51
|
Purves-Tyson TD, Owens SJ, Double KL, Desai R, Handelsman DJ, Weickert CS. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway. PLoS One 2014; 9:e91151. [PMID: 24618531 PMCID: PMC3949980 DOI: 10.1371/journal.pone.0091151] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/10/2014] [Indexed: 01/11/2023] Open
Abstract
Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s) by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase), breakdown (catechol-O-methyl transferase; monoamine oxygenase), transport [vesicular monoamine transporter (VMAT), dopamine transporter (DAT)] and receptors (DRD1-D5)] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen receptor-driven events as estradiol had minimal effect. We conclude that nigrostriatal responsivity to dopamine may be modulated by testosterone acting via androgen receptors to alter gene expression of molecules involved in dopamine signaling during adolescence.
Collapse
Affiliation(s)
- Tertia D. Purves-Tyson
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha J. Owens
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kay L. Double
- Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| | - David J. Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
52
|
Castellano JM, Wright H, Ojeda SR, Lomniczi A. An alternative transcription start site yields estrogen-unresponsive Kiss1 mRNA transcripts in the hypothalamus of prepubertal female rats. Neuroendocrinology 2014; 99:94-107. [PMID: 24686008 PMCID: PMC4111975 DOI: 10.1159/000362280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/16/2014] [Indexed: 11/19/2022]
Abstract
The importance of the Kiss1 gene in the control of reproductive development is well documented. However, much less is known about the transcriptional regulation of Kiss1 expression in the hypothalamus. Critical for these studies is an accurate identification of the site(s) where Kiss1 transcription is initiated. Employing 5'-RACE PCR, we detected a transcription start site (TSS1) used by the hypothalamus of rats, mice, nonhuman primates and humans to initiate Kiss1 transcription. In rodents, an exon 1 encoding 5'-untranslated sequences is followed by an alternatively spliced second exon, which encodes 5'-untranslated regions of two different lengths and contains the translation initiation codon (ATG). In nonhuman primates and humans, exon 2 is not alternatively spliced. Surprisingly, in rat mediobasal hypothalamus (MBH), but not preoptic area (POA), an additional TSS (TSS2) located upstream from TSS1 generates an exon 1 longer (377 bp) than the TSS1-derived exon 1 (98 bp). The content of TSS1-derived transcripts increased at puberty in the POA and MBH of female rats. It also increased in the MBH after ovariectomy, and this change was prevented by estrogen. In contrast, no such changes in TSS2-derived transcript abundance were detected. Promoter assays showed that the proximal TSS1 promoter is much more active than the putative TSS2 promoter, and that only the TSS1 promoter is regulated by estrogen. These differences appear to be related to the presence of a TATA box and binding sites for transcription factors activating transcription and interacting with estrogen receptor-α in the TSS1, but not TSS2, promoter.
Collapse
Affiliation(s)
- Juan Manuel Castellano
- Division of Neuroscience, Oregon National Primate Research Center-Oregon Health and Science University, Beaverton, Oreg., USA
| | | | | | | |
Collapse
|
53
|
Naugle MM, Gore AC. GnRH neurons of young and aged female rhesus monkeys co-express GPER but are unaffected by long-term hormone replacement. Neuroendocrinology 2014; 100:334-46. [PMID: 25428637 PMCID: PMC4329056 DOI: 10.1159/000369820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
Abstract
Menopause is caused by changes in the function of the hypothalamic-pituitary-gonadal axis that controls reproduction. Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus orchestrate the activity of this axis and are regulated by hormonal feedback loops. The mechanisms by which GnRH responds to the primary regulatory sex steroid hormone, estradiol (E2), are still poorly understood in the context of menopause. Our goal was to determine whether the G protein-coupled estrogen receptor (GPER) is co-expressed in adult primate GnRH neurons and whether this changes with aging and/or E2 treatment. We used immunofluorescence double-labeling to characterize the co-expression of GPER in GnRH perikarya and terminals in the hypothalamus. Young and aged rhesus macaques were ovariectomized and given long-term (~2-year) hormone treatments (E2, E2 + progesterone, or vehicle) selected to mimic currently prescribed hormone replacement therapies used for the alleviation of menopausal symptoms in women. We found that about half of GnRH perikarya co-expressed GPER, while only about 12% of GnRH processes and terminals in the median eminence (ME) were double-labeled. Additionally, many GPER-labeled processes were in direct contact with GnRH neurons, often wrapped around the perikarya and processes and in close proximity in the ME. These results extend prior work by showing robust co-localization of GPER in GnRH in a clinically relevant model, and they support the possibility that GPER-mediated E2 regulation of GnRH occurs both in the soma and terminals in nonhuman primates.
Collapse
Affiliation(s)
- Michelle M. Naugle
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712
- Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, 78712
- Correspondence: Andrea C Gore, PhD, The University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX, 78712, USA, ; Tel: +1-512-471-3669; Fax: +1-512-471-5002
| |
Collapse
|
54
|
Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology (Berl) 2014; 231:1581-99. [PMID: 24481565 PMCID: PMC3967083 DOI: 10.1007/s00213-013-3415-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. OBJECTIVES In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. RESULTS AND CONCLUSIONS Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.
Collapse
Affiliation(s)
- Duncan Sinclair
- Schizophrenia Research Institute, Sydney, Australia ,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia ,School of Psychiatry, University of New South Wales, Sydney, Australia ,Neuropsychiatric Signaling Program, Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney, Australia ,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia ,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Katherine M Allen
- Schizophrenia Research Institute, Sydney, Australia ,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia ,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia ,Macquarie Group Chair of Schizophrenia Research, Neuroscience Research Australia, Barker Street, Randwick, NSW 2031 Australia ,School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
55
|
Allen KM, Fung SJ, Rothmond DA, Noble PL, Weickert CS. Gonadectomy increases neurogenesis in the male adolescent rhesus macaque hippocampus. Hippocampus 2013; 24:225-38. [PMID: 24123729 DOI: 10.1002/hipo.22217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 11/07/2022]
Abstract
New neurons are continuously produced in the subgranular zone of the adult hippocampus and can modulate hippocampal plasticity across life. Adolescence is characterized by dramatic changes in sex hormone levels, and social and emotional behaviors. It is also an age for increased risk of psychiatric disorders, including schizophrenia, which may involve altered hippocampal neurogenesis. The extent to which testosterone and other testicular hormones modulate hippocampal neurogenesis and adolescent behavioral development is unclear. This study aimed to determine if removal of testicular hormones during adolescence alters neurogenesis in the male rhesus macaque hippocampus. We used stereology to examine levels of cell proliferation, cell survival and neuronal differentiation in late adolescent male rhesus macaques (4.6-yrs old) that had previously been gonadectomized or sham operated prior to puberty (2.4-yrs old). While the absence of adolescent testicular hormones had no effect on cell proliferation, cell survival was increased by 65% and indices of immature neuronal differentiation were increased by 56% in gonadectomized monkeys compared to intact monkeys. We show for the first time that presence of circulating testicular hormones, including testosterone, may decrease neuronal survival in the primate hippocampus during adolescence. Our findings are in contrast to existing studies in adults where testosterone tends to be a pro-survival factor and demonstrate that testicular hormones may reduce hippocampal neurogenesis during the age typical of schizophrenia onset.
Collapse
Affiliation(s)
- K M Allen
- Schizophrenia Research Institute, Sydney, 2010, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, 2052, Australia
| | | | | | | | | |
Collapse
|
56
|
Kermath BA, Riha PD, Sajjad A, Gore AC. Effects of chronic NMDA-NR2b inhibition in the median eminence of the reproductive senescent female rat. J Neuroendocrinol 2013; 25:887-97. [PMID: 23957788 PMCID: PMC3800684 DOI: 10.1111/jne.12087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 01/07/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) neurones of the hypothalamic-pituitary-gonadal (HPG) axis drive reproductive function and undergo age-related decreases in activation during the transition to reproductive senescence. Decreased GnRH secretion from the median eminence (ME) partially arises from attenuated glutamatergic signalling via the NMDA receptor (NMDAR) and may be a result of changing NMDAR stoichiometry to favour NR2b over NR2a subunit expression with ageing. We have previously shown that the systemic inhibition of NR2b-containing receptors with ifenprodil, an NR2b-specific antagonist, stimulates parameters of luteinising hormone (used as a proxy for GnRH) release in both young and middle-aged females. In the present study, we chronically administered ifenprodil, an NR2b-specific antagonist, at the site of GnRH terminals in the ME or at GnRH perikarya in the preoptic area, in reproductively senescent middle-aged female rats, aiming to determine whether NR2b antagonism could restore aspects of reproductive functionality. Effects on oestrous cyclicity, serum hormones, and protein expression of GnRH, NR2b and phosphorylated NR2b (Tyr-1472) in the ME were measured. Chronic ifenprodil treatment in the ME (but not the preoptic area) altered oestrous cyclicity by increasing the percentage of days spent in pro-oestrus. This was accompanied by increased GnRH fluorescence intensity in the external ME zone and a greater proportion of GnRH terminals that co-labelled with pNR2b with treatment. We also observed changes in the relationships between protein immunofluorescence, serum hormone levels and other aspects of reproductive physiology in acyclic females, as revealed by bionetwork analysis. Together, these data support the hypothesis that NMDAR-NR2b expression and phosphorylation state play a role in reproductive senescence and highlight the ME as a major player in reproductive ageing.
Collapse
Affiliation(s)
- Bailey A. Kermath
- Institute for Neuroscience, The University of Texas at Austin, Austin TX 78712 USA
| | - Penny D. Riha
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712 USA.F
| | - Ahmar Sajjad
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Andrea C. Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin TX 78712 USA
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712 USA.F
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA
- Corresponding author: Andrea C. Gore, The University of Texas at Austin, 107 W. Dean Keeton, C0875, Austin, TX 78712, Phone (512) 471-3669, Fax (512) 471-5002,
| |
Collapse
|
57
|
Walker DM, Kermath BA, Woller MJ, Gore AC. Disruption of reproductive aging in female and male rats by gestational exposure to estrogenic endocrine disruptors. Endocrinology 2013; 154:2129-43. [PMID: 23592748 PMCID: PMC3740483 DOI: 10.1210/en.2012-2123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are industrial contaminants and known endocrine-disrupting chemicals. Previous work has shown that gestational exposure to PCBs cause changes in reproductive neuroendocrine processes. Here we extended work farther down the life spectrum and tested the hypothesis that early life exposure to Aroclor 1221 (A1221), a mixture of primarily estrogenic PCBs, results in sexually dimorphic aging-associated alterations to reproductive parameters in rats, and gene expression changes in hypothalamic nuclei that regulate reproductive function. Pregnant Sprague Dawley rats were injected on gestational days 16 and 18 with vehicle (dimethylsulfoxide), A1221 (1 mg/kg), or estradiol benzoate (50 μg/kg). Developmental parameters, estrous cyclicity (females), and timing of reproductive senescence were monitored in the offspring through 9 months of age. Expression of 48 genes was measured in 3 hypothalamic nuclei: the anteroventral periventricular nucleus (AVPV), arcuate nucleus (ARC), and median eminence (females only) by real-time RT-PCR. Serum LH, testosterone, and estradiol were assayed in the same animals. In males, A1221 had no effects; however, prenatal estradiol benzoate increased serum estradiol, gene expression in the AVPV (1 gene), and ARC (2 genes) compared with controls. In females, estrous cycles were longer in the A1221-exposed females throughout the life cycle. Gene expression was not affected in the AVPV, but significant changes were caused by A1221 in the ARC and median eminence as a function of cycling status. Bionetwork analysis demonstrated fundamental differences in physiology and gene expression between cycling and acyclic females independent of treatment. Thus, gestational exposure to biologically relevant levels of estrogenic endocrine-disrupting chemicals has sexually dimorphic effects, with an altered transition to reproductive aging in female rats but relatively little effect in males.
Collapse
Affiliation(s)
- Deena M Walker
- The University of Texas at Austin, The Institute for Neuroscience, 1 University Station, C0875, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
58
|
Walker DM, Goetz BM, Gore AC. Dynamic postnatal developmental and sex-specific neuroendocrine effects of prenatal polychlorinated biphenyls in rats. Mol Endocrinol 2013; 28:99-115. [PMID: 24284824 DOI: 10.1210/me.2013-1270] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gestational exposures to estrogenic compounds, both endogenous hormones and exogenous endocrine-disrupting chemicals (EDCs), have long-term effects on reproductive physiology and behavior. We tested the hypothesis that prenatal treatment of rats with low doses of Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl mix previously used in industry, or estradiol benzoate (EB), alters development of the hypothalamus in a sexually dimorphic manner and subsequently perturbs reproductive function. Pregnant Sprague-Dawley rats were injected on embryonic days 16 and 18 with vehicle (dimethylsulfoxide), A1221 (1 mg/kg), or EB (50 μg/kg). Developmental milestones were monitored, and on postnatal days 15, 30, 45, and 90, 1 male and 1 female per litter were euthanized. Because of their key roles in the mediation of steroid actions on reproductive function, the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC) were punched for a low-density quantitative PCR array of 48 neuroendocrine genes and analysis of DNA methylation of a subset of genes. Gestational exposure to A1221 or EB delayed the timing of puberty in males and disrupted estrous cyclicity in females. In the AVPV, 28 genes were affected by treatment in a developmental stage-specific manner, mostly in females, which exhibited a masculinized expression profile. This included 2 clock genes, Per2 and Arntl, implicating circadian circuits as being vulnerable to endocrine disruption. DNA methylation analysis of 2 genes, Per2 and Ar, showed no effect of EDCs and suggested alternative mechanisms for the altered mRNA levels. In the ARC, 12 genes were affected by treatment, mostly in males, again with dynamic developmental changes. Bionetwork analysis of relationships among genes, hormones, and physiological markers showed sexually dimorphic effects of estrogenic EDC exposures, with the female AVPV and the male ARC being most vulnerable, and provided novel relationships among hypothalamic genes and postnatal reproductive maturation.
Collapse
Affiliation(s)
- Deena M Walker
- The Institute for Neuroscience (D.M.W., A.C.G.), Center for Computational Biology and Bioinformatics (B.M.G.), Division of Pharmacology and Toxicology (A.C.G.), College of Pharmacy, and Institute for Cell and Molecular Biology (A.C.G.), The University of Texas at Austin, Austin, Texas 78712
| | | | | |
Collapse
|