51
|
Anastasiadou M, Theodoridis A, Avdi M, Michailidis G. Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation and Salmonella infection. Anim Reprod Sci 2011; 128:93-9. [PMID: 21975303 DOI: 10.1016/j.anireprosci.2011.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/24/2011] [Accepted: 09/15/2011] [Indexed: 02/06/2023]
Abstract
Rooster infertility is a major concern in the poultry industry and chicken male reproductive organs are the infectious tissues of various pathogenic microorganisms. Protection of the chicken male reproductive organs from pathogens is therefore an essential aspect of reproductive physiology. Recently Toll-like receptors (TLRs) have been identified as one of the key components of innate immunity in vertebrate species and have been reported to be expressed in the reproductive organs in various female species, including the chicken. However, mechanisms of antimicrobial protection of male reproductive organs mediated by TLRs are poorly understood. The objectives of this study were to determine the expression profile of the entire family of the ten chicken TLR genes in the chicken testis, to investigate whether sexual maturation affects their testicular mRNA abundance and to determine the changes in their expression levels in response to Salmonella enteritidis (SE) infection. RNA was extracted from the testis of healthy pre-pubertal, sexually mature and aged birds, and from sexually mature SE infected birds. RT-PCR analysis revealed that all TLRs, apart from TLR1-1 (TLR6), were expressed in the chicken testis. Quantitative real-time PCR analysis revealed that the testicular mRNA abundance of certain TLRs was developmentally regulated with respect to sexual maturation, while SE infection resulted in a significant induction of TLR2-1, 4, 5, 15 and 21 in the testis of sexually mature birds compared, to healthy birds of the same age. These findings provide strong evidence to suggest a key role of TLRs in the innate immune responses of chicken testis against Salmonella colonization.
Collapse
Affiliation(s)
- M Anastasiadou
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
52
|
Hernández LV, Gonzalo S, Castro M, Arruebo MP, Plaza MA, Murillo MD, Grasa L. Nuclear factor κB is a key transcription factor in the duodenal contractility alterations induced by lipopolysaccharide. Exp Physiol 2011; 96:1151-62. [PMID: 21890516 DOI: 10.1113/expphysiol.2011.060830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in intestinal motility are one of the features of sepsis induced by lipopolysaccharide (LPS). This study investigated the role of the nuclear transcription factor κB (NF-κB) in the LPS-induced duodenal contractility alterations, generation of reactive oxygen species (ROS) and production of cytokines in rabbit duodenum. Rabbits were treated with saline, LPS, sulfasalazine + LPS, pyrrolidinedithiocarbamate (PDTC) + LPS or RO 106-9920 + LPS. Contractility studies were performed in an organ bath. The formation of products of oxidative damage to proteins (carbonyls) and lipids (malondialdehyde and 4-hydroxyalkenals) was quantified in intestinal tissue and plasma. The protein expression of NF-κB was measured by Western blot. The DNA binding activity of NF-κB was evaluated by transcription factor activity assay. The expression of interleukin-1β, tumour necrosis factor α (TNF-α), interleukin-6, interleukin-10 and interleukin-8 mRNA was determined by RT-PCR. Sulfasalazine, PDTC and RO 106-9920 blocked the inhibitory effect of LPS on contractions induced by ACh in the longitudinal smooth muscle of rabbit duodenum. Sulfasalazine, PDTC and RO 106-9920 reduced the increased levels of malondialdehyde and 4-hydroxyalkenals and the carbonyls induced by LPS in plasma. Lipopolysaccharide induced the activation, translocation to the nucleus and DNA binding of NF-κB. Lipopolysaccharide increased the mRNA expression of interleukin-6 and TNF-α in duodenal tissue, and this effect was partly reversed by PDTC, sulfasalazine and RO 106-9920. In conclusion, NF-κB mediates duodenal contractility disturbances, the generation of ROS and the increase in the expression of interleukin-6 and TNF-α induced by LPS. Sulfasalazine, PDTC and RO 106-9920 may be therapeutic drugs to reduce these effects.
Collapse
Affiliation(s)
- Ligia Verónica Hernández
- Department of Pharmacology and Physiology, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
53
|
Rajesh A, Madhubabu G, Yenugu S. Identification and characterization of Wfdc
gene expression in the male reproductive tract of the rat. Mol Reprod Dev 2011; 78:633-41. [DOI: 10.1002/mrd.21361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/24/2011] [Indexed: 11/11/2022]
|
54
|
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. ACTA ACUST UNITED AC 2011; 32:625-40. [PMID: 21764900 PMCID: PMC7166903 DOI: 10.2164/jandrol.111.012989] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of spermatogenic cells to evade the host immune system and the ability of systemic inflammation to inhibit male reproductive function represent two of the most intriguing conundrums of male reproduction. Clearly, an understanding of the underlying immunology of the male reproductive tract is crucial to resolving these superficially incompatible observations. One important consideration must be the very different immunological environments of the testis, where sperm develop, and the epididymis, where sperm mature and are stored. Compared with the elaborate blood-testis barrier, the tight junctions of the epididymis are much less effective. Unlike the seminiferous epithelium, immune cells are commonly observed within the epithelium, and can even be found within the lumen, of the epididymis. Crucially, there is little evidence for extended allograft survival (immune privilege) in the epididymis, as it exists in the testis, and the epididymis is much more susceptible to loss of immune tolerance. Moreover, the incidence of epididymitis is considerably greater than that of orchitis in humans, and susceptibility to sperm antibody formation after damage to the epididymis or vas deferens increases with increasing distance of the damage from the testis. Although we still know relatively little about testicular immunity, we know less about the interactions between the epididymis and the immune system. Given that the epididymis appears to be more susceptible to inflammation and immune reactions than the testis, and thereby represents the weaker link in protecting developing sperm from the immune system, it is probably time this imbalance in knowledge was addressed.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, Victoria, Australia.
| |
Collapse
|
55
|
La Vignera S, Vicari E, Condorelli RA, D'Agata R, Calogero AE. Male accessory gland infection and sperm parameters (review). ACTA ACUST UNITED AC 2011; 34:e330-47. [PMID: 21696400 DOI: 10.1111/j.1365-2605.2011.01200.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Male accessory gland infection (MAGI) has been identified among those diagnostic categories which have a negative impact on the reproductive function and fertility in males (Rowe et al., World Health Organization Manual for the Standardised Investigation and Diagnosis of the Infertile Couple, Cambridge University Press, Cambridge, 1993). MAGI is a hypernym which groups the following different clinical categories: prostatitis, prostate-vesiculitis and prostate-vesiculo-epididymitis. Some of the characteristics they share are: common diseases, mainly have a chronic course, rarely cause obstruction of the seminal pathways, can have an unpredictable intracanicular spread to one or more sexual accessory glands of the reproductive tract, as well as to one or both sides. In this review, we show that all components involving the inflammatory response (from the agents which first trigger it to each component of the inflammatory response dynamic) can deteriorate conventional and/or non-conventional sperm parameters arising from one or more of the following mechanisms: altered secretory function of the epididymis, seminal vesicles, and prostate which reduce the antioxidant properties or scavenging role of the seminal plasma; deterioration of spermatogenesis; and (unilateral or bilateral) organic or functional sub-obstruction of the seminal tract.
Collapse
Affiliation(s)
- S La Vignera
- Section of Endocrinology, Andrology and Internal Medicine and Master in Andrological, Human Reproduction and Biotechnology Sciences, Department of Internal Medicine and Systemic Diseases, University of Catania, Catania, Italy.
| | | | | | | | | |
Collapse
|
56
|
Turner TT, Mammen T, Kavoussi P, Lysiak JJ, Costabile RA. Cytokine Responses to E. coli-induced Epididymitis in the Rat: Blockade by Vasectomy. Urology 2011; 77:1507.e9-14. [DOI: 10.1016/j.urology.2011.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 02/19/2011] [Indexed: 11/25/2022]
|
57
|
Kannaki T, Shanmugam M, Verma P. Toll-like receptors and their role in animal reproduction. Anim Reprod Sci 2011; 125:1-12. [DOI: 10.1016/j.anireprosci.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 01/08/2023]
|
58
|
Oliva J, Bardag-Gorce F, Li J, French BA, French SW. S-adenosylmethionine prevents the up regulation of Toll-like receptor (TLR) signaling caused by chronic ethanol feeding in rats. Exp Mol Pathol 2011; 90:239-43. [PMID: 21276439 DOI: 10.1016/j.yexmp.2011.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrificed at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents the activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson St., Torrance, CA 90509, USA
| | | | | | | | | |
Collapse
|
59
|
Fernández R, Nardocci G, Simon F, Martin A, Becerra A, Rodríguez-Tirado C, Maisey KR, Acuña-Castillo C, Cortes PP. Lipopolysaccharide signaling in the carotid chemoreceptor pathway of rats with sepsis syndrome. Respir Physiol Neurobiol 2010; 175:336-48. [PMID: 21195213 DOI: 10.1016/j.resp.2010.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022]
Abstract
In addition to their role in cardiorespiratory regulation, carotid body (CB) chemoreceptors serve as sensors for inflammatory status and as a protective factor during sepsis. However, lipopolysaccharide-induced sepsis (LPS) reduces CB responsiveness to excitatory or depressant stimuli. We tested whether LPS exerts a direct effect on the carotid chemoreceptor pathway, the CB and its sensory ganglion. We determined that the rat CB and nodose-petrosal-jugular ganglion complex (NPJgc) express TLR4, TNF-α and its receptors (TNF-R1 and TNF-R2). LPS administration (15mg/kg intraperitoneally) evoked MyD88-mechanism pathway activation in CB and NPJgc, with NF-κB p65, p38 MAPK, and ERK activation. Consistently, LPS increased TNF-α and TNF-R2. Double-labeling studies showed that the aforementioned pathway occurs in TH-containing glomus cells and NPJgc neurons, components of the chemosensitive neural pathway. Thus, our results suggest that LPS acting directly through TLR4/MyD88-mechanism pathways increases TNF-α and TNF-R2 expression in the carotid chemoreceptor pathway. These results show a novel afferent pathway to the central nervous system during endotoxemia, and could be relevant in understanding sepsis pathophysiology and therapy.
Collapse
Affiliation(s)
- Ricardo Fernández
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Biswas B, Yenugu S. Antimicrobial responses in the male reproductive tract of lipopolysaccharide challenged rats. Am J Reprod Immunol 2010; 65:557-68. [PMID: 21199063 DOI: 10.1111/j.1600-0897.2010.00937.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Innate immune machinery including the Toll-like receptors (TLRs) confers the first line of defense mechanisms to counter pathogenic microorganisms that enter the body. The male reproductive tract is vulnerable to infection and the role of TLRs and the antimicrobial responses that operate to counter infections in this organ system are poorly understood. METHOD OF STUDY Caput and cauda epididymides, testes and seminal vesicles were collected at 0, 3, 6, 9, 12, 15 and 24 h from rats injected intraperitoneally with a single dose of LPS. Plasma testosterone was measured using ELISA. Expression pattern of defensins and Spag11 isoforms were analysed using RT-PCR. Immunohistochemical analyses was performed to determine SPAG11E protein expression following LPS treatment. RESULTS We provide the first line of evidence that the male reproductive tract induces the expression of Sperm Associated Antigen 11 (Spag11) mRNA variants and defensins when challenged with lipopolysaccharide (LPS) with a concomitant increase in protein expression. However, there was an inverse relationship between induction of antimicrobial gene expression and plasma testosterone. An increase in the mRNA levels of proinflammatory cytokines was observed parallel to the induction of Spag11 variants and majority of defensin expression in the male reproductive tract. CONCLUSION The increase in Spag11 and defensin mRNA in response to LPS administration demonstrates their importance in protecting the male reproductive tract during infection. Results of this study help to understand male reproductive tract innate immune defense mechanisms and to design novel peptide antibiotics to prevent sexually transmitted diseases.
Collapse
Affiliation(s)
- Barnali Biswas
- Department of Animal Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
61
|
da Silveira Cruz-Machado S, Carvalho-Sousa CE, Tamura EK, Pinato L, Cecon E, Fernandes PACM, de Avellar MCW, Ferreira ZS, Markus RP. TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway. J Pineal Res 2010; 49:183-92. [PMID: 20586888 DOI: 10.1111/j.1600-079x.2010.00785.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.
Collapse
|
62
|
Silva EJR, Queiróz DBC, Honda L, Avellar MCW. Glucocorticoid receptor in the rat epididymis: expression, cellular distribution and regulation by steroid hormones. Mol Cell Endocrinol 2010; 325:64-77. [PMID: 20573576 DOI: 10.1016/j.mce.2010.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 01/12/2023]
Abstract
Glucocorticoids regulate several physiological functions, including reproduction, in mammals. Curiously, little is known about glucocorticoid-induced effects on the epididymis, an androgen-dependent tissue with vital role on sperm maturation. Here, RT-PCR, Western blot and immunohistochemical studies were performed to evaluate expression, cellular distribution and hormonal regulation of glucocorticoid receptor (GR) along rat epididymis. The rat orthologue of human GRalpha (mRNA and protein) was detected in caput, corpus and cauda epididymis and immunolocalized in the nucleus and cytoplasm of different epididymal cells (epithelial, smooth muscle and interstitial cells) and nerve fibers. Changes in plasma glucocorticoid and androgen levels differentially regulated GR expression in caput and cauda epididymis by homologous and heterologous mechanisms. In vivo treatment with dexamethasone significantly changed the expression of glucocorticoid-responsive genes and induced ligand-dependent GR nuclear translocation in epithelial cells from epididymis, indicating that GR is fully active in this tissue. Heterologous regulation of androgen receptor expression by glucocorticoids was also demonstrated in cauda epididymis. Our results demonstrate that the epididymis is under glucocorticoid regulation, opening new insights into the roles of this hormone in male fertility.
Collapse
Affiliation(s)
- Erick J R Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua 03 de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | | | | | | |
Collapse
|
63
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
64
|
Winnall WR, Muir JA, Hedger MP. Differential responses of epithelial Sertoli cells of the rat testis to Toll-like receptor 2 and 4 ligands: Implications for studies of testicular inflammation using bacterial lipopolysaccharides. Innate Immun 2009; 17:123-36. [DOI: 10.1177/1753425909354764] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The relative contribution of epithelial Sertoli cells in response to bacterial infection of the testis remains poorly characterised, since studies on inflammatory properties of these cells have invariably used unpurified lipopolysaccharide (LPS) preparations contaminated with bacterial lipopeptides. Consequently, isolated rat Sertoli cells were stimulated with either unextracted or phenol re-extracted LPS, and analysed for Toll-like receptor (TLR) 4, TLR2 and inflammatory cytokine gene expression by quantitative reverse transcription polymerase chain reaction (RT-PCR). Expression of TLR4 and its co-receptor protein myeloid differentiation (MD) 2 in Sertoli cells and testicular macrophages were similar, but Sertoli cells displayed low basal or LPS-induced expression of the TLR4 accessory protein, CD14. In Sertoli cells, unextracted LPS produced cytokine responses which were considerably greater in magnitude and duration compared with their response to purified LPS. Sertoli cells also responded to the synthetic lipopeptide, Pam3Cys (a TLR2 ligand) with a similar pattern of prolonged gene expression. Sertoli cells were more than 10-fold less sensitive to purified LPS than macrophages, but expressed similar levels of interleukin (IL)-1α and IL-6, and much greater levels of the immunoregulatory cytokine activin A, when maximally stimulated. These data demonstrate that Sertoli cells display differential cytokine responses to bacterial stimuli, mediated by both TLR2 and TLR4, that are distinct from those of testicular macrophages.
Collapse
Affiliation(s)
- Wendy R. Winnall
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia,
| | - Julie A. Muir
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia
| | - Mark P. Hedger
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
65
|
Patrão MTCC, Silva EJR, Avellar MCW. Androgens and the male reproductive tract: an overview of classical roles and current perspectives. ACTA ACUST UNITED AC 2009; 53:934-45. [DOI: 10.1590/s0004-27302009000800006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 11/14/2009] [Indexed: 11/22/2022]
Abstract
Androgens are steroid hormones that play key roles in the development and maintenance of male phenotype and reproductive function. These hormones also affect the function of several non-reproductive organs, such as bone and skeletal muscle. Endogenous androgens exert most of their effects by genomic mechanisms, which involve hormone binding to the androgen receptor (AR), a ligand-activated transcription factor, resulting in the modulation of gene expression. AR-induced non-genomic mechanisms have also been reported. A large number of steroidal and non-steroidal AR-ligands have been developed for therapeutic use, including the treatment of male hypogonadism (AR agonists) and prostate diseases (AR antagonists), among other pathological conditions. Here, the AR gene and protein structure, mechanism of action and AR gene homologous regulation were reviewed. The AR expression pattern, its in vivo regulation and physiological relevance in the developing and adult testis and epididymis, which are sites of sperm production and maturation, respectively, were also presented.
Collapse
|
66
|
Su J, Yang C, Xiong F, Wang Y, Zhu Z. Toll-like receptor 4 signaling pathway can be triggered by grass carp reovirus and Aeromonas hydrophila infection in rare minnow Gobiocypris rarus. FISH & SHELLFISH IMMUNOLOGY 2009; 27:33-39. [PMID: 19264133 DOI: 10.1016/j.fsi.2009.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/12/2009] [Accepted: 02/21/2009] [Indexed: 05/27/2023]
Abstract
Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll--interleukin 1--receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24h post-injection and lasted until the fish became moribund (P<0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow.
Collapse
Affiliation(s)
- Jianguo Su
- Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22 Xinong Rd., Yangling, China.
| | | | | | | | | |
Collapse
|