri 63130, USA
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Beibei Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiaoyu Ling
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Siyuan Lin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, Missouri 63130, USA
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, California, CA-92521, USA
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| |
Collapse
|
80
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
81
|
Vega A, Canessa P, Hoppe G, Retamal I, Moyano TC, Canales J, Gutiérrez RA, Rubilar J. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2015; 6:911. [PMID: 26583019 PMCID: PMC4631835 DOI: 10.3389/fpls.2015.00911] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.
Collapse
Affiliation(s)
- Andrea Vega
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
- Millennium Nucleus for Fungal Integrative and Synthetic BiologySantiago, Chile
| | - Gustavo Hoppe
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ignacio Retamal
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Tomas C. Moyano
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Javier Canales
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de ChileValdivia, Chile
| | - Rodrigo A. Gutiérrez
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Joselyn Rubilar
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
82
|
Pseudomonas aeruginosa RRALC3 Enhances the Biomass, Nutrient and Carbon Contents of Pongamia pinnata Seedlings in Degraded Forest Soil. PLoS One 2015; 10:e0139881. [PMID: 26460867 PMCID: PMC4604145 DOI: 10.1371/journal.pone.0139881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 09/18/2015] [Indexed: 01/30/2023] Open
Abstract
The study was aimed at assessing the effects of indigenous Plant Growth Promoting Bacterium (PGPB) on the legume Pongamia pinnata in the degraded soil of the Nanmangalam Reserve Forest (NRF) under nursery conditions. In total, 160 diazotrophs were isolated from three different nitrogen-free semi-solid media (LGI, Nfb, and JMV). Amongst these isolates, Pseudomonas aeruginosa RRALC3 exhibited the maximum ammonia production and hence was selected for further studies. RRALC3 was found to possess multiple plant growth promoting traits such as nitrogen accumulation (120.6ppm); it yielded a positive amplicon with nifH specific primers, tested positive for Indole Acetic Acid (IAA; 18.3μg/ml) and siderophore production, tested negative for HCN production and was observed to promote solubilization of phosphate, silicate and zinc in the plate assay. The 16S rDNA sequence of RRALC3 exhibited 99% sequence similarity to Pseudomonas aeruginosa JCM5962. Absence of virulence genes and non-hemolytic activity indicated that RRALC3 is unlikely to be a human pathogen. When the effects of RRALC3 on promotion of plant growth was tested in Pongamia pinnata, it was observed that in Pongamia seedlings treated with a combination of RRALC3 and chemical fertilizer, the dry matter increased by 30.75%. Nitrogen, phosphorus and potassium uptake increased by 34.1%, 27.08%, and 31.84%, respectively, when compared to control. Significant enhancement of total sugar, amino acids and organic acids content, by 23.4%, 29.39%, and 26.53% respectively, was seen in the root exudates of P. pinnata. The carbon content appreciated by 4-fold, when fertilized seedlings were treated with RRALC3. From the logistic equation, the rapid C accumulation time of Pongamia was computed as 43 days longer than the control when a combination of native PGPB and inorganic fertilizer was applied. The rapid accumulation time of N, P and K in Pongamia when treated with the same combination as above was 15, 40 and 33 days longer, respectively, as compared to the control.
Collapse
|
83
|
Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 2015. [PMID: 26198432 PMCID: PMC4509608 DOI: 10.1186/s12864-015-1632-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. Results The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. Conclusions The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1632-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Jan Tommassen
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
84
|
Aznar A, Dellagi A. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3001-10. [PMID: 25934986 DOI: 10.1093/jxb/erv155] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microorganisms use siderophores to obtain iron from the environment. In pathogenic interactions, siderophores are involved in iron acquisition from the host and are sometimes necessary for the expression of full virulence. This review summarizes the main data describing the role of these iron scavengers in animal and plant defence systems. To protect themselves against iron theft, mammalian hosts have developed a hypoferremia strategy that includes siderophore-binding molecules called siderocalins. In addition to microbial ferri-siderophore sequestration, siderocalins are involved in triggering immunity. In plants, no similar mechanisms have been described and many fewer data are available, although recent advances have shed light on the role of siderophores in plant-pathogen interactions. Siderophores can trigger immunity in plants in several contexts. The most frequently described situation involving siderophores is induced systemic resistance (ISR) triggered by plant-growth-promoting rhizobacteria. Although ISR responses have been observed after treating roots with certain siderophores, the underlying mechanisms are poorly understood. Immunity can also be triggered by siderophores in leaves. Siderophore perception in plants appears to be different from the well-known perception mechanisms of other microbial compounds, known as microbe-associated molecular patterns. Scavenging iron per se appears to be a novel mechanism of immunity activation, involving complex disturbance of metal homeostasis. Receptor-specific recognition of siderophores has been described in animals, but not in plants. The review closes with an overview of the possible mechanisms of defence activation, via iron scavenging by siderophores or specific siderophore recognition by the plant host.
Collapse
Affiliation(s)
- Aude Aznar
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles Cedex, France 2 AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France Université Paris 06, Case 156,4 Place Jussieu, F-75005 Paris, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles Cedex, France
| |
Collapse
|
85
|
Mousa WK, Raizada MN. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. FRONTIERS IN PLANT SCIENCE 2015; 6:231. [PMID: 25914708 PMCID: PMC4392301 DOI: 10.3389/fpls.2015.00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/23/2015] [Indexed: 05/10/2023]
Abstract
The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
86
|
Maldonado-González MM, Bakker PAHM, Prieto P, Mercado-Blanco J. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Front Microbiol 2015; 6:266. [PMID: 25904904 PMCID: PMC4387922 DOI: 10.3389/fmicb.2015.00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.
Collapse
Affiliation(s)
- M. Mercedes Maldonado-González
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Peter A. H. M. Bakker
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Pilar Prieto
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| |
Collapse
|
87
|
Maldonado-González MM, Schilirò E, Prieto P, Mercado-Blanco J. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environ Microbiol 2015; 17:3139-53. [PMID: 25471384 DOI: 10.1111/1462-2920.12725] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild-type PICF7, discarding these traits as relevant for its endophytic lifestyle.
Collapse
Affiliation(s)
- M Mercedes Maldonado-González
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Elisabetta Schilirò
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Pilar Prieto
- Department of Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| |
Collapse
|
88
|
Burketova L, Trda L, Ott PG, Valentova O. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv 2015; 33:994-1004. [PMID: 25617476 DOI: 10.1016/j.biotechadv.2015.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
An increasing demand for environmentally acceptable alternative for traditional pesticides provides an impetus to conceive new bio-based strategies in crop protection. Employing induced resistance is one such strategy, consisting of boosting the natural plant immunity. Upon infections, plants defend themselves by activating their immune mechanisms. These are initiated after the recognition of an invading pathogen via the microbe-associated molecular patterns (MAMPs) or other microbe-derived molecules. Triggered responses inhibit pathogen spread from the infected site. Systemic signal transport even enables to prepare, i.e. prime, distal uninfected tissues for more rapid and enhanced response upon the consequent pathogen attack. Similar defense mechanisms can be triggered by purified MAMPs, pathogen-derived molecules, signal molecules involved in plant resistance to pathogens, such as salicylic and jasmonic acid, or a wide range of other chemical compounds. Induced resistance can be also conferred by plant-associated microorganisms, including beneficial bacteria or fungi. Treatment with resistance inducers or beneficial microorganisms provides long-lasting resistance for plants to a wide range of pathogens. This study surveys current knowledge on resistance and its mechanisms provided by microbe-, algae- and plant-derived elicitors in different crops. The main scope deals with bacterial substances and fungus-derived molecules chitin and chitosan and algae elicitors, including naturally sulphated polysaccharides such as ulvans, fucans or carageenans. Recent advances in the utilization of this strategy in practical crop protection are also discussed.
Collapse
Affiliation(s)
- Lenka Burketova
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02 Prague 6-Lysolaje, Czech Republic
| | - Lucie Trda
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02 Prague 6-Lysolaje, Czech Republic
| | - Peter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto Str. 15, H-1022 Budapest, Hungary
| | - Olga Valentova
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
89
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
90
|
Adaptation genomics of a small-colony variant in a Pseudomonas chlororaphis 30-84 biofilm. Appl Environ Microbiol 2014; 81:890-9. [PMID: 25416762 DOI: 10.1128/aem.02617-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rhizosphere-colonizing bacterium Pseudomonas chlororaphis 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we characterize a small-colony variant (SCV) isolated from a P. chlororaphis 30-84 biofilm. The SCV exhibited pleiotropic phenotypes, including small cell size, slow growth and motility, low levels of phenazine production, and increased biofilm formation and resistance to antimicrobials. To better understand the genetic alterations underlying these phenotypes, RNA and whole-genome sequencing analyses were conducted comparing an SCV to the wild-type strain. Of the genome's 5,971 genes, transcriptomic profiling indicated that 1,098 (18.4%) have undergone substantial reprograming of gene expression in the SCV. Whole-genome sequence analysis revealed multiple alterations in the SCV, including mutations in yfiR (cyclic-di-GMP production), fusA (elongation factor), and cyoE (heme synthesis) and a 70-kb deletion. Genetic analysis revealed that the yfiR locus plays a major role in controlling SCV phenotypes, including colony size, growth, motility, and biofilm formation. Moreover, a point mutation in the fusA gene contributed to kanamycin resistance. Interestingly, the SCV can partially switch back to wild-type morphologies under specific conditions. Our data also support the idea that phenotypic switching in P. chlororaphis is not due to simple genetic reversions but may involve multiple secondary mutations. The emergence of these highly adherent and antibiotic-resistant SCVs within the biofilm might play key roles in P. chlororaphis natural persistence.
Collapse
|
91
|
Hyun TK, van der Graaff E, Albacete A, Eom SH, Großkinsky DK, Böhm H, Janschek U, Rim Y, Ali WW, Kim SY, Roitsch T. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance. PLoS One 2014; 9:e112946. [PMID: 25396746 PMCID: PMC4232524 DOI: 10.1371/journal.pone.0112946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Eric van der Graaff
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Alfonso Albacete
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Espinardo, Murcia, Spain
| | - Seung Hee Eom
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Dominik K. Großkinsky
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Hannah Böhm
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Ursula Janschek
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Yeonggil Rim
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Walid Wahid Ali
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thomas Roitsch
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
- Global Change Research Centre, CzechGlobe AS CR, v.v.i., Drásov, Czech Republic
| |
Collapse
|
92
|
Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Mañero J. Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:44-53. [PMID: 24907524 DOI: 10.1016/j.plaphy.2014.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/13/2014] [Indexed: 05/09/2023]
Abstract
The present study reports a screening for PGPR in a highly selective environment, the rhizosphere of rice plants, in southwestern of Spain. Among the 900 isolates, only 38% were positive for at least one of the biochemical activities to detect putative PGPR. The best 80 isolates were selected and identified by 16S rRNA partial sequencing. Among these, 13 strains were selected for growth promotion assays. Only one strain (BaC1-38) was able to significantly increase height, while nine strains significantly inhibited it. Five strains significantly increased dry weight, and only BaC1-21 significantly decreased it. Based on significant modifications in growth, three bacteria (BaC1-13, BaC1-21 and BaC1-38) were tested for systemic induction of resistance against stress challenge (salt and Xanthomonas campestris infection). Protection against salt stress and pathogen infection was similar; BaC1-38 protected by 80%, BaC1-13 by 50% and BaC1-21 only by 20%. Toxicity of salt stress to the plants was evaluated by photosynthetic efficiency of seedlings. Fv/Fm only decreased significantly in plants inoculated with BaC1-13. ΦPSII also decreased significantly in plants inoculated with BaC1-21, but increased significantly with BaC1-38. NPQ decreased significantly in plants inoculated with BaC1-21. The two strains able to induce systemic resistance against Xanthomonas campestris seem to work by different pathways. BaC1-13 primed enzymes related with the detoxification of reactive oxygen species (ROS). However, BaC1-38 primed pathogenesis-related proteins (PRs), and this pathway was more effective, both improved chlorophyll index confirming the priming state of the plant.
Collapse
Affiliation(s)
- Jose Antonio Lucas
- Universidad San Pablo CEU. Dept. Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain.
| | - Jorge García-Cristobal
- Universidad San Pablo CEU. Dept. Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Alfonso Bonilla
- Universidad San Pablo CEU. Dept. Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Beatriz Ramos
- Universidad San Pablo CEU. Dept. Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Javier Gutierrez-Mañero
- Universidad San Pablo CEU. Dept. Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
93
|
Arseneault T, Pieterse CMJ, Gérin-Ouellet M, Goyer C, Filion M. Long-term induction of defense gene expression in potato by pseudomonas sp. LBUM223 and streptomyces scabies. PHYTOPATHOLOGY 2014; 104:926-32. [PMID: 24601985 DOI: 10.1094/phyto-11-13-0321-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Streptomyces scabies is a causal agent of common scab of potato, which generates necrotic tuber lesions. We have previously demonstrated that inoculation of potato plants with phenazine-1-carboxylic acid (PCA)- producing Pseudomonas sp. LBUM223 could significantly reduce common scab symptoms. In the present study, we investigated whether LBUM223 or an isogenic phzC- mutant not producing PCA could elicit an induced systemic resistance response in potato. The expression of eight defense-related genes (salicylic acid [SA]-related ChtA, PR-1b, PR-2, and PR-5; and jasmonic acid and ethylene-related LOX, PIN2, PAL-2, and ERF3) was quantified using newly developed TaqMan reverse-transcription quantitative polymerase chain reaction assays in 5- and 10-week-old potted potato plants. Although only wild-type LBUM223 was capable of significantly reducing common scab symptoms, the presence of both LBUM223 and its PCA-deficient mutant were equally able to upregulate the expression of LOX and PR-5. The presence of S. scabies overexpressed all SA-related genes. This indicates that (i) upregulation of potato defense-related genes by LBUM223 is unlikely to contribute to common scab's control and (ii) LBUM223's capacity to produce PCA is not involved in this upregulation. These results suggest that a direct interaction occurring between S. scabies and PCA-producing LBUM223 is more likely involved in controlling common scab development.
Collapse
|
94
|
Mouekouba LDO, Zhang L, Guan X, Chen X, Chen H, Zhang J, Zhang J, Li J, Yang Y, Wang A. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves. PLoS One 2014; 9:e102690. [PMID: 25061981 PMCID: PMC4111289 DOI: 10.1371/journal.pone.0102690] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022] Open
Abstract
Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST), second messengers (NO, H2O2, O2(-)) and phytohormones (IAA, ABA, GA3, ZT, MeJA, SA and C2H4). Compared to the control, all treatments induced higher levels of PAL, PPO and GST activity in tomato leaves and increased NO, SA and GA3 levels. The expression of WRKY and MAPK, two important transcription factors in plant disease resistance, was upregulated in C. rosea- and C. rosea plus B. cinerea-treated samples. Two-dimensional gel electrophoresis analysis showed that two abundant proteins were present in the C. rosea plus B. cinerea-treated samples but not in the other samples. These proteins were determined (by mass spectrum analysis) to be LEXYL2 (β-xylosidase) and ATP synthase CF1 alpha subunit. Therefore, C. rosea plus B. cinerea treatment induces gray mold resistance in tomato. This study provides a basis for elucidating the mechanism of C. rosea as a biocontrol agent.
Collapse
Affiliation(s)
- Liana Dalcantara Ongouya Mouekouba
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, PR China
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xin Guan
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiuling Chen
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Hongyu Chen
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jian Zhang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
| | - Junfeng Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yijun Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
95
|
Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. PLANT PHYSIOLOGY 2014; 165:262-76. [PMID: 24639336 PMCID: PMC4012585 DOI: 10.1104/pp.113.233759] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens.
Collapse
|
96
|
Veloso J, Prego C, Varela MM, Carballeira R, Bernal A, Merino F, Díaz J. Properties of capsaicinoids for the control of fungi and oomycetes pathogenic to pepper. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:177-185. [PMID: 23452049 DOI: 10.1111/j.1438-8677.2012.00717.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Capsaicinoids are pungent compounds found in pepper (Capsicum spp.) fruits. Capsaicin showed antimicrobial activity in plate assays against seven isolates of five species of fungi and nine isolates of two species of oomycetes. The general trend was that oomycetes were more inhibited than fungi. Assays of capsaicin biosynthetic precursors suggest that the lateral chain of capsaicinoids has more inhibitory activity than the phenolic part. In planta tests of capsaicinoids (capsaicin and N-vanillylnonanamide) applied to the roots demonstrated that these compounds conferred protection against the pathogenic fungus Verticillium dahliae and induced both chitinase activity and expression of several defence-related genes, such as CASC1, CACHI2 and CABGLU. N-Vanillylnonanamide infiltrated into cotyledons confers systemic protection to the upper leaves of pepper against the fungal pathogen Botrytis cinerea. In wild-type tomato plants such cotyledon infiltration has no protective effect, but is effective in the Never-ripe tomato mutant impaired in ethylene response. A similar effect was observed in tomato after salicylic acid infiltration.
Collapse
Affiliation(s)
- J Veloso
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - C Prego
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - M M Varela
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - R Carballeira
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - A Bernal
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - F Merino
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - J Díaz
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| |
Collapse
|
97
|
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:347-75. [PMID: 24906124 DOI: 10.1146/annurev-phyto-082712-102340] [Citation(s) in RCA: 1336] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
Collapse
Affiliation(s)
- Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , , ,
| | | | | | | | | | | |
Collapse
|
98
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Drogue B, Sanguin H, Borland S, Prigent-Combaret C, Wisniewski-Dyé F. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots. FEMS Microbiol Ecol 2013; 87:543-55. [PMID: 24283406 DOI: 10.1111/1574-6941.12244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/18/2013] [Accepted: 10/31/2013] [Indexed: 01/02/2023] Open
Abstract
Azospirillum-plant cooperation has been mainly studied from an agronomic point of view leading to a wide description of mechanisms implicated in plant growth-promoting effects. However, little is known about genetic determinants implicated in bacterial adaptation to the host plant during the transition from free-living to root-associated lifestyles. This study aims at characterizing global gene expression of Azospirillum lipoferum 4B following a 7-day-old interaction with two cultivars of Oryza sativa L. japonica (cv. Cigalon from which it was originally isolated, and cv. Nipponbare). The analysis was done on a whole genome expression array with RNA samples obtained from planktonic cells, sessile cells, and root-adhering cells. Root-associated Azospirillum cells grow in an active sessile-like state and gene expression is tightly adjusted to the host plant. Adaptation to rice seems to involve genes related to reactive oxygen species (ROS) detoxification and multidrug efflux, as well as complex regulatory networks. As revealed by the induction of genes encoding transposases, interaction with root may drive bacterial genome rearrangements. Several genes related to ABC transporters and ROS detoxification display cultivar-specific expression profiles, suggesting host specific adaptation and raising the question of A. lipoferum 4B/rice cv. Cigalon co-adaptation.
Collapse
Affiliation(s)
- Benoît Drogue
- UMR5557 CNRS, Ecologie Microbienne, Université de Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|
100
|
Jayaseelan S, Ramaswamy D, Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 2013; 30:1159-68. [PMID: 24214679 DOI: 10.1007/s11274-013-1552-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/31/2013] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium and is one of the most commercially and biotechnologically valuable microorganisms. Strains of P. aeruginosa secrete a variety of redox-active phenazine compounds, the most well studied being pyocyanin. Pyocyanin is responsible for the blue-green colour characteristic of Pseudomonas spp. It is considered both as a virulence factor and a quorum sensing signalling molecule for P. aeruginosa. Pyocyanin is an electrochemically active metabolite, involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognised as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. This review summarises recent advances of pyocyanin production from P. aeruginosa with special attention to antagonistic property and bio-control activity. The review also covers the challenges and new insights into pyocyanin from P. aeruginosa.
Collapse
Affiliation(s)
- Sheeba Jayaseelan
- Dr. Sir A. L. Mudaliar Vocational Arts and Science College, Vengal, 601103, Tamil Nadu, India
| | | | | |
Collapse
|