51
|
Baryla M, Kaczynski P, Goryszewska E, Riley SC, Waclawik A. Prostaglandin F 2α stimulates adhesion, migration, invasion and proliferation of the human trophoblast cell line HTR-8/SVneo. Placenta 2019; 77:19-29. [PMID: 30827352 DOI: 10.1016/j.placenta.2019.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The amount of prostaglandin F2α (PGF2α) in the uterine lumen increases during the window of implantation in many mammals, including humans. We hypothesized that PGF2α regulates processes related to human embryo implantation. METHODS The effect of PGF2α was studied using an in vitro model of human extravillous trophoblast (EVT) cell line (HTR-8/SVneo). Adhesion, proliferation, invasion and migration assays, zymography for metalloproteinases (MMP) activity, and gene/protein expression analyses were applied. Doses of 100 nM and/or 1 μM of PGF2α and fluprostenol were used. PGF2α receptor (PTGFR), MMP9 and MMP2 proteins in the human first trimester placenta were localized by immunohistochemistry and immunofluorescence. RESULTS This study is the first reporting the expression of PTGFR protein in the first trimester placenta, as well as in HTR-8/SVneo cells. PGF2α and fluprostenol increased HTR-8/SVneo cell proliferation and adhesion to extracellular matrix protein (P < 0.05). This effect was abolished by mitogen activated protein kinases (MAPK) inhibitor. PGF2α induced phosphorylation of focal adhesion kinase and MAPK1/3 (P < 0.05). PGF2α increased mRNA content and protein activity of MMP9, and gene and protein expression of interleukin-6 (P < 0.05). EVT cell migration and invasiveness were stimulated by PGF2α (P < 0.05). The PGF2α effect on cell invasion was reduced by inhibitors of MMP2, MMP9 and mTOR. In all experiments, the stimulatory effects of PGF2α were diminished by using a PTGFR antagonist. DISCUSSION Our findings suggest a significant role for PGF2α in mechanisms associated with implantation. PGF2α acting by PTGFR in HTR-8/SVneo cells stimulates their adhesion and proliferation through the MAPK signaling pathway and increases invasiveness inducing MMP proteolytic activity and mTOR signaling.
Collapse
Affiliation(s)
- Monika Baryla
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland
| | - Piotr Kaczynski
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland
| | - Ewelina Goryszewska
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland
| | - Simon C Riley
- MRC Centre for Reproductive Health, University of Edinburgh, UK
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
52
|
Liu Y, Wang L, Shi H. The biological function of ELABELA and APJ signaling in the cardiovascular system and pre-eclampsia. Hypertens Res 2019; 42:928-934. [PMID: 30626933 DOI: 10.1038/s41440-018-0193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is characterized by hypertension and proteinuria. The etiology of PE is not completely understood but is believed to involve placental insufficiency and maternal vascular damage. Growing evidence supports an important role for the apelin receptor (APJ) system in regulating cardiovascular physiology. There are two vertebrate APJ ligands, APELIN and ELABELA, both of which mediate vasodilatory functions. A recent study linked deficient ELABELA signaling and the development of PE, though the molecular mechanism remains largely unknown. In this review, we summarize the biological function of the ELABELA and APJ system in cardiovascular homeostasis and discuss the potential mechanisms by which ELABELA and APJ regulate placenta trophoblast invasion and vascular functions and participate in the development of PE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongjun Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
53
|
Novoa Herran SS, Castelblanco M, Sanchez-Gomez M, Umaña Pérez A. Transforming Growth Factor Beta has Dual Effects on MMP9 and uPA Expression in HTR-8/SVneo Human Trophoblastic Cell Line. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n1.69527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invasion of trophoblast into endometrium is vital for successful pregnancy development. MMP9 and uPA are key proteases in this process, but it is still not clear the regulation of its expression by Transforming Growth Factor Beta (TGF-β), known negative regulator of trophoblast invasion. We evaluated the effect of TGF-β on the transcriptional expression of uPA and MMP9 over time, in HTR- /SVneo trophoblast cells cultured with or without 0.5 % fetal bovine serum, via RT qPCR. The involved transcription factors and signaling pathways were analyzed in silico, using Proscan, Enrich, PCViz and WikiPathway. Results showed that that TGF-β regulates the expression of uPA and MMP9. Serum modified the nature of TGF-β’s effects on uPA expression, from negative without serum to positive with it, showing opposite effects on MMP9 expression. In silico analysis evidenced different transcription factors for each protease, some belonging to TGF-β ssignaling pathway, and crosstalk with MAPK and Wnt/β-catenin pathways. The TGF-β ddual role is discussed proposing that serum affects the cellular context. Transcriptional regulation of MMP9 and uPA by TGF-β is differential and depends on serum presence and evaluation time.
Collapse
|
54
|
Zeng M, Luo Y, Xu C, Li R, Chen N, Deng X, Fang D, Wang L, Wu J, Luo M. Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus. Am J Physiol Cell Physiol 2018; 316:C186-C197. [PMID: 30517030 DOI: 10.1152/ajpcell.00428.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Platelet (PLT)-endothelial cell (EC) interaction appears to contribute to phenotypic transition of vascular smooth muscle cells (VSMCs), which play an important role in the physiological and pathological process of vascular complications in type 2 diabetes mellitus (DM2). However, the precise mechanisms by which interactions between PLTs and ECs affect VSMC phenotype have largely remained unclear. We determined the effect of diabetic PLT-EC interaction to influence VSMC migration, proliferation, and phenotypic transformation in triple-cell coculture models using the quantitative real-time PCR, Western blot, fluorescence microscopy, wound scratch assays, CCK-8 assays, and gelatin zymography assays. Our results revealed DM2 PLT-EC interaction to be associated with a significant downregulation of VSMC-specific contractile phenotypic genes and proteins, including SM22α, smooth muscle actin, Smoothelin-B, and smooth muscle-myosin heavy chain. Inversely, VSMC-specific proliferative phenotype gene and protein levels, including cyclin D1 and 2, nonmuscle myosin heavy chain B, and PCNA were in upregulation. Furthermore, the DM2-originated PLT-EC interaction promoted the expression level of transforming growth factor-β1, and the PI3K/Akt and matrix metalloproteinase 9 signaling pathway was activated subsequently. Finally, these reactions contributed to a synthetic phenotype of VSMCs, including the proliferation, migration, and gelatinolytic activities. These findings suggest that PLT-EC interaction modulates the phenotypic transition of VSMCs between a contractile and proliferative/synthetic phenotype under diabetic conditions, conceivably providing important implications regarding the mechanisms controlling the VSMC phenotypic transition and the development of cardiovascular complications.
Collapse
Affiliation(s)
- Min Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
55
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
56
|
Yi Y, Cheng JC, Klausen C, Leung PC. TGF-β1 inhibits human trophoblast cell invasion by upregulating cyclooxygenase-2. Placenta 2018; 68:44-51. [DOI: 10.1016/j.placenta.2018.06.313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 01/13/2023]
|
57
|
MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther 2018; 26:2189-2205. [PMID: 30061037 DOI: 10.1016/j.ymthe.2018.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Preeclampsia (PE) is the leading cause of maternal and neonatal morbidity and mortality. Defects in trophoblast invasion, differentiation of endovascular extravillous trophoblasts (enEVTs), and spiral artery remodeling are key factors in PE development. There are no markers clinically available to predict PE, leaving expedited delivery as the only effective therapy. Dysregulation of miRNA in clinical tissues and maternal circulation have opened a new avenue for biomarker discovery. In this study, we investigated the role of miR-218-5p in PE development. miR-218-5p was highly expressed in EVTs and significantly downregulated in PE placentas. Using first-trimester trophoblast cell lines and human placental explants, we found that miR-218-5p overexpression promoted, whereas anti-miR-218-5p suppressed, trophoblast invasion, EVT outgrowth, and enEVT differentiation. Furthermore, miR-218-5p accelerated spiral artery remodeling in a decidua-placenta co-culture. The effect of miR-218-5p was mediated by the suppression of transforming growth factor (TGF)-β2 signaling. Silencing of TGFB2 mimicked, whereas treatment with TGF-β2 partially reversed, the effects of miR-218-5p. Taken together, these findings demonstrate that miR-218-5p promotes trophoblast invasion and enEVT differentiation through a novel miR-218-5p-TGF-β2 pathway. This study elucidates the role of an miRNA in enEVT differentiation and spiral artery remodeling and suggests that downregulation of miR-218-5p contributes to PE development.
Collapse
|
58
|
Transforming growth factor β1 promotes invasion of human JEG-3 trophoblast cells via TGF-β/Smad3 signaling pathway. Oncotarget 2018; 8:33560-33570. [PMID: 28432277 PMCID: PMC5464890 DOI: 10.18632/oncotarget.16826] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/26/2017] [Indexed: 11/28/2022] Open
Abstract
Transforming growth factor (TGF)-β1 is involved invasion of human trophoblasts. However, the underlying mechanisms remain unclear. In this study, we performed Transwell assay and found that TGF-β1 promoted the invasion of trophoblast cell line JEG-3. Treatment with TGF-β1 up-regulated the expression of receptor-regulated Smad transcription factors Smad2 and Smad3, and two invasive-associated genes, namely, matrix metallopeptidase (MMP)-9 and MMP-2, in JEG-3 cells. Over-expressing activin receptor-like kinase (ALK) 5, the TGF-β type I receptor (TβRI) enhanced the up-regulation of Smad2, Smad3, MMP-9, and MMP-2 induced by TGF-β1, whereas application of TβRI inhibitor SB431542 diminished the stimulatory effects of TGF-β1 on these genes. Furthermore, transfection of Smad3 and ALK-5 seperately or in combination into JEG-3 cells before TGF-β1 treatment significantly increased the expression of MMP-9 and MMP-2. By contrast, silencing Smad3 and Smad2 by siRNAs significantly decreased the expression of MMP-9 and MMP-2, with Smad3 silence having a more potent inhibitory effect. Inhibiting TβRI with SB431542 or knockdown of Smad3, but not Smad2, abolished the stimulatory effect of TGF-β1 on the invasion of JEG-3 cells. Taken together, the results indicate that TGF-β1 activates the Smads signaling pathway in JEG-3 trophoblast cells and Smad3 play a key role in TGF-β1-induced invasion of JEG-3 and up-regulation of MMP-9 and MMP-2 expression.
Collapse
|
59
|
Zhao HJ, Klausen C, Li Y, Zhu H, Wang YL, Leung PCK. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis 2018; 9:174. [PMID: 29416020 PMCID: PMC5833391 DOI: 10.1038/s41419-017-0230-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
BMP2 expression is spatiotemporally correlated with embryo implantation and is crucial for endometrial decidualization and fertility in mice. BMP2 has been reported to increase the mesenchymal adhesion molecule N-cadherin and enhance cell invasion in cancer cells; moreover, studies suggest that N-cadherin promotes placental trophoblast invasion. However, whether BMP2 can promote trophoblast cell invasion during placentation remains unknown. The objective of our study was to investigate the effects of BMP2 on human trophoblast cell invasion and the involvement of N-cadherin and SMAD signaling. Primary and immortalized (HTR8/SVneo) cultures of human extravillous trophoblast (EVT) cells were used as study models. Treatment with recombinant human BMP2 increased HTR8/SVneo cell transwell Matrigel invasion as well as N-cadherin mRNA and protein levels, but had no significant effect on cell proliferation. Likewise, BMP2 treatment enhanced primary human EVT cell invasion and N-cadherin production. Basal and BMP2-induced invasion were attenuated by small interfering RNA-mediated downregulation of N-cadherin in both HTR8/SVneo and primary EVT cells. Intriguingly, BMP2 induced the phosphorylation/activation of both canonical SMAD1/5/8 and non-canonical SMAD2/3 signaling in HTR8/SVneo and primary EVT cells. Knockdown of SMAD2/3 or common SMAD4 totally abolished the effects of BMP2 on N-cadherin upregulation in HTR8/SVneo cells. Upregulation of SMAD2/3 phosphorylation and N-cadherin were totally abolished by type I receptor activin receptor-like kinases 2/3 (ALK2/3) inhibitor DMH1; moreover, knockdown of ALK2 or ALK3 inhibited N-cadherin upregulation. Interestingly, activation of SMAD2/3 and upregulation of N-cadherin were partially attenuated by ALK4/5/7 inhibitor SB431542 or knockdown of ALK4, but not ALK5. Our results show that BMP2 promotes trophoblast cell invasion by upregulating N-cadherin via non-canonical ALK2/3/4-SMAD2/3-SMAD4 signaling.
Collapse
Affiliation(s)
- Hong-Jin Zhao
- Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, PR China, 250021.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Yan Li
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 100101
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4.
| |
Collapse
|
60
|
Renaud SJ, Scott RL, Chakraborty D, Rumi MAK, Soares MJ. Natural killer-cell deficiency alters placental development in rats. Biol Reprod 2017; 96:145-158. [PMID: 28395334 DOI: 10.1095/biolreprod.116.142752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are the most prevalent leukocyte population in the uterus during early pregnancy. Natural killer cells contribute to uterine vascular (spiral artery) remodeling in preparation for the increased demand on these vessels later in pregnancy. A second wave of spiral artery modification is directed by invasive trophoblast cells. The significance of the initial wave of NK-cell-mediated vascular remodeling in species exhibiting deep trophoblast invasion such as humans and rats is not known. The purpose of this study was to generate a genetic model of NK-cell deficiency in rats, and determine the consequences of NK-cell deficiency on spiral artery remodeling and reproductive outcomes. To accomplish this task, we utilized zinc finger nuclease-mediated genome editing of the rat interleukin-15 (Il15) gene. Il15 encodes a cytokine required for NK-cell lineage development. Using this strategy, a founder rat was generated containing a frameshift deletion in Il15. Uteri of females harboring a homozygous mutation at the Il15 locus contained no detectable NK cells. NK-cell deficiency did not impact fetal growth or viability. However, NK-cell deficiency caused major structural changes to the placenta, including expansion of the junctional zone and robust, early-onset activation of invasive trophoblast-guided spiral artery remodeling. In summary, we successfully generated an NK-cell-deficient rat and showed, using this model, that NK cells dampen the extent of trophoblast invasion and delay trophoblast-directed spiral artery remodeling. This study furthers our understanding of the role of NK cells on uterine vascular remodeling, trophoblast invasion, and placental development.
Collapse
Affiliation(s)
- Stephen J Renaud
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Regan L Scott
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damayanti Chakraborty
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mohammad A K Rumi
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
61
|
Cheng JC, Chang HM, Leung PCK. TGF-β1 Inhibits Human Trophoblast Cell Invasion by Upregulating Connective Tissue Growth Factor Expression. Endocrinology 2017; 158:3620-3628. [PMID: 28977597 DOI: 10.1210/en.2017-00536] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/18/2017] [Indexed: 11/19/2022]
Abstract
Appropriate trophoblast invasion into the maternal endometrium is essential for successful human implantation and placentation. Connective tissue growth factor (CTGF), also known as CCN2, is a matricellular protein that is expressed in the placenta. Interestingly, the CTGF expression levels in the placenta and serum from patients with severe preeclampsia or fetal growth restriction are higher than those from healthy controls. However, to date, the role of CTGF in the regulation of trophoblast cell invasion remains unclear. Transforming growth factor-β1 (TGF-β1) is a potent stimulator of CTGF expression and has been shown to inhibit trophoblast cell invasiveness. However, whether CTGF mediates TGF-β1-inhibited human trophoblast cell invasion is unknown. In the present study, we show that treatment with TGF-β1 upregulates CTGF expression in a human trophoblast cell line, HTR-8/SVneo, and in primary human trophoblast cells. Our results also demonstrate that the SMAD2/3 signaling pathways are required for TGF-β1-induced upregulation of CTGF. Importantly, CTGF knockdown attenuates TGF-β1-inhibited cell invasion. Furthermore, cell invasiveness is decreased by treatment with recombinant CTGF. These results provide evidence that CTGF mediates TGF-β1-inhibited human trophoblast cell invasion.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
62
|
Soto SDF, Melo JOD, Marchesi GD, Lopes KL, Veras MM, Oliveira IBD, Souza RMD, de Castro I, Furukawa LNS, Saldiva PHN, Heimann JC. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system. PLoS One 2017; 12:e0183314. [PMID: 28820906 PMCID: PMC5562329 DOI: 10.1371/journal.pone.0183314] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
METHODS Female Wistar rats were exposed to filtered air (F) or to concentrated fine particulate matter (P) for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP) beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR. RESULTS Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII) and its receptors AT1 (AT1R) and AT2 (AT2R) were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group. CONCLUSIONS Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.
Collapse
Affiliation(s)
- Sônia de Fátima Soto
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Juliana Oliveira de Melo
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Guilherme D'Aprile Marchesi
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Karen Lucasechi Lopes
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Mariana Matera Veras
- Department of Pathology / Pathology / Laboratory of Experimental Air Pollution, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Ivone Braga de Oliveira
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Regiane Machado de Souza
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Isac de Castro
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Luzia Naôko Shinohara Furukawa
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology / Pathology / Laboratory of Experimental Air Pollution, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Joel C Heimann
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| |
Collapse
|
63
|
Haider S, Kunihs V, Fiala C, Pollheimer J, Knöfler M. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast. Placenta 2017; 57:17-25. [PMID: 28864007 DOI: 10.1016/j.placenta.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION TGF-β superfamily members are thought to play a pivotal role in placental development and differentiation. However, their downstream effectors, the Smad transcription factors, have been poorly investigated in human trophoblasts. METHODS Expression and localisation of the canonical TGF-β targets Smad2/3 and their regulators (Smad4 and Smad7) were investigated in first trimester placenta and purified cytotrophoblast (CTB) subtypes using immunofluorescence, western blotting and qPCR. Canonical and non-canonical activation was analysed in nuclear/cytoplasmic extracts of trophoblast subtypes as well as in tissue sections using antibodies against Smad2/3, phosphorylated either at the C-terminus (pSmad2C/3C) or in their linker regions (pSmad2L/3L). Smad phosphorylation was also examined in differentiating extravillous trophoblasts (EVTs) in the absence or presence of decidual stromal cell (DSC)-conditioned medium. RESULTS Smad2, Smad4 and Smad7 protein were uniformly expressed between 6th and 12th week placentae and the different isolated CTB subtypes. Activated pSmad2L was mainly detected in nuclei and cytoplasm of villous CTBs, whereas pSmad2C was absent from these cells. In contrast, pSmad2C could be detected in the cytoplasm of cell column trophoblasts and in the cytoplasm/nuclei of EVTs. Smad3 and its phosphorylated forms pSmad3C and pSmad3L specifically localised to EVT nuclei. During EVT differentiation autocrine activation of pSmad2C/3C and pSmad3L was observed. DSC-conditioned medium further increased Smad2/3 phosphorylation in EVTs. DISCUSSION The lack of pSmad2C in villous CTBs suggests that other mitogens than TGF-β could promote Smad2 linker phosphorylation under homeostatic conditions. Whereas autocrine signalling activates Smad2/3 in differentiating EVTs, paracrine factors contribute to Smad phosphorylation in these cells.
Collapse
Affiliation(s)
- S Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - V Kunihs
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - C Fiala
- Gynmed Clinic, Vienna, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - M Knöfler
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
64
|
Gaynor LM, Colucci F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front Immunol 2017; 8:467. [PMID: 28484462 PMCID: PMC5402472 DOI: 10.3389/fimmu.2017.00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our understanding of development and function of natural killer (NK) cells has progressed significantly in recent years. However, exactly how uterine NK (uNK) cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.
Collapse
Affiliation(s)
- Louise M. Gaynor
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
65
|
Menkhorst E, Winship A, Van Sinderen M, Dimitriadis E. Human extravillous trophoblast invasion: intrinsic and extrinsic regulation. Reprod Fertil Dev 2017; 28:406-15. [PMID: 25163485 DOI: 10.1071/rd14208] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 12/12/2022] Open
Abstract
During the establishment of pregnancy, a human blastocyst implants into the uterine endometrium to facilitate the formation of a functional placenta. Implantation involves the blastocyst adhering to the uterine luminal epithelium before the primitive syncytiotrophoblast and subsequently specialised cells, the extravillous trophoblast (EVT), invade into the decidua in order to engraft and remodel uterine spiral arteries, creating the placental blood supply at the end of the first trimester. Defects in EVT invasion lead to abnormal placentation and thus adverse pregnancy outcomes. The local decidual environment is thought to play a key role in regulating trophoblast invasion. Here we describe the major cell types present in the decidua during the first trimester of pregnancy and review what is known about their regulation of EVT invasion. Overall, the evidence suggests that in a healthy pregnancy almost all cell types in the decidua actively promote EVT invasion and, further, that reduced EVT invasion towards the end of the first trimester is regulated, in part, by the reduced invasive capacity of EVTs shown at this time.
Collapse
Affiliation(s)
- E Menkhorst
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - A Winship
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - M Van Sinderen
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - E Dimitriadis
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| |
Collapse
|
66
|
Liu J, Song G, Lin X, Pang X, Meng T. Upregulated unique long 16 binding protein 1 detected in preeclamptic placenta affects human extravillous trophoblast cell line (HTR-8/SVneo) invasion by modulating the function of uterine natural killer cells. Exp Ther Med 2017; 13:1447-1455. [PMID: 28413491 PMCID: PMC5377380 DOI: 10.3892/etm.2017.4143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/23/2016] [Indexed: 11/05/2022] Open
Abstract
Well-controlled trophoblast invasion at the maternal-fetal interface is crucial for normal placentation and successful pregnancy, otherwise pathological conditions of pregnancy occur, such as preeclampsia. In previous studies, it has been demonstrated that unique long 16 binding protein (ULBP)1, a ligand for the natural-killer group (NKG)2D receptor on uterine natural killer (uNK) cells, is upregulated in the placenta in patients with preeclampsia. As they are present on the majority of the decidua, uNK have an important role in pregnancy. The aim of the present study was to determine the role of ULBP1 in trophoblast cell invasion, which is closely associated with the occurrence of preeclampsia. In the present study, ULBP1 expression levels in placentas collected after cesarean section from women with preeclampsia and normal pregnant women were determined by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blotting. The effects of ULBP1 on extravillous trophoblast cell line (HTR-8/SVneo) invasion mediated via uNK cells and the underlying mechanisms were investigated. mRNA and protein expression levels of ULBP1 were significantly upregulated (P<0.05) in preeclamptic placentas compared with normal controls. ULBP1 inhibited HTR-8/SVneo cells via the regulation of biological functions of uNK cells, including the downregulation of NKG2D expression on uNK cells and the stimulation of production of cytokines and chemokines that affect extravillous cytotrophoblast invasion by uNK cells. ULBP1 may have an important role in the pathophysiology of preeclampsia through the modification of biological functions of uNK cells, which may affect trophoblast invasion.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Song
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuewen Lin
- Department of Stem Cells and Regenerative Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
67
|
E Davies J, Pollheimer J, Yong HEJ, Kokkinos MI, Kalionis B, Knöfler M, Murthi P. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh Migr 2016; 10:310-21. [PMID: 27070187 DOI: 10.1080/19336918.2016.1170258] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A successful pregnancy depends on the intricate and timely interactions of maternal and fetal cells. Placental extravillous cytotrophoblast invasion involves a cellular transition from an epithelial to mesenchymal phenotype. Villous cytotrophoblasts undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts and gain the capacity to migrate and invade. This review summarizes our current knowledge regarding known regulators of EMT in the human placenta, including the inducers of EMT, upstream transcription factors that control EMT and the downstream effectors, cell adhesion molecules and their differential expression and functions in pregnancy pathologies, preeclampsia (PE) and fetal growth restriction (FGR). The review also describes the research strategies that were used for the identification of the functional role of EMT targets in vitro. A better understanding of molecular pathways driven by placental EMT and further elucidation of signaling pathways underlying the developmental programs may offer novel strategies of targeted therapy for improving feto-placental growth in placental pathologies including PE and FGR.
Collapse
Affiliation(s)
- Jessica E Davies
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Jürgen Pollheimer
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Hannah E J Yong
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Maria I Kokkinos
- b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Bill Kalionis
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Martin Knöfler
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Padma Murthi
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia.,d Department of Medicine , School of Clinical Sciences, Monash University , Clayton , Victoria , Australia
| |
Collapse
|
68
|
Lash GE, Pitman H, Morgan HL, Innes BA, Agwu CN, Bulmer JN. Decidual macrophages: key regulators of vascular remodeling in human pregnancy. J Leukoc Biol 2016; 100:315-25. [PMID: 26819320 DOI: 10.1189/jlb.1a0815-351r] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Successful remodeling of the uterine spiral arteries is essential for a complication-free pregnancy and is best described in terms of its morphologic features. The molecular mediators and cellular sources of spiral artery remodeling are not known, although a role for uterine leukocytes has been proposed. Immunohistochemical assessment of placental bed biopsies demonstrated uterine NK cells, macrophages, and T lymphocytes in the wall and adventitia of spiral arteries at different stages of remodeling, regardless of the presence of extravillous trophoblast cells. Leukocytes were more prevalent in vessel adventitia than wall, and macrophages were the most abundant leukocyte population. Macrophages, separated from early pregnancy decidua, did not alter extravillous trophoblast cells invasion or vascular smooth muscle cell organization or differentiation status but did induce extracellular matrix breakdown (reduced immunostaining of laminin, P = 0.05; fibronectin, P = 0.02) and were able to phagocytose apoptotic vascular smooth muscle cells. Decidual macrophages were shown to secrete a wide range of cytokines (IL-1β, -2, -4, -5, -6, -8, -10, and -13 and TNF-α), proteases (matrix metalloproteinase-1, -2, -7, -9, and -10), and angiogenic growth factors (angiogenin, keratinocyte growth factor, fibroblast growth factor B, vascular endothelial growth factor A, and angiopoietin-1 and -2). We conclude that spiral artery remodeling involves the coordinated activity of a range of cell types, including extravillous trophoblast cells, decidual uterine NK cells, and macrophages in a carefully, spatiotemporally regulated manner.
Collapse
Affiliation(s)
- Gendie E Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China; Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hedele Pitman
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah L Morgan
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara A Innes
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chinedu N Agwu
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
69
|
Ning F, Liu H, Lash GE. The Role of Decidual Macrophages During Normal and Pathological Pregnancy. Am J Reprod Immunol 2016; 75:298-309. [PMID: 26750089 DOI: 10.1111/aji.12477] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages perform many specific functions including host defense, homeostasis, angiogenesis, and tissue development. Macrophages are the second most abundant leukocyte population in the non-pregnant endometrium and pregnant decidua and likely play a central role in the establishment and maintenance of normal pregnancy. Importantly, aberrantly activated uterine macrophages can affect trophoblast function and placental development, which may result in various adverse pregnancy outcomes ranging from pre-eclampsia to fetal growth restriction or demise. Only by fully understanding the roles of macrophage in pregnancy will we be able to develop interventions for the treatment of these various pregnancy complications. This review discusses the general origin and classification of monocytes and macrophages and focuses on the phenotype and functional roles of decidual macrophage at the maternal-fetal interface in normal pregnancy, as well as discussing the potential contribution of the abnormal state of these cells to various aspects of pregnancy pathologies.
Collapse
Affiliation(s)
- Fen Ning
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huishu Liu
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
70
|
Silva JF, Serakides R. Intrauterine trophoblast migration: A comparative view of humans and rodents. Cell Adh Migr 2016; 10:88-110. [PMID: 26743330 DOI: 10.1080/19336918.2015.1120397] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juneo F Silva
- a Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Rogéria Serakides
- b Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
71
|
Li Y, Klausen C, Zhu H, Leung PCK. Activin A Increases Human Trophoblast Invasion by Inducing SNAIL-Mediated MMP2 Up-Regulation Through ALK4. J Clin Endocrinol Metab 2015; 100:E1415-27. [PMID: 26305619 DOI: 10.1210/jc.2015-2134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Activin A increases matrix metalloproteinase (MMP) 2 expression and cell invasion in human trophoblasts, but whether the expression of MMP2 is essential for the proinvasive effect of activin A has yet to be determined. Moreover, the identity of the activin receptor-like kinase (ALK; TGF-β type I receptors) and downstream transcription factors (eg, SNAIL and SLUG) mediating the effects of activin on MMP2 expression and trophoblast cell invasion remains unknown. OBJECTIVE To elucidate the role of MMP2 in activin A-induced human trophoblast cell invasion as well as the involvement of ALK4 and SNAIL. DESIGN HTR8/SVneo immortalized human extravillous cytotrophoblast (EVT) cells and primary cultures of human first-trimester EVT cells were used as study models. Small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions. MAIN OUTCOME MEASURES Levels of mRNA and protein were examined by reverse transcription-quantitative real-time PCR and Western blot, respectively. Cell invasiveness was measured by Matrigel-coated transwell assays. RESULTS Treatment of HTR8/SVneo cells with activin A increased the production of SNAIL, SLUG, and MMP2 without altering that of MMP9, TIMP1, TIMP2, TWIST, RUNX2, ZEB1, or ZEB2. Similarly, activin A up-regulated the mRNA and protein levels of SNAIL and MMP2 in primary EVT cells. Knockdown of SNAIL attenuated activin A-induced MMP2 up-regulation in HTR8/SVneo and primary EVT cells. In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pretreatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3, or common SMAD4. Likewise, knockdown of ALK4 or SMAD4 abolished the stimulatory effects of activin A on SNAIL and MMP2 expression in primary EVT cells. Importantly, activin A-induced HTR8/SVneo and primary EVT cell invasion were attenuated by siRNA-mediated depletion of ALK4 or MMP2. CONCLUSION Activin A induces human trophoblast cell invasion by inducing SNAIL-mediated MMP2 expression through ALK4 in a SMAD2/3-SMAD4-dependent manner.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
72
|
Lash GE. Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023010. [PMID: 26385089 DOI: 10.1101/cshperspect.a023010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular cross-talk at the feto-maternal interface occurs between many different cell types, including uterine leukocytes, extravillous trophoblast cells, and uterine spiral arteries, is essential for the establishment and maintenance of pregnancy. This review concentrates on human pregnancy and examines three main areas in which cross-talk occurs; immune tolerance, regulation of extravillous trophoblast invasion, and remodeling of the uterine spiral arteries.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
73
|
Barrera D, Díaz L, Noyola-Martínez N, Halhali A. Vitamin D and Inflammatory Cytokines in Healthy and Preeclamptic Pregnancies. Nutrients 2015; 7:6465-90. [PMID: 26247971 PMCID: PMC4555132 DOI: 10.3390/nu7085293] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia is a pregnancy disease characterized by hypertension and proteinuria. Among several disorders, the imbalance of inflammatory cytokines and the alteration of vitamin D metabolism have been reported in preeclampsia. The effects of calcitriol upon inflammatory cytokines has been demonstrated. In healthy pregnant women there is a shift toward a Th2 cytokine profile, which is necessary for an adequate pregnancy outcome. As compared with normal pregnancy, high pro-inflammatory and low anti-inflammatory cytokine levels have been observed in preeclamptic women. Preeclampsia has been associated with low calcitriol levels and vitamin D deficiency is correlated with a higher risk of the development of this disease. It has been demonstrated that placenta is a source as well as the target of calcitriol and cytokines and placental dysfunction has been associated with preeclampsia. Therefore, the present manuscript includes a review about serum calcitriol levels in non-pregnant, pregnant, and preeclamptic women as well as a review on the fetoplacental vitamin D metabolism in healthy and preeclamptic pregnancies. In addition, circulating and fetoplacental inflammatory cytokines in healthy and preeclamptic pregnancies are reviewed. Finally, the effects of calcitriol upon placental pro-inflammatory cytokines are also explored. In conclusion, maternal and placental calcitriol levels are low in preeclampsia which may explain, at least in part, high pro-inflammatory cytokine levels in this disease.
Collapse
Affiliation(s)
- David Barrera
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| | - Lorenza Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| | - Nancy Noyola-Martínez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| | - Ali Halhali
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| |
Collapse
|
74
|
Hu Y, Blair JD, Yuen RKC, Robinson WP, von Dadelszen P. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity. Mol Hum Reprod 2015; 21:452-65. [PMID: 25697377 DOI: 10.1093/molehr/gav007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022] Open
Abstract
Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.
Collapse
Affiliation(s)
- Yuxiang Hu
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - John D Blair
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ryan K C Yuen
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wendy P Robinson
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter von Dadelszen
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
75
|
Liao WC, Liu CH, Chen CH, Hsu WM, Liao YY, Chang HM, Lan CT, Huang MC, Shyu MK. β-1,4-Galactosyltransferase III suppresses extravillous trophoblast invasion through modifying β1-integrin glycosylation. Placenta 2015; 36:357-64. [PMID: 25659296 DOI: 10.1016/j.placenta.2015.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/02/2015] [Accepted: 01/16/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Glycosylation controls diverse protein functions and regulates various cellular phenotypes. Trophoblast invasion is essential for normal placental development. However, the role of glycosylation in human placenta throughout pregnancy is still unclear. The β-1,4-galactosyltransferase III (B4GALT3) has been found to regulate cancer cell invasion. We therefore investigated the expression of B4GALT3 in placenta and its roles in trophoblast. METHODS B4GALT3 protein expression was examined by quantitative Western blotting analysis in human placentas. For identification of B4GALT3-positive cells in normal human placenta, immunohistochemistry and immunofluorescence methods were used. To investigate effects of B4GALT3 on extravillous trophoblast (EVT)-like cell and primary EVT cells, we analyzed cell growth, adhesion, migration, and invasion in mock and B4GALT3-transfected cell. RESULTS B4GALT3 expression significantly increased in third trimester human placenta. Immunostaining revealed that B4GALT3 expressed in placental villous cytotrophoblast, syncytiotrophoblast, and a subpopulation of EVT cells throughout pregnancy. Interestingly, we found increases in the expression level and percentage of B4GALT3-positive cells in third trimester EVT, but not in syncytiotrophoblasts and cytotrophoblasts of placental villi. Overexpression of B4GALT3 in HTR8/SVneo cells and primary trophoblast cells significantly suppressed cell migration. In addition, B4GALT3 suppressed cell invasion, and enhanced cell adhesion to laminin in HTR8/SVneo cells. Notably, we found that B4GALT3 modified glycans on β1-integrin, suppressed focal adhesion kinase (FAK) signaling, and enhanced β1-integrin degradation. DISCUSSION We propose that B4GALT3-mediated glycosylation change not only enhances β1-integrin binding to laminin, but also attenuates β1-integrin stability. Our findings suggest that B4GALT3 is a critical regulator for suppressing EVT invasion in the late stages of pregnancy.
Collapse
Affiliation(s)
- W-C Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - C-H Liu
- Research and Development Center for Immunology, China Medical University, Taichung 404, Taiwan
| | - C-H Chen
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - W-M Hsu
- Department of Surgery, National Taiwan University Hospitaland College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Y-Y Liao
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Chung-Shan South Road, Taipei 100, Taiwan
| | - H-M Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - C-T Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - M-C Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - M-K Shyu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
76
|
Prossler J, Chen Q, Chamley L, James JL. The relationship between TGFβ, low oxygen and the outgrowth of extravillous trophoblasts from anchoring villi during the first trimester of pregnancy. Cytokine 2014; 68:9-15. [PMID: 24787051 DOI: 10.1016/j.cyto.2014.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/04/2014] [Accepted: 03/14/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND During the first trimester of human pregnancy, specialised placental cells called extravillous trophoblasts (EVTs) grow out from anchoring villi, invade the maternal decidua and remodel the uterine spiral arteries. Inadequate EVT invasion is associated with pregnancy complications including intrauterine growth restriction (IUGR) and pre-eclampsia. During early pregnancy, the placenta exists in a physiologically normal low oxygen environment, which may regulate EVT outgrowth. One potential oxygen responsive regulator of EVTs is the transforming growth factor-beta (TGFβ) family of cytokines. This work aimed to determine the role of TGFβ1, β2 and β3 in regulating EVT outgrowth in the low oxygen environment of early pregnancy. RESULTS Using a quantitative high-throughput first trimester villous explant model of EVT outgrowth we demonstrated no significant difference in the frequency of EVT outgrowth between explants treated with TGFβ1, β2 or β3. However, explants treated with TGFβ2, but not β1 or β3, produced EVT outgrowths with a significantly smaller area in comparison to untreated controls (p=0.03). When explants were cultured in 1.5% oxygen, TGFβ2, but not β1 or β3, in the conditioned medium of explants that produced EVT outgrowth was significantly reduced in comparison to 8% oxygen (p<0.05). There was no significant difference in the concentration of TGFβ2 or TGFβ3 from isolated primary EVTs cultured in 1.5% or 8% oxygen. CONCLUSIONS TGFβ2 inhibits EVT outgrowth expansion from first trimester anchoring villi. As TGFβ2 secretion from anchoring villi is down-regulated in low oxygen, these findings suggest that the low oxygen environment in early pregnancy may be important to allow EVT outgrowth expansion and promote adequate placentation.
Collapse
Affiliation(s)
- J Prossler
- Department of Obstetrics and Gynaecology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Q Chen
- Department of Obstetrics and Gynaecology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - L Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - J L James
- Department of Obstetrics and Gynaecology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
77
|
Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol 2014; 72:129-40. [PMID: 24661472 DOI: 10.1111/aji.12234] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed.
Collapse
Affiliation(s)
- Joanne Kwak-Kim
- Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA; Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | |
Collapse
|
78
|
Hannan NJ, Evans J, Salamonsen LA. Alternate roles for immune regulators: establishing endometrial receptivity for implantation. Expert Rev Clin Immunol 2014; 7:789-802. [DOI: 10.1586/eci.11.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
79
|
Kovačević TM, Radojčić L, Tošić NM, Pavlović ST, Vićovac LM. Monoclonal antibody 26 cross-reactive with β2-glycoprotein I affects human trophoblast invasion in vitro. Eur J Obstet Gynecol Reprod Biol 2013; 171:23-9. [DOI: 10.1016/j.ejogrb.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/16/2013] [Accepted: 08/05/2013] [Indexed: 11/26/2022]
|
80
|
Cheng JC, Chang HM, Leung PCK. Transforming growth factor-β1 inhibits trophoblast cell invasion by inducing Snail-mediated down-regulation of vascular endothelial-cadherin protein. J Biol Chem 2013; 288:33181-92. [PMID: 24106276 DOI: 10.1074/jbc.m113.488866] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human trophoblast cells express transforming growth factor-β (TGF-β) and TGF-β receptors. It has been shown that TGF-β1 treatment decreases the invasiveness of trophoblast cells. However, the molecular mechanisms underlying TGF-β1-decreased trophoblast invasion are still not fully understood. In the current study, we demonstrated that treatment of HTR-8/SVneo human trophoblast cells with TGF-β1 decreased cell invasion and down-regulated the expression of vascular endothelial cadherin (VE-cadherin). In addition, the inhibitory effect of TGF-β1 on VE-cadherin was confirmed in primary cultures of human trophoblast cells. Moreover, knockdown of VE-cadherin using siRNA decreased the invasiveness of HTR-8/SVneo cells and primary cultures of trophoblast cells. Treatment with TGF-β1 induced the activation of Smad-dependent signaling pathways and the expression of Snail and Slug. Knockdown of Smads attenuated TGF-β1-induced up-regulation of Snail and Slug and down-regulation of VE-cadherin. Interestingly, depletion of Snail, but not Slug, attenuated TGF-β1-induced down-regulation of VE-cadherin. Furthermore, overexpression of Snail suppressed VE-cadherin expression. Chromatin immunoprecipitation analyses showed the direct binding of Snail to the VE-cadherin promoter. These results provide evidence that Snail mediates TGF-β1-induced down-regulation of VE-cadherin, which subsequently contributed to TGF-β1-decreased trophoblast cell invasion.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- From the Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | | | | |
Collapse
|
81
|
Lee CL, Chiu PCN, Hautala L, Salo T, Yeung WSB, Stenman UH, Koistinen H. Human chorionic gonadotropin and its free β-subunit stimulate trophoblast invasion independent of LH/hCG receptor. Mol Cell Endocrinol 2013; 375:43-52. [PMID: 23684886 DOI: 10.1016/j.mce.2013.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Both paracrine and autocrine factors are involved in the regulation of trophoblast invasion. One of these factors is human chorionic gonadotropin (hCG), which stimulates trophoblast invasion. The stimulatory activity has especially been ascribed to a hyperglycosylated form of hCG (hCG-h) that is expressed in early pregnancy. We compared the stimulatory activities of different forms of hCG and its free β-subunit (hCGβ) on trophoblast invasion. hCG, hCG-h, hCGβ, and its hyperglycosylated form (hCGβ-h) stimulated the invasion of JEG-3 choriocarcinoma cells. The stimulatory effect of hCGβ was also confirmed with primary human trophoblasts. Down-regulation of the LH/hCG receptor by RNA-interference did not significantly reduce the effect of hCGβ and hCG on cell invasion. Increased invasion was associated with increased levels of MMP-2, MMP-9 and activity of uPA. Our findings suggest that hCG, hCGβ and their hyperglycosylated forms stimulate the invasion of trophoblast cells independent of the classical LH/hCG-receptor.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong Special Administrative Region.
| | | | | | | | | | | | | |
Collapse
|
82
|
Saito S, Nakashima A. Review: The role of autophagy in extravillous trophoblast function under hypoxia. Placenta 2013; 34 Suppl:S79-84. [PMID: 23306070 DOI: 10.1016/j.placenta.2012.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023]
Abstract
Autophagy, a process for cellular cleaning through the removal of intracellular components in lysosomes, is a well conserved mechanism from yeast to mammalian cells, and also contributes to the maintenance of cellular homeostasis and of the energetic balance, in cellular and tissue remodeling, and cellular defense against extracellular insults and pathogens. The role of autophagy in placentation has been clarified. Autophagy is induced in trophoblasts under physiological hypoxia during early pregnancy and seems to have a role in placentation. Recent findings suggest that impaired autophagy might induce poor placentation in preeclamptic cases. In this review, we discuss the role of autophagy and summarize the role of autophagy-related genes in placentas.
Collapse
Affiliation(s)
- S Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | |
Collapse
|
83
|
Champion H, Innes BA, Robson SC, Lash GE, Bulmer JN. Effects of interleukin-6 on extravillous trophoblast invasion in early human pregnancy. ACTA ACUST UNITED AC 2012; 18:391-400. [DOI: 10.1093/molehr/gas010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
84
|
Onogi A, Naruse K, Sado T, Tsunemi T, Shigetomi H, Noguchi T, Yamada Y, Akasaki M, Oi H, Kobayashi H. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta 2011; 32:665-670. [PMID: 21764444 DOI: 10.1016/j.placenta.2011.06.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 12/25/2022]
Abstract
During early pregnancy, extravillous trophoblast (EVT) cells are exposed to very low pO(2) values. In this study, we investigated the proteolytic functions and invasiveness of human primary EVT cells under hypoxic conditions to show the early placental pathophysiology. Placental samples (from 5 to 10 weeks gestation) were obtained at termination of pregnancy. Cytotrophoblast cells were separated by Percoll(®) gradient method and cultured on Matrigel(®) to obtain an invasive phenotype (similar to EVT). The invasion capacity (Matrigel-coated invasion assay), migration of the cells (wound healing assay), activity and expression of matrix metalloproteinase (MMP)-2 and tissue inhibitor for MMP (TIMP)-2 (gelatin gel zymography, ELISA, and quantitative RT-PCR), and expression of membrane-type (MT)1-MMP (western blot) were investigated. All cultures (except for quantitative RT-PCR) were performed under 20% oxygen, 5% oxygen, and 5% oxygen with 3 repetitions of 0.1% oxygen hypoxic stimulation for 1 h. Invasion and MMP2 activity of the cells were significantly increased in 20% and decreased in 0.1% oxygen. There was no significant difference in cell migration among the oxygen environments. Concentrations of MMP2 in the supernatant and expression of MT1-MMP were increased in both the 0.1% and 20% oxygen environments. The MMP2 mRNA level was increased after 1-h stimulation with 0.1% oxygen. The TIMP2 concentration was increased only in 20% oxygen, but the mRNA level was decreased in 0.1% oxygen. These results suggested that hypoxia might inhibit the invasive capacity and MMP2 activation of EVT cells in the early first trimester of pregnancy. Decrease in TIMP2 production may reduce the MMP2/TIMP2/MT1-MMP complex and lead to this unique behavior of EVT cells under hypoxic conditions.
Collapse
Affiliation(s)
- A Onogi
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - K Naruse
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan.
| | - T Sado
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - T Tsunemi
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - H Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - T Noguchi
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - Y Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - M Akasaki
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - H Oi
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| | - H Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, 840, Shijo-cho, Kashihara City, 6348521 Nara, Japan
| |
Collapse
|
85
|
Mechanism of maternal vascular remodeling during human pregnancy. Reprod Med Biol 2011; 11:27-36. [PMID: 29699103 DOI: 10.1007/s12522-011-0102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022] Open
Abstract
Remodeling of maternal spiral arteries by invasion of extravillous trophoblast (EVT) is crucial for an adequate blood supply to the fetus. EVT cells that migrate through the decidual tissue destroy the arterial muscular lining from the outside (interstitial invasion), and those that migrate along the arterial lumen displace the endothelium from the inside (endovascular invasion). Numerous factors including cytokines/growth factors, chemokines, cell adhesion molecules, extracellular matrix-degrading enzymes, and environmental oxygen have been proposed to stimulate or inhibit the differentiation/invasion of EVT. Nevertheless, it is still difficult to depict overall pictures of the mechanism controlling perivascular and endovascular invasion. Potential factors that direct interstitial trophoblast towards maternal spiral artery are relatively high oxygen tension in the spiral artery, maternal platelets, vascular smooth muscle cells, and Eph/ephrin system. On the other hand, very little is understood about endovascular invasion except for the involvement of endothelial apoptosis in this process. Only small numbers of molecules such as polysialylated neural cell adhesion molecules and CCR1 have been suggested as specific markers for the endovascular trophoblast. Therefore, an initial step to approach the mechanisms for endovascular invasion could be more detailed molecular characterization of the endovascular trophoblast.
Collapse
|
86
|
Berker B, Taşkın S, Kahraman K, Taşkın EA, Atabekoğlu C, Sönmezer M. The role of low-molecular-weight heparin in recurrent implantation failure: a prospective, quasi-randomized, controlled study. Fertil Steril 2011; 95:2499-502. [DOI: 10.1016/j.fertnstert.2010.12.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 12/21/2022]
|
87
|
Williams PJ, Bulmer JN, Innes BA, Broughton Pipkin F. Possible Roles for Folic Acid in the Regulation of Trophoblast Invasion and Placental Development in Normal Early Human Pregnancy1. Biol Reprod 2011; 84:1148-53. [DOI: 10.1095/biolreprod.110.088351] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
88
|
Muinelo-Romay L, Colas E, Barbazan J, Alonso-Alconada L, Alonso-Nocelo M, Bouso M, Curiel T, Cueva J, Anido U, Forteza J, Gil-Moreno A, Reventos J, Lopez-Lopez R, Abal M. High-risk endometrial carcinoma profiling identifies TGF-β1 as a key factor in the initiation of tumor invasion. Mol Cancer Ther 2011; 10:1357-66. [PMID: 21613448 DOI: 10.1158/1535-7163.mct-10-1019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometrial cancer is among the three most common cancers in females in industrialized countries. In the majority of cases, the tumor is confined to the uterus at the time of diagnosis and presents a good prognosis. However, after primary surgery, 15% to 20% of these tumors recur and have limited response to systemic therapy. We carried out gene expression profiling of high-risk recurrence endometrial cancers to identify new therapeutic approaches targeting the molecular pathways involved in the acquisition of an aggressive tumor phenotype. A microarray gene-expression analysis on a total of 51 human endometrial carcinomas revealed 77 genes specifically altered in high-risk recurrence tumors (P < 0.001). The bioinformatics analysis of gene-gene interactions and molecular relationships among these genes pointed to a prominent role for TGF-β1 signaling in the acquisition of an aggressive phenotype. We further showed that TGF-β1 has a principal role at the initiation of endometrial carcinoma invasion through the promotion of the epithelial to mesenchymal transition that leads to the acquisition of an invasive phenotype in HEC-1A and RL95-2 cells. Impairment of this initial step with SB-431542, a specific TGF-β1 inhibitor, precluded further persistent endometrial carcinoma invasion. In conclusion, we showed that the characterization of the molecular changes associated with the acquisition of an aggressive phenotype represents a realistic strategy for the rational identification and characterization of new potential therapeutic targets in an effort to improve the clinical management and the outcome of high-risk endometrial cancer patients.
Collapse
Affiliation(s)
- Laura Muinelo-Romay
- Translational Laboratory, Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Trav. Choupana s/n 15706 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Inhibition of HTRA3 stimulates trophoblast invasion during human placental development. Placenta 2010; 31:1085-92. [DOI: 10.1016/j.placenta.2010.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/17/2010] [Accepted: 10/03/2010] [Indexed: 01/19/2023]
|
90
|
Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion. J Reprod Immunol 2010; 88:1-11. [PMID: 21112094 DOI: 10.1016/j.jri.2010.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 11/21/2022]
Abstract
Successful pregnancy is dependent upon invasion of the uterine tissues by extravillous trophoblast cells (EVT). The mechanisms that control trophoblast invasion are unclear, but several cytokines and growth factors appear to be involved. We have previously demonstrated that IFN-γ inhibits EVT invasion via a mechanism partially dependent on an increase in EVT apoptosis and decreased secretion of matrix metalloproteinase (MMP)-2. In the current study we show that TNF-α, both alone and in combination with IFN-γ, inhibits EVT invasion via a mechanism associated with increased trophoblast apoptosis, decreased trophoblast proliferation and/or altered production of active proteases. TNF-α and its receptors, TNF-αRI and TNF-αRII, were immunolocalised in the placental bed. Uterine natural killer (uNK) cells, EVT and villous cytotrophoblast were shown to all produce TNF-α, and TNF-α receptors were primarily immunolocalised to EVT in the placental bed. TNF-α increased EVT apoptosis, decreased villous cytotrophoblast proliferation and increased expression of pro-MMP-9 (but not active MMP-9), urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 by EVT. The combination of TNF-α and IFN-γ inhibited EVT via a mechanism associated with increased EVT apoptosis, reduced proliferation, reduced pro-MMP-2 secretion and increased secretion of uPA. TNF-α is one of several decidua-derived factors with the capacity to inhibit EVT invasion. The mode of activity of TNF-α was modified by the presence of IFN-γ, suggesting that the local cytokine milieu may be critical in determining spatial and/or temporal changes in EVT invasion.
Collapse
|
91
|
Waddell JM, Evans J, Jabbour HN, Denison FC. CTGF expression is up-regulated by PROK1 in early pregnancy and influences HTR-8/Svneo cell adhesion and network formation. Hum Reprod 2010; 26:67-75. [PMID: 21098624 PMCID: PMC3005999 DOI: 10.1093/humrep/deq294] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prokineticin-1 (PROK1) and connective tissue growth factor (CTGF) are expressed in human endometrium and first-trimester decidua and have individually been proposed to have roles in implantation and placentation. We have recently demonstrated that CTGF may be a target gene for PROK1 in gene array analysis of a prokineticin receptor-1 stably transfected Ishikawa endometrial epithelial cell line (PROKR1-Ishikawa). The first aim of the study was to determine the effect of PROK1 on CTGF expression in PROKR1-Ishikawa cells and first-trimester decidua samples. Secondly, the effect of CTGF on trophoblast-derived HTR-8/SVneo cell adhesion and network formation was investigated. METHODS AND RESULTS Real-time qPCR showed that CTGF expression is elevated in first-trimester decidua compared with non-pregnant endometrium. In decidua, CTGF co-localized with PROKR1 to the glandular epithelium and a subset of stromal cells. PROK1 increased CTGF mRNA and protein expression in PROKR1-Ishikawa cells and first-trimester human decidua (8–12 weeks gestation). Knock down of endogenous PROK1 using micro RNA constructs targeted at PROK1, resulted in decreased expression of CTGF mRNA and protein in decidua. Inhibitors of specific cell signalling molecules demonstrated that PROK1 regulates CTGF expression via the Gq, phospholipase C (PLC), cSrc, epidermal growth factor receptor (EGFR), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase pathway activation. Treatment of trophoblast-derived HTR-8/Svneo cells with 1 µg/ml CTGF significantly increased adhesion to collagen IV, and differentiation of the cells into tube-like structures in matrigel. CONCLUSIONS CTGF expression in early pregnancy decidua is regulated by PROK1, via activation of the Gq, PLC, cSrc, EGFR, MAPK/ERK kinase pathway. CTGF in turn may contribute to the regulation of trophoblast conversion of maternal spiral arteries.
Collapse
Affiliation(s)
- Jennifer M Waddell
- Medical Research Council, Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | |
Collapse
|
92
|
Lafontaine L, Chaudhry P, Lafleur MJ, Van Themsche C, Soares MJ, Asselin E. Transforming growth factor Beta regulates proliferation and invasion of rat placental cell lines. Biol Reprod 2010; 84:553-9. [PMID: 20926802 DOI: 10.1095/biolreprod.110.086348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Implantation of an embryo in the endometrium is a critical step for continuation of pregnancy, and implantation failure is a major cause of infertility. In rats, the implantation process involves invasion of the endometrial epithelial lining by the trophoblastic cells in order to reach the underlying stromal cells. Transforming growth factor beta (TGFB) is a multifunctional cytokine that regulates proliferation, differentiation, and invasiveness of multiple cell lineages. We used rat HRP-1 and RCHO-1 placental cell lines to perform this study. HRP-1 cells were derived from midgestation chorioallantoic placental explants of the outbred Holtzman rat, whereas RCHO-1 cells were established from a rat choriocarcinoma. MTT proliferation assays revealed that each TGFB isoform decreased HRP-1 cell growth in a dose-dependent manner, whereas RCHO-1 cells were resistant to the growth-suppressive effect of TGFB1 and TGFB3. Only TGFB2 reduced RCHO-1 cell proliferation. Activation of ERK, MAPK14 (p38 MAPK), or SMAD pathways is known to play a role in cell proliferation, and we found that TGFB activates these pathways in both HRP-1 and RCHO-1 cells in an isoform-specific manner. MTT proliferation assays revealed that ERK pathway is partially implicated in TGFB3-reduced HRP-1 cell proliferation. Hoechst nuclear staining and caspase-3 cleavage demonstrated that TGFB isoforms failed to induce apoptosis in both cell lines. Matrigel invasion assays showed that both HRP-1 and RCHO-1 cells exhibit intrinsic invasive ability under untreated conditions. The capacity of HRP-1 cells to invade the Matrigel was selectively increased by TGFB2 and TGFB3, whereas all TGFB isoforms could increase the invasiveness of RCHO-1 cells. These important functional studies progressively reveal a key role for TGFB in regulating proliferation and invasiveness of placental cells.
Collapse
Affiliation(s)
- Lyne Lafontaine
- Research Group in Molecular Oncology and Endocrinology, Department of Chemistry-Biology, Université du Québec à Trois-Rivières, Québec, Canada
| | | | | | | | | | | |
Collapse
|
93
|
James JL, Whitley GS, Cartwright JE. Pre-eclampsia: fitting together the placental, immune and cardiovascular pieces. J Pathol 2010; 221:363-78. [PMID: 20593492 DOI: 10.1002/path.2719] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The success of pregnancy is a result of countless ongoing interactions between the placenta and the maternal immune and cardiovascular systems. Pre-eclampsia is a serious pregnancy complication that arises from multiple potential aberrations in these systems. The pathophysiology of pre-eclampsia is established in the first trimester of pregnancy, when a range of deficiencies in placentation affect the key process of spiral artery remodelling. As pregnancy progresses to the third trimester, inadequate spiral artery remodelling along with multiple haemodynamic, placental and maternal factors converge to activate the maternal immune and cardiovascular systems, events which may in part result from increased shedding of placental debris. As we understand more about the pathophysiology of pre-eclampsia, it is becoming clear that the development of early- and late-onset pre-eclampsia, as well as intrauterine growth restriction (IUGR), does not necessarily arise from the same underlying pathology.
Collapse
Affiliation(s)
- Joanna L James
- Division of Basic Medical Sciences, St George's University of London, London, UK.
| | | | | |
Collapse
|
94
|
De Oliveira L, Lash G, Murray-Dunning C, Bulmer J, Innes B, Searle R, Sass N, Robson S. Role of Interleukin 8 in Uterine Natural Killer Cell Regulation of Extravillous Trophoblast Cell Invasion. Placenta 2010; 31:595-601. [DOI: 10.1016/j.placenta.2010.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
|
95
|
Hazan AD, Smith SD, Jones RL, Whittle W, Lye SJ, Dunk CE. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1017-30. [PMID: 20558572 DOI: 10.2353/ajpath.2010.091105] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transformation of uterine spiral arteries is critical for healthy human pregnancy. We recently proposed a role for maternal leukocytes in decidual spiral artery remodeling and suggested that matrix metalloprotease (MMP) activity contributed to the destruction of the arterial wall. In the current study we used our first trimester placental-decidual co-culture (PDC) model to define the temporal relationship and test the mechanistic aspects of this process. PDC experiments were assessed by image analysis over a six-day time-course for degree of vascular transformation and leukocyte distribution around progressively remodeled arterioles. We observed rapid transformation in PDCs associated with loss of vascular smooth muscle cells, widening of the vessel lumen, and significant accumulation of uterine Natural Killer cells and macrophages within the vascular wall (P < 0.001) before trophoblast presence in the vessel lumens. These events did not occur in decidua-only cultures. Active MMP-9 was detected in leukocytes and vascular cells of remodeling arterioles, and inhibition of MMP-2/9 activity in PDC resulted in failure of decidual vascular remodeling compared with vehicle-treated PDCs. Apoptosis of vascular cells, macrophage-mediated phagocytosis, and vascular smooth muscle cell dedifferentiation contributed to the remodeling observed. The PDC model indicates that placental presence is required to initiate decidual spiral artery remodeling but that uterine Natural Killer cells and macrophages mediate the early stages of this process at the cellular level.
Collapse
Affiliation(s)
- Aleah D Hazan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
96
|
Williams PJ, Mistry HD, Innes BA, Bulmer JN, Broughton Pipkin F. Expression of AT1R, AT2R and AT4R and their roles in extravillous trophoblast invasion in the human. Placenta 2010; 31:448-55. [PMID: 20304486 DOI: 10.1016/j.placenta.2010.02.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
The placental renin-angiotensin system (RAS) is active from early pregnancy and may have a role in placentation. Angiotensin II (AngII) acts via binding to receptor types AT1R and AT2R. Recently smaller peptide members of the angiotensin family have been recognised as having biological relevance. Angiotensin (3-8) (AngIV) has a specific receptor (AT4R) and evokes hypertrophy, vasodilatation and vascular inflammatory response. The aim of this study was to characterise placental expression of AT1R, AT2R and AT4R, and to determine whether AngII and AngIV regulate extravillous trophoblast (EVT) invasion, apoptosis and proliferation. Placental samples were obtained from women undergoing elective surgical termination of pregnancy (TOP) at 8-10 weeks gestation (early TOP), 12-14 weeks gestation (mid TOP) or at delivery following normal pregnancy or with pre-eclampsia (PE). Immunohistochemistry and qRT-PCR were performed to determine placental mRNA and protein expression of AT1R, AT2R and AT4R at all gestational ages. EVT invasion following culture with AngII or AngIV was assessed in early placental tissue using Matrigel invasion assays. Invasion was assessed on day 6 of culture and placental explants were harvested for immunohistochemical analysis of apoptosis and proliferation. The results from qRT-PCR and immunohistochemistry showed placental AT1R expression which did not vary with gestation. The highest levels of expression of AT2R were found in early and mid TOP placentae compared to term pregnancy. Expression of AT4R was increased in term placentae, with a significant reduction in PE placentae. Moreover, culture with AngIV or AngII increased EVT invasion from placental explants, which showed increased trophoblast proliferation and reduced apoptosis. This study has characterised expression of AT4R and AT1R and AT2R in human placenta throughout normal pregnancy and in PE. Both AngIV and AngII may play an important role in normal pregnancy.
Collapse
Affiliation(s)
- P J Williams
- School of Clinical Sciences, University of Nottingham, City Hospital Nottingham, Nottingham NG5 1PB, United Kingdom
| | | | | | | | | |
Collapse
|
97
|
Lash GE, Otun HA, Innes BA, Percival K, Searle RF, Robson SC, Bulmer JN. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum Reprod 2010; 25:1137-45. [PMID: 20219775 DOI: 10.1093/humrep/deq050] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Extravillous trophoblast (EVT) cell invasion of uterine decidua and the inner third of myometrium is critical for successful pregnancy. Many decidual factors are likely to play a role in regulating this process. We have previously shown that cytokines, known to be produced by uterine natural killer (uNK) cells, such as TNF-alpha, TGF-beta1 and IFN-gamma inhibit EVT invasion. We therefore hypothesized that supernatants from purified uNK cells would inhibit EVT invasion. METHODS AND RESULTS Total unfractionated decidual cell supernatants from 8 to 10 weeks gestation increased EVT invasion from placental villous explants, although uNK cell supernatants from 8 to 10 weeks gestation had no effect. In contrast, both total decidual and uNK cell supernatants from 12 to 14 weeks gestation stimulated EVT invasion. MMP-2, uPA, PAI-1 and PAI-2 levels did not differ under any of the conditions tested, whereas MMP-9 levels were increased in the presence of both total decidual and uNK cell supernatants from both gestational age groups. There was a decrease in the level of EVT apoptosis in the presence of uNK cell supernatant from 12 to 14 weeks, but not 8-10 weeks, gestation. CONCLUSIONS Decidual uNK cell supernatants from 12 to 14 weeks gestational age stimulated EVT invasion, potentially by increasing MMP9 levels and reducing apoptosis. Total decidual cell isolates stimulated EVT invasion at both gestational ages investigated, potentially reflecting the complex nature of these cell culture supernatants.
Collapse
Affiliation(s)
- Gendie E Lash
- Uterine Cell Signalling Group, Institute of Cellular Medicine and School of Medical Development and Education, Newcastle University, 3rd Floor, William Leech Building, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | | | |
Collapse
|
98
|
Jovanović M, Stefanoska I, Radojcić L, Vićovac L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction 2010; 139:789-98. [PMID: 20133364 DOI: 10.1530/rep-09-0341] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-8 (IL8/CXCL8) is present in decidua and trophoblast, which also expresses the IL8 receptors, CXCR1 and CXCR2. IL8 was shown to stimulate trophoblast migration. Matrix metalloproteinase (MMP)2, MMP9, and integrins alpha(5)beta(1) and alpha(1)beta(1) were found to play important roles in trophoblast invasion. We hypothesized that IL8 would increase this cell migration and invasion by HTR-8/SVneo cells through the activity of MMPs and integrins. Isolated first trimester of pregnancy cytotrophoblast (CT) and HTR-8/SVneo cell line were used. Migration was studied by monolayer wounding test, and invasion by Matrigel invasion test. The effects of IL8 on MMPs and integrin subunit expression were determined in HTR-8/SVneo cells by gelatin zymography and western blot respectively. The results that were obtained showed that exogenous IL8 stimulated HTR-8/SVneo cell migration and invasion. MMP2 and MMP9 levels were stimulated to 182% (P<0.01) and 134% (P<0.01) respectively. Integrin alpha(5) expression was increased to 119% (P<0.05) and integrin beta(1) expression to 173% (P<0.001) of the control values. The data that were obtained show for the first time the sensitivity of the HTR-8/SVneo cells, in addition to isolated first trimester CT, to IL8. Exogenous IL8/CXCL8 increased trophoblast cell migration and invasion, which may be partly attributable to stimulation of MMP2 and MMP9 levels and an increase in integrins. HTR-8/SVneo cell viability and proliferation were also increased.
Collapse
Affiliation(s)
- Milica Jovanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | | | | | | |
Collapse
|
99
|
Zeitoun G. [Cellular and molecular deregulations driving the metastatic phenotype]. Med Sci (Paris) 2009; 25 Spec No 1:29-32. [PMID: 19361408 DOI: 10.1051/medsci/2009251s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cancerogenesis is initiated by DNA instability that induces modifications in stem cells. Regulation is organ specific and depends on morphogenetic factors. DNA instability is alternatively related to chromosomal aberrations or DNA replication errors. Chromosomal instability is the most frequent characteristics of colon adenocarcinoma, and is observed in distant metastatic foci. It is associated with somatic APC mutations that deregulates the WNT pathway. Position of the mutations within the coding sequence are essential for the cell migration capacities thus for stem cell metastasis ability. After this step the new morphogenic program is able induce expansion in the host organ.
Collapse
Affiliation(s)
- Guy Zeitoun
- Service de Chirurgie générale et digestive, Centre Hospitalier François Quesnay, 2, boulevard Sully, 78200 Mantes-la-Jolie, France.
| |
Collapse
|
100
|
Renaud SJ, Graham CH. The Role of Macrophages in Utero-placental Interactions During Normal and Pathological Pregnancy. Immunol Invest 2009; 37:535-64. [DOI: 10.1080/08820130802191375] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|