51
|
King Heiden TC, Struble CA, Rise ML, Hessner MJ, Hutz RJ, Carvan MJ. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity. Reprod Toxicol 2008; 25:47-57. [PMID: 17884332 PMCID: PMC2693207 DOI: 10.1016/j.reprotox.2007.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/24/2007] [Accepted: 07/31/2007] [Indexed: 12/19/2022]
Abstract
TCDD is a reproductive toxicant and endocrine disruptor, yet the mechanisms by which it causes these reproductive alterations are not fully understood. In order to provide additional insight into the molecular mechanisms that underlie TCDD's reproductive toxicity, we assessed TCDD-induced transcriptional changes in the ovary as they relate to previously described impacts on serum estradiol concentrations and altered follicular development in zebrafish. In silico computational approaches were used to correlate candidate regulatory motifs with observed changes in gene expression. Our data suggest that TCDD inhibits follicle maturation via attenuated gonadotropin responsiveness and/or depressed estradiol biosynthesis, and that interference of estrogen-regulated signal transduction may also contribute to TCDD's impacts on follicular development. TCDD may also alter ovarian function by disrupting various signaling pathways such as glucose and lipid metabolism, and regulation of transcription. Furthermore, events downstream from initial TCDD molecular-targets likely contribute to ovarian toxicity following chronic exposure to TCDD. Data presented here provide further insight into the mechanisms by which TCDD disrupts follicular development and reproduction in fish, and can be used to formulate new hypotheses regarding previously documented ovarian toxicity.
Collapse
Affiliation(s)
- Tisha C. King Heiden
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| | | | - Matthew L. Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| | - Martin J. Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Reinhold J. Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Michael J. Carvan
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| |
Collapse
|
52
|
Hook SE, Skillman AD, Gopalan B, Small JA, Schultz IR. Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture. Toxicol Sci 2007; 102:42-60. [PMID: 18084045 DOI: 10.1093/toxsci/kfm293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.
Collapse
Affiliation(s)
- Sharon E Hook
- Battelle, Marine Research Operations, West Sequim Bay Road, Sequim, Washington 98382, USA.
| | | | | | | | | |
Collapse
|
53
|
von Schalburg KR, Cooper GA, Yazawa R, Davidson WS, Koop BF. Microarray analysis reveals differences in expression of cell surface and extracellular matrix components during development of the trout ovary and testis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 3:78-90. [PMID: 20483209 DOI: 10.1016/j.cbd.2007.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/15/2022]
Abstract
Trout normally spawn at 3 years of age, however, a small percentage mature a year early. This provides an opportunity to study reproductive timing and developmental processes. The ovarian and testicular extracellular matrix (ECM) participates in processes such as growth, adhesion, differentiation, cell migration and patterning. The composition of the ECM defines the interactions of specific regulatory ligands with their receptors and modulates and regulates gonadal function. To identify some of the genes involved in these processes, a 16,006-gene salmonid cDNA microarray was used to compare three-year-old normal with two-year-old normal (maturing) and with two-year-old precocious (pre-spawn) ovarian and testicular transcriptomes. We provide evidence for differences in expression of some of the genes during vasculogenesis, angiogenesis, fibrillogenesis and other processes involving ECM remodeling. Sex-specific gene expression differences of ECM components were documented between the trout ovary and testis in each developmental state. Significant differences in the expression of genes involved in translation, transcription, cell-cycling and differentiation were identified. We also report, for the first time, unequivocal evidence for the transcription of high levels of adult and embryonic hemoglobins in the developed ovary; and for the expression of transcripts that encode zona pellucida glycoproteins in both the ovary and testis of trout.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|
54
|
Douglas SE. Microarray studies of gene expression in fish. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 10:474-89. [PMID: 17233558 DOI: 10.1089/omi.2006.10.474] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of microarrays for the study of various aspects of fish physiology has seen a spectacular increase in recent years. From early studies with model species, such as zebrafish, to current studies with commercially important species, such as salmonids, catfish, carp, and flatfish, microarray technology has emerged as a key tool for understanding developmental processes as well as basic physiology. In addition, microarrays are being applied to the fields of ecotoxicology and nutrigenomics. A number of different platforms are now available, ranging from microarrays containing cDNA amplicons to oligomers of various sizes. High-density microarrays containing hundreds of thousands of distinct oligomers have been developed for zebrafish and catfish. As this exciting technology advances, so will our understanding of global gene expression in fish. Furthermore, lessons learned from this experimentally tractable group of organisms can also be applied to more advanced organisms such as humans.
Collapse
Affiliation(s)
- Susan E Douglas
- Institute for Marine Bioscience, Halifax, Nova Scotia, Canada.
| |
Collapse
|
55
|
Microarray-based analysis of fish egg quality after natural or controlled ovulation. BMC Genomics 2007; 8:55. [PMID: 17313677 PMCID: PMC1808064 DOI: 10.1186/1471-2164-8-55] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 02/21/2007] [Indexed: 11/20/2022] Open
Abstract
Background The preservation of fish egg quality after ovulation-control protocols is a major issue for the development of specific biotechnological processes (e.g. nuclear transfer). Depending on the species, it is often necessary to control the timing of ovulation or induce the ovulatory process. The hormonal or photoperiodic control of ovulation can induce specific egg quality defects that have been thoroughly studied. In contrast, the impact on the egg transcriptome as a result of these manipulations has received far less attention. Furthermore, the relationship between the mRNA abundance of maternally-inherited mRNAs and the developmental potential of the egg has never benefited from genome-wide studies. Thus, the present study aimed at studying the rainbow trout (Oncorhynchus mykiss) egg transcriptome after natural or controlled ovulation using 9152-cDNA microarrays. Results The analysis of egg transcriptome after natural or controlled ovulation led to the identification of 26 genes. The expression patterns of 17 of those genes were monitored by real-time PCR. We observed that the control of ovulation by both hormonal induction and photoperiod manipulation induced significant changes in the egg mRNA abundance of specific genes. A dramatic increase of Apolipoprotein C1 (APOC1) and tyrosine protein kinase HCK was observed in the eggs when a hormonal induction of ovulation was performed. In addition, both microarray and real-time PCR analyses showed that prohibitin 2 (PHB2) egg mRNA abundance was negatively correlated with developmental success. Conclusion First, we showed, for the first time in fish, that the control of ovulation using either a hormonal induction or a manipulated photoperiod can induce differences in the egg mRNA abundance of specific genes. While the impact of these modifications on subsequent embryonic development is unknown, our observations clearly show that the egg transcriptome is affected by an artificial induction of ovulation. Second, we showed that the egg mRNA abundance of prohibitin 2 was reflective of the developmental potential of the egg. Finally, the identity and ontology of identified genes provided significant hints that could result in a better understanding of the mechanisms associated with each type of ovulation control (i.e. hormonal, photoperiodic), and in the identification of conserved mechanisms triggering the loss of egg developmental potential.
Collapse
|
56
|
Sipe CW, Saha MS. The use of microarray technology in nonmammalian vertebrate systems. Methods Mol Biol 2007; 382:1-16. [PMID: 18220221 DOI: 10.1007/978-1-59745-304-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Among vertebrates, the mammalian systems that are frequently used to investigate questions related to human health have gained the most benefit from microarray technology to date. However, it is clear that biological investigations and the generalized conclusions drawn from them, can only be enhanced by including organisms in which specific processes can be readily studied because of their genetic, physiological, or developmental disposition. As a result, the field of functional genomics has recently begun to embrace a number of other vertebrate species. This review summarizes the current state of microarray technology in a subset of these vertebrate organisms, including Xenopus, Rana, zebrafish, killifish (Fundulus sp.), medaka (Oryzias latipes), Atlantic salmon, and rainbow trout. A summary of various applications of microarray technology and a brief introduction to the steps involved in carrying out a microarray experiment are also presented.
Collapse
Affiliation(s)
- Conor W Sipe
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | | |
Collapse
|
57
|
Morrison RN, Cooper GA, Koop BF, Rise ML, Bridle AR, Adams MB, Nowak BF. Transcriptome profiling the gills of amoebic gill disease (AGD)-affected Atlantic salmon (Salmo salar L.): a role for tumor suppressor p53 in AGD pathogenesis? Physiol Genomics 2006; 26:15-34. [PMID: 16493018 DOI: 10.1152/physiolgenomics.00320.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neoparamoeba spp. are amphizoic amoebae with the capacity to colonize the gills of some marine fish, causing AGD. Here, the gill tissue transcriptome response of Atlantic salmon (Salmo salar L.) to AGD is described. Tanks housing Atlantic salmon were inoculated with Neoparamoeba spp. and fish sampled at time points up to 8 days postinoculation (pi.). Gill tissues were taken from AGD-affected fish, and a DNA microarray was used to compare global gene expression against tissues from AGD-unaffected fish. A total of 206 genes, representing 190 unique transcripts, were reproducibly identified as up- or downregulated in response to Neoparamoeba spp. infection. Informative transcripts having GO biological process identifiers were grouped according to function. Although a number of genes were placed into each category, no distinct patterns were observed. One Atlantic salmon cDNA that was upregulated in infected gill relative to noninfected gill at 114 and 189 h pi. showed significant identity with the Xenopus, mouse, and human anterior gradient-2 (AG-2) homologs. Two Atlantic salmon AG-2 mRNA transcripts, designated asAG-2/1 and asAG-2/2, were cloned, sequenced, and shown to be predominantly expressed in the gill, intestine, and brain of a healthy fish. In AGD-affected fish, differential asAG-2 expression was confirmed in samples used for microarray analyses as well as in AGD-affected gill tissue taken from fish in an independent experiment. The asAG-2 upregulation was restricted to AGD lesions relative to unaffected tissue from the same gill arch, while p53 tumor suppressor protein mRNA was concurrently downregulated in AGD lesions. Differential expression of p53-regulated transcripts, proliferating cell nuclear antigen and growth arrest and DNA damage-inducible gene-45beta (GADD45beta) in AGD lesions, suggests a role for p53 in AGD pathogenesis. Thus AGD may represent a novel model for comparative analysis of p53 and p53-regulated pathways.
Collapse
Affiliation(s)
- Richard N Morrison
- Aquafin Cooperative Research Centre, School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Tasmania, Australia.
| | | | | | | | | | | | | |
Collapse
|
58
|
Hook SE, Skillman AD, Small JA, Schultz IR. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:372-85. [PMID: 16488489 PMCID: PMC2494855 DOI: 10.1016/j.aquatox.2006.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 05/06/2023]
Abstract
The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action.
Collapse
Affiliation(s)
- Sharon E Hook
- Battelle, Marine Research Operations, Sequim, WA, USA.
| | | | | | | |
Collapse
|
59
|
Knoll-Gellida A, André M, Gattegno T, Forgue J, Admon A, Babin PJ. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC Genomics 2006; 7:46. [PMID: 16526958 PMCID: PMC1488847 DOI: 10.1186/1471-2164-7-46] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 03/09/2006] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. RESULTS Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. CONCLUSION This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development.
Collapse
Affiliation(s)
- Anja Knoll-Gellida
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Michèle André
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Tamar Gattegno
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jean Forgue
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Patrick J Babin
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| |
Collapse
|
60
|
von Schalburg KR, McCarthy SP, Rise ML, Hutson JC, Davidson WS, Koop BF. Expression of morphogenic genes in mature ovarian and testicular tissues: Potential stem-cell niche markers and patterning factors. Mol Reprod Dev 2006; 73:142-52. [PMID: 16224774 DOI: 10.1002/mrd.20359] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Morphogens are developmental regulators that modulate different tissue patterning, proliferation, differentiation, or remodeling processes in embryonic and adult tissues. Morphogens may also evoke specific regulatory programs in stem cells. Some of the morphogens involved in these processes have been characterized, while others remain unidentified. A microarray containing 3,557 salmonid cDNAs was used to compare the transcriptomes of rainbow trout precocious ovary at three different stages during second year (June, August, and October) with a reference (June normal ovary) transcriptome. During this study, we detected morphogen transcript hybridizations to salmonid elements and the study was enlarged to investigate these activities in various developmental stages of both ovary and testis. Genes from diverse development regulator families such as Anterior gradient-2, BMP, Epimorphin, Flightless, Frizzled, Notch, Tiarin, Twisted gastrulation, and Wnt were demonstrated to be expressed in the adult trout gonads. In mice or rats, expression of mammalian bmp-4, epimorphin, flightless, twisted gastrulation, and GW112 transcripts were localized to cell types isolated from the developed ovary and testis. Comparisons of salmonid and mammalian morphogens at the amino acid residue level show high similarities, suggesting functional conservation. This report provides evidence for local regulation by various morphogens and their potential to control distinct programs of gene expression in the gametes and their accessory cells during gametogenesis.
Collapse
|
61
|
Ng SHS, Artieri CG, Bosdet IE, Chiu R, Danzmann RG, Davidson WS, Ferguson MM, Fjell CD, Hoyheim B, Jones SJM, de Jong PJ, Koop BF, Krzywinski MI, Lubieniecki K, Marra MA, Mitchell LA, Mathewson C, Osoegawa K, Parisotto SE, Phillips RB, Rise ML, von Schalburg KR, Schein JE, Shin H, Siddiqui A, Thorsen J, Wye N, Yang G, Zhu B. A physical map of the genome of Atlantic salmon, Salmo salar. Genomics 2006; 86:396-404. [PMID: 16026963 DOI: 10.1016/j.ygeno.2005.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 05/27/2005] [Accepted: 06/02/2005] [Indexed: 01/05/2023]
Abstract
A physical map of the Atlantic salmon (Salmo salar) genome was generated based on HindIII fingerprints of a publicly available BAC (bacterial artificial chromosome) library constructed from DNA isolated from a Norwegian male. Approximately 11.5 haploid genome equivalents (185,938 clones) were successfully fingerprinted. Contigs were first assembled via FPC using high-stringency (1e-16), and then end-to-end joins yielded 4354 contigs and 37,285 singletons. The accuracy of the contig assembly was verified by hybridization and PCR analysis using genetic markers. A subset of the BACs in the library contained few or no HindIII recognition sites in their insert DNA. BglI digestion fragment patterns of these BACs allowed us to identify three classes: (1) BACs containing histone genes, (2) BACs containing rDNA-repeating units, and (3) those that do not have BglI recognition sites. End-sequence analysis of selected BACs representing these three classes confirmed the identification of the first two classes and suggested that the third class contained highly repetitive DNA corresponding to tRNAs and related sequences.
Collapse
Affiliation(s)
- Siemon H S Ng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Yu HJ, Hogan P, Sundaresan V. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. PLANT PHYSIOLOGY 2005; 139:1853-69. [PMID: 16299181 PMCID: PMC1310564 DOI: 10.1104/pp.105.067314] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The extensive data on the transcription of the plant genome are derived primarily from the sporophytic generation. There currently is little information on genes that are expressed during female gametophyte development in angiosperms, and it is not known whether the female gametophyte transcriptome contains a major set of genes that are not expressed in the sporophyte or whether it is primarily a subset of the sporophytic transcriptome. Because the embryo sac is embedded within the maternal ovule tissue, we have utilized the Arabidopsis (Arabidopsis thaliana) mutant sporocyteless that produces ovules without embryo sacs, together with the ATH1 Arabidopsis whole-genome oligonucleotide array, to identify genes that are preferentially or specifically expressed in female gametophyte development. From analysis of the datasets, 225 genes are identified as female gametophyte genes, likely a lower limit as stringent criteria were used for the analysis, eliminating many low expressed genes. Nearly 45% of the identified genes were not previously detected by sporophytic expression profiling, suggesting that the embryo sac transcriptome may contain a significant fraction of transcripts restricted to the gametophyte. Validation of six candidate genes was performed using promoterbeta-glucuronidase fusions, and all of these showed embryo sac-specific expression in the ovule. The unfiltered expression data from this study can be used to evaluate the possibility of female gametophytic expression for any gene in the ATH1 array, and contribute to identification of the functions of the component of the Arabidopsis genome not represented in studies of sporophytic expression and function.
Collapse
Affiliation(s)
- Hee-Ju Yu
- Section of Plant Biology , University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
63
|
Boonanuntanasarn S, Takeuchi T, Yoshizaki G. High-efficiency gene knockdown using chimeric ribozymes in fish embryos. Biochem Biophys Res Commun 2005; 336:438-43. [PMID: 16153606 DOI: 10.1016/j.bbrc.2005.08.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Abstract
We report an effective gene knockdown technique in rainbow trout embryos using additional RNA components combined with ribozymes (R(z)s). Chimeric R(z)s (tR(z)Cs) containing tRNA(Val), R(z) against GFP, and a constitutive transport element were microinjected into transgenic embryos. tR(z)Cs induced greater gene interference than R(z)s alone. Control tR(z)Cs did not affect unpaired bases of target RNA, and the tR(z)C did not interfere with non-relevant gene expression, suggesting that the tR(z)C-mediated gene-interference effects were sequence-specific. Furthermore, the tR(z)C-containing expression vector specifically suppressed target GFP expression in transgenic trout. tR(z)Cs enhance R(z) cleavage and could therefore be powerful tools for studying unknown gene function in vertebrates.
Collapse
Affiliation(s)
- Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | |
Collapse
|
64
|
von Schalburg KR, Rise ML, Cooper GA, Brown GD, Gibbs AR, Nelson CC, Davidson WS, Koop BF. Fish and chips: various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics 2005; 6:126. [PMID: 16164747 PMCID: PMC1239916 DOI: 10.1186/1471-2164-6-126] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 09/15/2005] [Indexed: 11/23/2022] Open
Abstract
Background We have developed and fabricated a salmonid microarray containing cDNAs representing 16,006 genes. The genes spotted on the array have been stringently selected from Atlantic salmon and rainbow trout expressed sequence tag (EST) databases. The EST databases presently contain over 300,000 sequences from over 175 salmonid cDNA libraries derived from a wide variety of tissues and different developmental stages. In order to evaluate the utility of the microarray, a number of hybridization techniques and screening methods have been developed and tested. Results We have analyzed and evaluated the utility of a microarray containing 16,006 (16K) salmonid cDNAs in a variety of potential experimental settings. We quantified the amount of transcriptome binding that occurred in cross-species, organ complexity and intraspecific variation hybridization studies. We also developed a methodology to rapidly identify and confirm the contents of a bacterial artificial chromosome (BAC) library containing Atlantic salmon genomic DNA. Conclusion We validate and demonstrate the usefulness of the 16K microarray over a wide range of teleosts, even for transcriptome targets from species distantly related to salmonids. We show the potential of the use of the microarray in a variety of experimental settings through hybridization studies that examine the binding of targets derived from different organs and tissues. Intraspecific variation in transcriptome expression is evaluated and discussed. Finally, BAC hybridizations are demonstrated as a rapid and accurate means to identify gene content.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - Matthew L Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Glenn A Cooper
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - Gordon D Brown
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - A Ross Gibbs
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - Colleen C Nelson
- The Prostate Centre at Vancouver General Hospital, Gene Array Facility, Vancouver, British Columbia, V6H 3Z6, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Ben F Koop
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| |
Collapse
|