51
|
Abstract
The successful production of viable progeny following adult somatic cell nuclear transfer (cloning) provides exciting new opportunities for basic research for investigating early embryogenesis, for the propagation of valuable or endangered animals, for the production of genetically engineered animals, and possibly for developing therapeutically valuable stem cells. Successful cloning requires efficient reprogramming of gene expression to silence donor cell gene expression and activate an embryonic pattern of gene expression. Recent observations indicate that reprogramming may be initiated by early events that occur soon after nuclear transfer, but then continues as development progresses through cleavage and probably to gastrulation. Because reprogramming is slow and progressive, cloned embryos have dramatically altered characteristics in comparison with fertilized embryos. Events that occur early following nuclear transfer may be essential prerequisites for the later events. Additionally, the later reprogramming events may be inhibited by sub-optimum culture environments that exist because of the altered characteristics of cloned embryos. By addressing the unique requirements of cloned embryos, the entire process of reprogramming may be accelerated, thus increasing cloning efficiency.
Collapse
Affiliation(s)
- Keith E Latham
- The Fels Institute for Cancer Research and Molecular Biology, and Department of Biochemistry, Temple University School of Medicine, 3307 North Broadway, Philadelphia, PA 19140, USA.
| |
Collapse
|
52
|
Kim HR, Han RX, Diao YF, Park CS, Jin DI. Epigenetic characterization of the PBEF and TIMP-2 genes in the developing placentae of normal mice. BMB Rep 2011; 44:535-40. [PMID: 21871178 DOI: 10.5483/bmbrep.2011.44.8.535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reprogramming errors, which appear frequently in cloned animals, are reflected by aberrant gene expression. We previously reported the aberrant expression of TIMP-2 and PBEF in cloned placenta and differential expression of PBEF genes during pregnancy. To examine the epigenetic modifications that regulate dynamic gene expression in developing placentae, we herein analyzed the mRNA and protein expression levels of PBEF and TIMP-2 in the placentae of normal mice during pregnancy and then examined potential correlations with epigenetic modifications. DNA methylation pattern analysis revealed no difference, but ChIP assays using antibodies against H3-K9/K14 and H4-K5 histone acetylation revealed that the H3-K9/K14 acetylation levels, but not the H4-K5 acetylation levels, of the TIMP-2 and PBEF loci were significantly correlated with their gene expression levels during placentation in normal mice. These results suggest that epigenetic changes may regulate gene expression level in the developing placentae of normal mice and that inappropriate epigenetic reprogramming might be one cause of the abnormal placentae seen in cloned animals.
Collapse
Affiliation(s)
- Hong-Rye Kim
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pig, Chungnam National University, Deajeon, Korea
| | | | | | | | | |
Collapse
|
53
|
Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M. Imprinted genes and the epigenetic regulation of placental phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:281-8. [PMID: 21108957 DOI: 10.1016/j.pbiomolbio.2010.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB23EG, United Kingdom.
| | | | | | | | | |
Collapse
|
54
|
Denda K, Nakao-Wakabayashi K, Okamoto N, Kitamura N, Ryu JY, Tagawa YI, Ichisaka T, Yamanaka S, Komada M. Nrk, an X-linked protein kinase in the germinal center kinase family, is required for placental development and fetoplacental induction of labor. J Biol Chem 2011; 286:28802-28810. [PMID: 21715335 DOI: 10.1074/jbc.m111.258160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The complete mechanism of labor induction in eutherian mammals remains unclear. Although important roles for the fetus and placenta in triggering labor have been proposed, no gene has been shown to be required in the fetus/placenta for labor induction. Here we show that Nrk, an X-linked gene encoding a Ser/Thr kinase of the germinal center kinase family, is essential in the fetus/placenta for labor in mice. Nrk was specifically expressed in the spongiotrophoblast layer, a fetus-derived region of the placenta, and Nrk disruption caused dysregulated overgrowth of the layer. Due to preferential inactivation of the paternally derived X chromosome in placenta, Nrk heterozygous mutant placentas exhibited a similar defect to that in Nrk-null tissues when the wild-type allele was paternally derived. However, the phenotype was weaker than in Nrk-null placentas due to leaky Nrk expression from the inactivated X chromosome. Crossing of Nrk-null females to wild-type and Nrk-null males, as well as uterine transfer of Nrk-null fetuses to wild-type females, revealed that pregnant mice exhibit a severe defect in delivery when all fetuses/placentas are Nrk-null. In addition, Nrk was not expressed in female reproductive tissues such as the uterus and ovary, as well as the fetal amnion and yolk sac, in pregnant mice. Progesterone and estrogen levels in the maternal circulation and placenta, which control the timing of labor, were unaffected upon Nrk disruption. We thus provide evidence for a novel labor-inducing fetoplacental signal that depends on the X chromosome and possibly arises from the placenta.
Collapse
Affiliation(s)
- Kimitoshi Denda
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | - Naoki Okamoto
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Naomi Kitamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Je-Young Ryu
- Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yoh-Ichi Tagawa
- Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tomoko Ichisaka
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
55
|
SenthamaraiKannan P, Sartor MA, O'Connor KT, Neumann JC, Klyza JP, Succop PA, Wagner BD, Karyala S, Medvedovic M, Menon AG. Identification of maternally regulated fetal gene networks in the placenta with a novel embryo transfer system in mice. Physiol Genomics 2011; 43:317-24. [PMID: 21205871 DOI: 10.1152/physiolgenomics.00078.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms for provisioning maternal resources to offspring in placental mammals involve complex interactions between maternally regulated and fetally regulated gene networks in the placenta, a tissue that is derived from the zygote and therefore of fetal origin. Here we describe a novel use of an embryo transfer system in mice to identify gene networks in the placenta that are regulated by the mother. Mouse embryos from the same strain of inbred mice were transferred into a surrogate mother either of the same strain or from a different strain, allowing maternal and fetal effects on the placenta to be separated. After correction for sex and litter size, maternal strain overrode fetal strain as the key determinant of fetal weight (P < 0.0001). Computational filtering of the placental transcriptome revealed a group of 81 genes whose expression was solely dependent on the maternal strain [P < 0.05, false discovery rate (FDR) < 0.10]. Network analysis of this group of genes yielded highest statistical significance for pathways involved in the regulation of cell growth (such as insulin-like growth factors) as well as those involved in regulating lipid metabolism [such as the low-density lipoprotein receptor-related protein 1 (LRP1), LDL, and HDL], both of which are known to play a role in fetal development. This novel technique may be generally applied to identify regulatory networks involved in maternal-fetal interaction and eventually help identify molecular targets in disorders of fetal growth.
Collapse
|
56
|
Costa-Borges N, Gonzalez S, Santaló J, Ibáñez E. Effect of the enucleation procedure on the reprogramming potential and developmental capacity of mouse cloned embryos treated with valproic acid. Reproduction 2011; 141:789-800. [PMID: 21444624 DOI: 10.1530/rep-10-0455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mouse recipient cytoplasts for somatic cell nuclear transfer (SCNT) are routinely prepared by mechanical enucleation (ME), an invasive procedure that requires expensive equipment and considerable micromanipulation skills. Alternatively, oocytes can be enucleated using chemically assisted (AE) or chemically induced (IE) enucleation methods that are technically simple. In this study, we compared the reprogramming potential and developmental capacity of cloned embryos generated by ME, AE, and IE procedures and treated with the histone deacetylase inhibitor valproic acid. A rapid and almost complete deacetylation of histone H3 lysine 14 in the somatic nucleus followed by an equally rapid and complete re-acetylation after activation was observed after the injection of a cumulus cell nucleus into ME and AE cytoplasts. In contrast, histone deacetylation occurred at a much lower level in IE cytoplasts. Despite these differences, the cloned embryos generated from the three types of cytoplasts developed into blastocysts of equivalent total and inner cell mass mean cell numbers, and the rates of blastocyst formation and embryonic stem cell derivation were similar among the three groups. The cloned embryos produced from ME and AE cytoplasts showed an equivalent rate of full-term development, but no offspring could be obtained from the IE group, suggesting a lower reprogramming capacity of IE cytoplasts. Our results demonstrate the usefulness of AE in mouse SCNT procedures, as an alternative to ME. AE can facilitate oocyte enucleation and avoid the need for expensive microscope optics, or for potentially damaging Hoechst staining and u.v. irradiation, normally required in ME procedures.
Collapse
Affiliation(s)
- Nuno Costa-Borges
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
57
|
Hai T, Hao J, Wang L, Jouneau A, Zhou Q. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA. Cell Reprogram 2011; 13:47-56. [PMID: 21241188 DOI: 10.1089/cell.2010.0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
58
|
KANG H, ROH S. Extended Exposure to Trichostatin A after Activation Alters the Expression of Genes Important for Early Development in Nuclear Transfer Murine Embryos. J Vet Med Sci 2011; 73:623-31. [DOI: 10.1292/jvms.10-0492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hoin KANG
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry
| | - Sangho ROH
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry
| |
Collapse
|
59
|
WHITWORTH KRISTINM, PRATHER RANDALLS. Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 2010; 77:1001-15. [PMID: 20931660 PMCID: PMC4718708 DOI: 10.1002/mrd.21242] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/23/2010] [Indexed: 01/01/2023]
Abstract
Fertile offspring from somatic cell nuclear transfer (SCNT) is the goal of most cloning laboratories. For this process to be successful, a number of events must occur correctly. First the donor nucleus must be in a state that is amenable to remodeling and subsequent genomic reprogramming. The nucleus must be introduced into an oocyte cytoplasm that is capable of facilitating the nuclear remodeling. The oocyte must then be adequately stimulated to initiate development. Finally the resulting embryo must be cultured in an environment that is compatible with the development of that particular embryo. Much has been learned about the incredible changes that occur to a nucleus after it is placed in the cytoplasm of an oocyte. While we think that we are gaining an understanding of the reorganization that occurs to proteins in the donor nucleus, the process of cloning is still very inefficient. Below we will introduce the procedures for SCNT, discuss nuclear remodeling and reprogramming, and review techniques that may improve reprogramming. Finally we will briefly touch on other aspects of SCNT that may improve the development of cloned embryos.
Collapse
Affiliation(s)
| | - RANDALL S. PRATHER
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
60
|
Whitworth KM, Spate LD, Li R, Rieke A, Sutovsky P, Green JA, Prather RS. Activation method does not alter abnormal placental gene expression and development in cloned pigs. Mol Reprod Dev 2010; 77:1016-30. [PMID: 20925087 DOI: 10.1002/mrd.21235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/23/2010] [Indexed: 12/15/2022]
Abstract
Nuclear transfer efficiency is low and is thought to be caused by inadequate placental development. The objective of this study was to identify differentially expressed transcripts in pig placentas derived from in vivo fertilization, in vitro fertilization or nuclear transfer at Day 30 of gestation. Three activation methods were compared: electrical fusion/activation, electrical fusion/activation followed by treatment with reversible proteasomal inhibitor, MG132 or electrical fusion followed by activation with Thimerosal/DTT. Extraembryonic membranes were collected 30 days after artificial insemination (IVV) or embryo transfer (IVF and NT). Extraembryonic membrane cDNAs labeled with Cy5 and a reference cDNA labeled with Cy3 were hybridized to a pig reproductive tissue-specific 19,968 spot cDNA microarray. Images acquired and assessed by using Genepix Pro 4.0 were analyzed by Genespring 7.3.1. ANOVA (P < 0.05) identified 227 differentially expressed transcripts between the five treatments and 0 between the three activation methods. The nuclear transfer groups were pooled and compared to in vivo samples, identifying 34 up- and 19 down-regulated transcripts (>2-fold change, P < 0.05). Ten transcripts were validated by real-time PCR. UPTI, PAG2, and GLUD1 protein was quantified by Western blot and densitometry verified that UPTI and PAG2 proteins had an expression pattern that mirrored mRNA abundance (P < 0.05). Localization patterns were also determined for UPTI, PAG2, GLUD2 and 14-3-3 gamma in Day 35 extraembryonic membranes. Observed differences in gene and protein expression in nuclear transfer extraembryonic membranes indicate that an impaired fetal-maternal interface, and not the activation method, may be causing defects observed in cloned pigs.
Collapse
Affiliation(s)
- Kristin M Whitworth
- Division of Animal Sciences Research Center, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Nadra K, Quignodon L, Sardella C, Joye E, Mucciolo A, Chrast R, Desvergne B. PPARgamma in placental angiogenesis. Endocrinology 2010; 151:4969-81. [PMID: 20810566 DOI: 10.1210/en.2010-0131] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor involved in diverse biological processes including adipocyte differentiation, glucose homeostasis, and inflammatory responses. Analyses of PPARγ knockout animals have been so far preempted by the early embryonic death of PPARγ-/- embryos as a consequence of the severe alteration of their placental vasculature. Using Sox2Cre/PPARγL2/L2 mice, we obtained fully viable PPARγ-null mice through specific and total epiblastic gene deletion, thereby demonstrating that the placental defect is the unique cause of PPARγ-/- embryonic lethality. The vasculature defects observed in PPARγ-/- placentas at embryonic d 9.5 correlated with an unsettled balance of pro- and antiangiogenic factors as demonstrated by increased levels of proliferin (Prl2c2, PLF) and decreased levels of proliferin-related protein (Prl7d1, PRP), respectively. To analyze the role of PPARγ in the later stage of placental development, when its expression peaks, we treated pregnant wild-type mice with the PPARγ agonist rosiglitazone. This treatment resulted in a disorganization of the placental layers and an altered placental microvasculature, accompanied by the decreased expression of proangiogenic genes such as Prl2c2, vascular endothelial growth factor, and Pecam1. Together our data demonstrate that PPARγ plays a pivotal role in controlling placental vascular proliferation and contributes to its termination in late pregnancy.
Collapse
Affiliation(s)
- Karim Nadra
- Center for Integrative Genomics, Department of Medical Genetics and Electron Microscopy Platform, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
62
|
Kim HR, Han RX, Wakayama T, Park CS, Jin DI. Aberrant protein expression in the placenta of cloned mouse derived from embryonic stem cell. Placenta 2010; 31:853-9. [DOI: 10.1016/j.placenta.2010.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 12/23/2022]
|
63
|
Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang X, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 2010; 330:496-9. [PMID: 20847234 DOI: 10.1126/science.1194174] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.
Collapse
Affiliation(s)
- Kimiko Inoue
- BioResource Center, RIKEN, 305-0024 Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ono T, Li C, Mizutani E, Terashita Y, Yamagata K, Wakayama T. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol Reprod 2010; 83:929-37. [PMID: 20686182 DOI: 10.1095/biolreprod.110.085282] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.
Collapse
Affiliation(s)
- Tetsuo Ono
- Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Costa-Borges N, Santaló J, Ibáñez E. Comparison between the Effects of Valproic Acid and Trichostatin A on the In Vitro Development, Blastocyst Quality, and Full-Term Development of Mouse Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2010; 12:437-46. [DOI: 10.1089/cell.2009.0108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nuno Costa-Borges
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Santaló
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Ibáñez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
66
|
Abstract
Most conceptuses derived by somatic cell nuclear transfer (SCNT) in mice undergo developmental arrest as a result of embryonic or extraembryonic defects. Even when fetuses survive to term, prominent placental overgrowth or placentomegaly is often present, indicating that SCNT affects the development of trophoblast cell lineage. The trophoblast cell lineage is established at the blastocyst stage when the stem cell population of the trophoblast cell lineage resides in the polar trophectoderm. Therefore, it is possible that the developmental arrest and placentomegaly that accompany SCNT are induced by insufficient reprogramming of the donor somatic nucleus to enable the cells to acquire full potency as stem cells of the trophoblast cell lineage. Despite the abnormalities of the extraembryonic tissues of SCNT embryos, trophoblast stem (TS) cell lines have been successfully isolated from SCNT blastocysts and their properties appear to be indistinguishable from those of TS cells derived from native blastocysts. This suggests that SCNT does not affect the emergence and autonomous properties of TS cells. In this review, we discuss specification of cell lineage and the extent of reprogramming of TS cells in SCNT blastocysts.
Collapse
Affiliation(s)
- Mayumi Oda
- Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
67
|
Hikichi T, Ohta H, Wakayama S, Wakayama T. Functional full-term placentas formed from parthenogenetic embryos using serial nuclear transfer. Development 2010; 137:2841-7. [PMID: 20659973 DOI: 10.1242/dev.051375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian parthenogenetic embryos invariably die in mid-gestation from imprinted gene defects and placental hypoplasia. Based on chimera experiments, trophoblastic proliferation is supposed to be inhibited in the absence of a male genome. Here, we show that parthenogenetic mouse embryonic cell nuclei can be reprogrammed by serial rounds of nuclear transfer without using any genetic modification. The durations of survival in uteri of cloned foetuses derived from green fluorescent protein (GFP)-labelled parthenogenetic cell nuclei were extended with repeated nuclear transfers. After five repeats, live cloned foetuses were obtained up to day 14.5 of gestation; however, they did not survive longer even when we repeated nuclear transfer up to nine times. All foetuses showed intestinal herniation and possessed well-expanded large placentas. When embryonic stem (ES) cells derived from fertilised embryos were aggregated with the cloned embryos, full-term offspring with large placentas were obtained from the chimeric embryos. Those placentas were derived from parthenogenetic cell nuclei, judging from GFP expression. The patterns of imprinted gene expression and methylation status were similar to their parthenogenetic origin, except for Peg10, which showed the same level as in the normal placenta. These results suggest that there is a limitation for foetal development in the ability to reprogramme imprinted genes by repeated rounds of nuclear transfer. However, the placentas of parthenogenetic embryos can escape epigenetic regulation when developed using nuclear transfer techniques and can support foetal development to full gestation.
Collapse
Affiliation(s)
- Takafusa Hikichi
- RIKEN Center for Developmental Biology, Minatojima-minamimachi Chuo-ku, Kobe, Japan
| | | | | | | |
Collapse
|
68
|
Environmental epigenetic modifications and reprogramming-recalcitrant genes. Stem Cell Res 2010; 4:157-64. [DOI: 10.1016/j.scr.2010.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/22/2022] Open
|
69
|
Thuan NV, Kishigami S, Wakayama T. How to improve the success rate of mouse cloning technology. J Reprod Dev 2010; 56:20-30. [PMID: 20203432 DOI: 10.1262/jrd.09-221a] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has now been 13 years since the first cloned mammal Dolly the sheep was generated from somatic cells using nuclear transfer (SCNT). Since then, this technique has been considered an important tool not only for animal reproduction but also for regenerative medicine. However, the success rate is still very low and the mechanisms involved in genomic reprogramming are not yet clear. Moreover, the NT technique requires donated fresh oocyte, which raises ethical problems for production of human cloned embryo. For this reason, the use of induced pluripotent stem cells for genomic reprogramming and for regenerative medicine is currently a hot topic in this field. However, we believe that the NT approach remains the only valid way for the study of reproduction and basic biology. For example, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, and it can generate offspring from a single cell or even a frozen dead body. Thanks to much hard work by many groups, cloning success rates are increasing slightly year by year, and NT cloning is now becoming a more applicable method. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.
Collapse
Affiliation(s)
- Nguyen Van Thuan
- Department of Animal Bioscience and Biotechnology, Konkuk University, South Korea
| | | | | |
Collapse
|
70
|
Talbot NC, Powell AM, Caperna TJ, Garrett WM. Proteomic analysis of the major cellular proteins of bovine trophectoderm cell lines derived from IVP, parthenogenetic and nuclear transfer embryos: Reduced expression of annexins I and II in nuclear transfer-derived cell lines. Anim Reprod Sci 2010; 120:187-202. [PMID: 20400246 DOI: 10.1016/j.anireprosci.2010.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/11/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Trophectoderm cell lines were established from 8-day in vitro-cultured embryos of cattle derived from fertilization (IVF), somatic cell nuclear transfer (NT), or parthenogenetic activation (P) of in vitro-matured oocytes and from five 8-day-old in vivo (V) embryos. The most abundant cellular proteins of 5 V-, 16 NT-, 12 P-, and 16 IVF-derived cell lines were compared by 2D-gel electrophoresis and mass spectrometry; that is, the unaltered thiourea/urea extract of each cell culture was analyzed. Common protein spots (n=118) were examined, and 95% were identified with significant scores from protein and gene database searches. Of the proteins detected and identified, actin and cytokeratin-8 were found to be the most abundant. Other prominent cellular proteins were metabolic enzymes such as aldose reductase, phosphoglycerate mutase, enolase, triosephosphate isomerase, cytoskeletal interacting proteins transgelin and stratifin, anti-oxidant proteins peroxiredoxin 1 and anti-oxidant protein 2, and the calcium-dependent lipid-binding proteins annexins I and II. In comparative analysis of the 2D-gels, the NT-derived trophectoderm had less annexins I and II in comparison to the IVF- and P-derived trophectoderm. Because annexins I and II are abundant in the placenta and have functions important to the maintenance of placentation, the down-regulation of the annexin genes in the cultured NT trophectoderm may be related to the frequent failures of NT pregnancies.
Collapse
Affiliation(s)
- Neil C Talbot
- U.S. Department of Agriculture, Agricultural Research Service USDA, ARS, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, United States.
| | | | | | | |
Collapse
|
71
|
Allelic switching of the imprinted IGF2R gene in cloned bovine fetuses and calves. Anim Reprod Sci 2009; 116:19-27. [DOI: 10.1016/j.anireprosci.2009.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/05/2009] [Accepted: 01/14/2009] [Indexed: 11/21/2022]
|
72
|
Early alteration of the self-renewal/differentiation threshold in trophoblast stem cells derived from mouse embryos after nuclear transfer. Dev Biol 2009; 334:325-34. [DOI: 10.1016/j.ydbio.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 02/04/2023]
|
73
|
Hwang S, Chang YM, Ko YG, Yang BC, Min KS, Yoon JT, Nho WG, Kim CK, Seong HH. Delayed parturition in cloned calves associated with persistently elevated placentomal TGF-β1 expression. Anim Reprod Sci 2009; 115:290-5. [DOI: 10.1016/j.anireprosci.2008.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 11/13/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
|
74
|
Trophoblast stem cells derived from nuclear transfer embryos: phenotypically unique, bad neighbors, or poor communicators? Proc Natl Acad Sci U S A 2009; 106:16014-5. [PMID: 19805254 DOI: 10.1073/pnas.0908646106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
75
|
Oh H, Hong S, Park J, Kang J, Kim M, Kim M, Kang S, Kim D, Jang G, Lee B. Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts. Theriogenology 2009; 72:461-70. [PMID: 19497615 DOI: 10.1016/j.theriogenology.2009.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/16/2009] [Accepted: 03/29/2009] [Indexed: 12/25/2022]
|
76
|
Establishment of trophoblast stem cell lines from somatic cell nuclear-transferred embryos. Proc Natl Acad Sci U S A 2009; 106:16293-7. [PMID: 19706390 DOI: 10.1073/pnas.0908009106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placental abnormalities occur frequently in cloned animals. Here, we attempted to isolate trophoblast stem (TS) cells from mouse blastocysts produced by somatic cell nuclear transfer (NT) at the blastocyst stage (NT blastocysts). Despite the predicted deficiency of the trophoblast cell lineage, we succeeded in isolating cell colonies with typical morphology of TS cells and cell lines from the NT blastocysts (ntTS cell lines) with efficiency as high as that from native blastocysts. The established 10 ntTS cell lines could be maintained in the undifferentiated state and induced to differentiate into several trophoblast subtypes in vitro. A comprehensive analysis of the transcriptional and epigenetic traits demonstrated that ntTS cells were indistinguishable from control TS cells. In addition, ntTS cells contributed exclusively to the placenta and survived until term in chimeras, indicating that ntTS cells have developmental potential as stem cells. Taken together, our data show that NT blastocysts contain cells that can produce TS cells in culture, suggesting that proper commitment to the trophoblast cell lineage in NT embryos occurs by the blastocyst stage.
Collapse
|
77
|
Xing B, Xu Y, Cheng Y, Liu H, Du M. Overexpression of IGF2R and IGF1R mRNA in SCNT-produced goats survived to adulthood. J Genet Genomics 2009; 34:709-19. [PMID: 17707215 DOI: 10.1016/s1673-8527(07)60080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/08/2007] [Indexed: 10/22/2022]
Abstract
The procedure of somatic cell nuclear transfer (SCNT) is likely to affect the expression level of growth-related genes especially imprinting genes. In this study, expressions of growth-related genes including three imprinting genes (H19, IGF2, and IGF2R) and four non-imprinting genes (IGF1, IGF1R, GHR, and GHSR) in adult nuclear transferred (NT) goats were investigated by real-time PCR. The expressions of these genes in adult clones were found largely normal, but IGF2R and IGF1R were more highly expressed in cloned goats than in non-NT goats (P < 0.01). Analysis on mono-allelic expression pattern of imprinting genes indicated that mono-allelic expression patterns of H19 and IGF2 in cloned goats were similar to that in non-NT goats. In addition, the sequence of goat IGF2 gene and the putative amino acid sequence were obtained. The 986 nucleotide cDNA of goat IGF2 gene contained an open-reading frame of 540 nucleotides coding for 179 amino acids. Both cDNA sequence and amino acid sequence of IGF2 in goat showed their higher homology with that in sheep than in cattle; the partial cDNA fragments of H19, IGF2R, GHSR, IGF1R, and GHR in goat were also cloned and sequenced, which shared higher sequence identities with those in sheep than in cattle.
Collapse
Affiliation(s)
- Baosong Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
78
|
Miki H, Wakisaka N, Inoue K, Ogonuki N, Mori M, Kim JM, Ohta A, Ogura A. Embryonic rather than extraembryonic tissues have more impact on the development of placental hyperplasia in cloned mice. Placenta 2009; 30:543-6. [PMID: 19345413 DOI: 10.1016/j.placenta.2009.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/08/2009] [Accepted: 03/10/2009] [Indexed: 11/15/2022]
Abstract
Somatic cell cloning by nuclear transfer (NT) in mice is associated with hyperplastic placentas at term. To dissect the effects of embryonic and extraembryonic tissues on this clone-associated phenotype, we constructed diploid (2n) fused with (<-->) tetraploid (4n) chimeras from NT- and fertilization-derived (FD) embryos. Generally, the 4n cells contributed efficiently to all the extraembryonic tissues but not to the embryo itself. Embryos constructed by 2n NT<-->4n FD aggregation developed hyperplastic placentas (0.33+/-0.22 g) with a predominant contribution by NT-derived cells. Even when the population of FD-derived cells in placentas was increased using multiple FD embryos (up to four) for aggregation, most placentas remained hyperplastic (0.36+/-0.13 g). By contrast, placentas of the reciprocal combination, 2n FD<-->4n NT, were less hyperplastic (0.15+/-0.02 g). These nearly normal-looking placentas had a large proportion of NT-derived cells. Thus, embryonic rather than extraembryonic tissues had more impact on the onset of placental hyperplasia, and that the abnormal placentation in clones occurs in a noncell-autonomous manner. These findings suggest that for improvement of cloning efficiency we should understand the mechanisms regulating placentation, especially those of embryonic origin that might control the proliferation of trophoblastic lineage cells.
Collapse
Affiliation(s)
- H Miki
- Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Meng Q, Wang M, Stanca CA, Bodo S, Dinnyes A. Cotransfer of parthenogenetic embryos improves the pregnancy and implantation of nuclear transfer embryos in mouse. CLONING AND STEM CELLS 2009; 10:429-34. [PMID: 18752415 DOI: 10.1089/clo.2008.0003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The majority of somatic cell nuclear transfer (SCNT) clones dies in the peri- or postimplantation period. Improvement of the full-term healthy pregnancy rates is a key issue for the economical viability and animal welfare profile of SCNT technology. In this study the effects of cotransfer of parthenogenetic or fertilized embryos on the pregnancy and implantation of SCNT mouse embryos have been investigated. SCNT embryos were produced by transferring cumulus cell nuclei into enucleated B6D2F1 mouse oocytes, whereas parthenogenetically activated (PA) and fertilized embryos were derived from ICR mice by artificial activation with strontium and in vivo fertilization, respectively. SCNT embryos were inferior in their developmental capacity to blastocyst compared to either PA or fertilized embryos. SCNT embryos were transferred alone (SCNT), or cotransferred with two to three PA (SCNT + PA) or fertilized (SCNT + Fert) embryos into the oviducts of an ICR recipient. Both pregnancy and implantation rates originating from clones in the SCNT + PA group were significantly higher than those of SCNT group (p < 0.05). The weight of placentas of clones derived from SCNT, SCNT + PA, or SCNT + Fert was in all cases significantly higher than that of fertilized controls (p < 0.001). Most of the clones derived from SCNT embryos cotransferred with PA or fertilized embryos survived to adulthood and were fertile and healthy according to histopathological observations. Our results demonstrate in mouse that cotransfer of PA embryos improves the pregnancy and implantation of SCNT embryos without compromising the overall health of the resulting clones.
Collapse
Affiliation(s)
- Qinggang Meng
- Genetic Reprogramming Group, Agricultural Biotechnology Center, Godollo, Hungary
| | | | | | | | | |
Collapse
|
80
|
Abstract
Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since "Dolly," the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.
Collapse
|
81
|
Palmieri C, Loi P, Ptak G, Della Salda L. Review Paper: A Review of the Pathology of Abnormal Placentae of Somatic Cell Nuclear Transfer Clone Pregnancies in Cattle, Sheep, and Mice. Vet Pathol 2008; 45:865-80. [DOI: 10.1354/vp.45-6-865] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cloning of cattle, sheep, and mice by somatic cell nuclear transfer (SCNT) can result in apparently healthy offspring, but the probability of a successful and complete pregnancy is less than 5%. Failures of SCNT pregnancy are associated with placental abnormalities, such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium, and altered basement membrane. The pathogenesis of these changes is poorly understood, but current evidence implicates aberrant reprogramming of donor nuclei by the recipient oocyte cytoplast, resulting in epigenetic modifications of key regulatory genes essential for normal placental development. The purpose of this review is to provide an overview of the anatomic pathology of abnormal placentae of SCNT clones and to summarize current knowledge concerning underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- C. Palmieri
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - P. Loi
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - G. Ptak
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - L. Della Salda
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
82
|
Tian G, Singh U, Yu Y, Ellsworth BS, Hemberger M, Geyer R, Stewart MD, Behringer RR, Fundele R. Expression and function of the LIM homeobox containing genes Lhx3 and Lhx4 in the mouse placenta. Dev Dyn 2008; 237:1517-25. [PMID: 18425848 DOI: 10.1002/dvdy.21546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The LIM homeobox containing genes of the LIM-3 group, Lhx3 and Lhx4, are critical for normal development. Both genes are involved in the formation of the pituitary and the motoneuron system and loss of either gene causes perinatal lethality. Previous studies had shown that Lhx3 is overexpressed in hyperplastic placentas of mouse interspecies hybrids. To determine the role of LHX3 in the mouse placenta, we performed expression and function analyses. Our results show that Lhx3 exhibits specific spatial and temporal expression in the mouse placenta. However, deletion of Lhx3 does not produce a placental phenotype. To test whether this is due to functional substitution by Lhx4, we performed a phenotype analysis of Lhx3-/-; Lhx4-/- double-mutant placentas. A subset of Lhx3-/-; Lhx4-/- placentas exhibited abnormal structure of the labyrinth. However, absence of both LIM-3 genes did not interfere with placental transport nor consistently with expression of target genes such as Gnrhr. Thus, LHX3 and LHX4 appear to be dispensable for placental development and function.
Collapse
Affiliation(s)
- Geng Tian
- Department of Animal Genetics and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
84
|
Wakayama S, Cummins JM, Wakayama T. Nuclear reprogramming to produce cloned mice and embryonic stem cells from somatic cells. Reprod Biomed Online 2008; 16:545-52. [PMID: 18413064 DOI: 10.1016/s1472-6483(10)60462-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cloning methods in mice are now well described and are becoming routine. However, the frequency at which cloned mice are produced remains below 5%, irrespective of the nucleus donor species or cell type. Only a few laboratories have made clones from adult mouse somatic cells and most strains have never produced cloned mice. On the other hand, nuclear transfer can be used to generate human embryonic stem (ntES) cell lines from a patient's own somatic cells. It has been shown that such cells can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. This technique could be used in regenerative medicine and, in theory, in infertility clinics to treat completely infertile individuals. However, these results suggest that the reprogramming integrity of each cloned embryo differs: some cloned embryos can be converted to ntES cells, but these embryos cannot achieve full term development. This review outlines the nature of genomic reprogramming potential and its application, and suggests new approaches to avoid the ethical problems of creating embryos by nuclear transfer.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Centre for Developmental Biology RIKEN Kobe, 2-2-3 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | |
Collapse
|
85
|
Wakisaka N, Inoue K, Ogonuki N, Miki H, Sekita Y, Hanaki K, Akatsuka A, Kaneko-Ishino T, Ishino F, Ogura A. Ultrastructure of placental hyperplasia in mice: comparison of placental phenotypes with three different etiologies. Placenta 2008; 29:753-9. [PMID: 18602690 DOI: 10.1016/j.placenta.2008.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 11/28/2022]
Abstract
Hyperplastic placentas have been reported in several experimental mouse models, including animals produced by somatic cell nuclear transfer, by inter(sub)species hybridization, and by somatic cytoplasm introduction to oocytes followed by intracytoplasmic sperm injection. Of great interest are the gross and histological features common to these placental phenotypes--despite their quite different etiologies--such as the enlargement of the spongiotrophoblast layers. To find morphological clues to the pathways leading to these similar placental phenotypes, we analyzed the ultrastructure of the three different types of hyperplastic placenta. Most cells affected were of trophoblast origin and their subcellular ultrastructural lesions were common to the three groups, e.g., a heavy accumulation of cytoplasmic vacuoles in the trophoblastic cells composing the labyrinthine wall and an increased volume of spongiotrophoblastic cells with extraordinarily dilatated rough endoplasmic reticulum. Although the numbers of trophoblastic glycogen cells were greatly increased, they maintained their normal ultrastructural morphology, including a heavy glycogen deposition throughout the cytoplasm. The fetal endothelium and small vessels were nearly intact. Our ultrastructural study suggests that these three types of placental hyperplasias, with different etiologies, may have common pathological pathways, which probably exclusively affect the development of certain cell types of the trophoblastic lineage during mouse placentation.
Collapse
Affiliation(s)
- N Wakisaka
- Bioresouce Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Food Safety, Animal Health and Welfare and Environmental Impact of Animals derived from Cloning by Somatic Cell Nucleus Transfer (SCNT) and their Offspring and Products Obtained from those Animals. EFSA J 2008; 6:767. [PMID: 37213844 PMCID: PMC10193655 DOI: 10.2903/j.efsa.2008.767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
87
|
Placental microstructure and efficiency in cloned bovines: a design-based stereological approach. Cell Tissue Res 2008; 333:105-14. [DOI: 10.1007/s00441-008-0626-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|
88
|
Rampon C, Bouillot S, Climescu-Haulica A, Prandini MH, Cand F, Vandenbrouck Y, Huber P. Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiol Genomics 2008; 34:193-204. [PMID: 18477666 DOI: 10.1152/physiolgenomics.00220.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protocadherins are transmembrane proteins exhibiting homophilic adhesive activities through their extracellular domain. Protocadherin 12 (Pcdh12) is expressed in angiogenic endothelial cells, mesangial cells of kidney glomeruli, and glycogen cells of the mouse placenta. To get insight into the role of this protein in vivo, we analyzed PCDH12-deficient mice and investigated their placental phenotype. The mice were alive and fertile; however, placental and embryonic sizes were reduced compared with wild-type mice. We observed defects in placental layer segregation and a decreased vascularization of the labyrinth associated with a reduction in cell density in this layer. To understand the molecular events responsible for the phenotypic alterations observed in Pcdh12(-/-) placentas, we analyzed the expression profile of embryonic day 12.5 mutant placentas compared with wild-type placentas, using pangenomic chips: 2,289 genes exhibited statistically significant changes in expressed levels due to loss of PCDH12. Functional grouping of modified genes was obtained by GoMiner software. Gene clusters that contained most of the differentially expressed genes were those involved in tissue morphogenesis and development, angiogenesis, cell-matrix adhesion and migration, immune response, and chromatin remodeling. Our data show that loss of PCDH12 leads to morphological alterations of the placenta and to notable changes in its gene expression profile. Specific genes emerging from the microarray screen support the biological modifications observed in PCDH12-deficient placentas.
Collapse
Affiliation(s)
- Christine Rampon
- Laboratory of Vascular Pathophysiology, Institut National de la Santé et de la Recherche Médicale U882, Commissariat à l'Energie Atomique (CEA), Grenoble University, CEA, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
89
|
Talbot NC, Powell AM, Ocón OM, Caperna TJ, Camp M, Garrett WM, Ealy AD. Comparison of the interferon-tau expression from primary trophectoderm outgrowths derived from IVP, NT, and parthenogenote bovine blastocysts. Mol Reprod Dev 2008; 75:299-308. [PMID: 17721989 DOI: 10.1002/mrd.20741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of interferon-tau (IFN-tau) is essential for bovine embryo survival in the uterus. An evaluation of IFN-tau production from somatic cell nuclear transfer (NT)-embryo-derived primary trophectoderm cultures in comparison to trophectoderm cultured from parthenogenote (P) and in vitro matured, fertilized, and cultured (IVP) bovine embryos was performed. In Experiment 1, the success/failure ratio for primary trophectoderm colony formation was similar for IVP and NT blastocysts [IVP = 155/29 (84%); NT 104/25 (81%)], but was decreased (P = .05) for P blastocysts [54/43 (56%)]. Most trophectoderm colonies reached diameters of at least 1 cm within 3-4 weeks, and at this time, 72 hr conditioned cell culture medium was measured for IFN-tau concentration by antiviral activity assay. The amount of IFN-tau produced by IVP-outgrowths [4311 IU/mL (n = 155)] was greater (P < .05) than that from NT- [626 IU/mL (n = 104)] and P - [1595 IU/mL (n = 54)] derived trophectoderm. Differential expression of IFN-tau was confirmed by immunoblotting. In Experiment 2, colony formation was again similar for IVP and NT blastocysts [IVP = 70/5 (93%); NT 67/1 (99%)] and less (P < .05) for P blastocysts [65/27 (70%)]. Analysis of trophectoderm colony size after 23 days in culture showed a similar relationship with P-derived colonies being significantly smaller in comparison to IVP and NT colonies. A differential expression of IFN-tau was also observed again, but this time as measured over time in culture. Maximal IFN-tau production was found at day-14 of primary culture and diminished to a minimum by the 23rd day.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, ANRI, Biotechnology and Germplasm Laboratory, Beltsville, Maryland 20705-2350, USA.
| | | | | | | | | | | | | |
Collapse
|
90
|
Hoffert-Goeres KA, Batchelder CA, Bertolini M, Moyer AL, Famula TR, Anderson GB. Angiogenesis in day-30 bovine pregnancies derived from nuclear transfer. CLONING AND STEM CELLS 2008; 9:595-607. [PMID: 18154519 DOI: 10.1089/clo.2007.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Impaired placental angiogenesis during early pregnancy may result in placental defects that adversely affect development of nuclear-transfer (NT) embryos later in pregnancy. These experiments were designed to quantify and compare development of placental microvasculature and expression of genes associated with angiogenesis, including members of the VEGF and angiopoietin (Ang) families, in maternal and embryonic placental tissues of day 30 bovine concepti derived from NT or in vitro fertilization (IVF) followed by in vivo development to the blastocyst stage in the sheep oviduct. Microvascular volume density (MVD) within the caruncular tissues, as determined using Periodic Acid-Schiff's staining as well as immunohistochemical staining for von Willebrand's factor, was not different between NT- and IVF- derived pregnancies. Expression of genes implicated in angiogenic mechanisms, including VEGF-A and -C, placental growth factor (PlGF), VEGF receptors (Flt-1, Flk-1, and Flt-4), angiopoietin-1 (Ang1), Ang2, Tie1, Tie2, and hypoxia-inducible factor (HIF), were determined. In chorio-allantoic membranes, levels of PlGF transcripts were significantly lower in NT- than IVF-derived tissues (p<0.05), whereas HIF-1alpha transcription in chorio-allantoic membranes of cloned concepti was higher at p<0.10. Caruncular expression of HIF-1alpha and Ang1 also was increased in NT-derived pregnancies at p <or= 0.10. Immunohistochemical staining of caruncular tissues for VEGF-A and the Flt-1 receptor revealed few differences in protein expression between NT- and IVF-derived pregnancies. These results indicate that expression of most angiogenic factors at day 30 of gestation is not altered as a result of the NT procedure; however, given reports of impaired placental vascular development in NT-derived bovine embryos, perturbations in angiogenesis may occur subsequently during early placental development and throughout gestation. Elevated expression of the HIF-1alpha gene in maternal and chorio-allantoic tissues of cloned concepti may suggest a generalized hypoxic condition in early placental tissues of NT-derived concepti, which could adversely affect subsequent development of the placenta.
Collapse
|
91
|
Suzuki T, Kondo S, Wakayama T, Cizdziel PE, Hayashizaki Y. Genome-wide analysis of abnormal H3K9 acetylation in cloned mice. PLoS One 2008; 3:e1905. [PMID: 18398451 PMCID: PMC2276245 DOI: 10.1371/journal.pone.0001905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/26/2008] [Indexed: 01/21/2023] Open
Abstract
Somatic nuclear transfer is a cloning technique that shows great promise in the application to regenerative medicine. Although cloned animals are genetically identical to their donor counterparts, abnormalities in phenotype and gene expression are frequently observed. One hypothesis is that the cause of these abnormalities is due to epigenetic aberration. In this report, we focused our analysis on the acetylation of histone H3 at lysine9 (H3K9Ac). Through the use of whole genome tiling arrays and quantitative PCR, we examined this epigenetic event and directly compared and assessed the differences between a cloned mouse (C1) and its parental nuclear donor (D1) counterpart. We identified 4720 regions of chromosomal DNA that showed notable differences in H3K9Ac and report here many genes identified in these hyper- and hypo-acetylated regions. Analysis of a second clone (C2) and its parental donor counterpart (D2) for H3K9Ac showed a high degree of similarity to the C1/D1 pair. This conservation of aberrant acetylation is suggestive of a reproducible epigenetic phenomenon that may lead to the frequent abnormalities observed in cloned mice, such as obesity. Furthermore, we demonstrated Crp which was identified as a hyper-acetylated gene in this study is related to the body mass, suggesting that Crp is a possible candidate of a cause for the abnormal obesity in cloned mice. In this, one of the first reports describing genome-wide epigenetic abberation between parental and nuclear transfer-cloned mammals, we propose that aberrant acetylation of histones (H3K9Ac) flanking promoter regions highly correlates with gene-expression and may itself be an epigenetic change that accounts for variable expression patterns observed in cloned animals.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
92
|
Wee G, Shim JJ, Koo DB, Chae JI, Lee KK, Han YM. Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 2008; 134:781-7. [PMID: 18042635 DOI: 10.1530/rep-07-0338] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epigenetic reprogramming is a prerequisite process during mammalian development that is aberrant in cloned embryos. However, mechanisms that evolve abnormal epigenetic reprogramming during preimplantation development are unclear. To trace the molecular event of an epigenetic mark such as DNA methylation, bovine fibroblasts were epigeneticallyaltered by treatment with trichostatin A (TSA) and then individually transferred into enucleated bovine oocytes. In the TSA-treated cells, expression levels of histone deacetylases and DNA methyltransferases were reduced, but the expression level of histone acetyltransferases such as Tip60 and histone acetyltransferase 1 (HAT1) did not change compared with normal cells. DNA methylation levels of non-treated (normal) and TSA-treated cells were 64.0 and 48.9% in the satellite I sequence (P < 0.05) respectively, and 71.6 and 61.9% in the alpha-satellite sequence respectively. DNA methylation levels of nuclear transfer (NT) and TSA-NT blastocysts in the satellite I sequence were 67.2 and 42.2% (P < 0.05) respectively, which was approximately similar to those of normal and TSA-treated cells. In the alpha-satellite sequence, NT and TSA-NT embryos were substantially demethylated at the blastocyst stage as IVF-derived embryos were demethylated. The in vitro developmental rate (46.6%) of TSA-NT embryos that were individually transferred with TSA-treated cells was higher than that (31.7%) of NT embryos with non-treated cells (P < 0.05). Our findings suggest that the chromatin of a donor cell is unyielding to the reprogramming of DNA methylation during preimplantation development, and that alteration of the epigenetic state of donor cells may improve in vitro developmental competence of cloned embryos.
Collapse
Affiliation(s)
- Gabbine Wee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
93
|
Tamashiro KLK, Sakai RR, Yamazaki Y, Wakayama T, Yanagimachi R. Developmental, behavioral, and physiological phenotype of cloned mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:72-83. [PMID: 17176555 DOI: 10.1007/978-0-387-37754-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cloning from adult somatic cells has been successful in at least ten species. Although generating viable cloned mammals from adult cells is technically feasible, prenatal and perinatal mortality is high and live cloned offspring have had health problems. This chapter summarizes the health consequences of cloning in mice and discusses possible mechanisms through which these conditions may arise. These studies have further significance as other assisted reproductive techniques (ART) also involve some of the same procedures used in cloning, and there are some reports that offspring generated by ART display aberrant phenotypes as well. At the moment, the long-term consequences of mammalian cloning remain poorly characterized. Data available thus far suggest that we should use this technology with great caution until numerous questions are addressed and answered.
Collapse
Affiliation(s)
- Kellie L K Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
94
|
Cho SJ, Yin XJ, Choi E, Lee HS, Bae I, Han HS, Yee ST, Kim NH, Kong IK. DNA Methylation Status in Somatic and Placenta Cells of Cloned Cats. CLONING AND STEM CELLS 2007; 9:477-84. [DOI: 10.1089/clo.2007.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Su-Jin Cho
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| | - Xi-Jun Yin
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Eugene Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| | - Hyo-Sang Lee
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Inhyu Bae
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Hyo-Sim Han
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 540-742, S. Korea
| | - Sung-Tae Yee
- Department of Biology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, S. Korea
| | - Il-Keun Kong
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| |
Collapse
|
95
|
Ohgane J, Yagi S, Shiota K. Epigenetics: the DNA methylation profile of tissue-dependent and differentially methylated regions in cells. Placenta 2007; 29 Suppl A:S29-35. [PMID: 18031808 DOI: 10.1016/j.placenta.2007.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Methylation of DNA, which occurs at cytosines of CpG sequences, is a unique chemical modification of the vertebrate genome. Methylation patterns can be copied to daughter DNA after mitosis; thus DNA methylation has been suggested to act as a "cellular memory of the genome function". Genome-wide analysis of DNA methylation revealed that there are numerous tissue-dependent differentially methylated regions (T-DMRs) in unique sequences of the mammalian genome. There are T-DMRs in both CpG-rich and -poor sequences. Methylation of T-DMRs is responsible for gene-silencing and chromatin structure change. Each tissue/cell type has a unique DNA methylation profile that consists of methylation patterns of numerous loci in the genome. DNA methylation profiles are not associated with bulk DNA, which is mainly comprised of repetitive sequences. Disruption of DNA methylation profiles putatively produce abnormal cells and tissues. Cloned mice produced by somatic nuclear transfer are associated with aberrant DNA methylation profiles. Tissue/cell type-specific DNA methylation profiles can provide a novel viewpoint for understanding normal and aberrant development, in terms of both differentiation and reproduction.
Collapse
Affiliation(s)
- J Ohgane
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
96
|
Estrada J, Sommer J, Collins B, Mir B, Martin A, York A, Petters RM, Piedrahita JA. Swine generated by somatic cell nuclear transfer have increased incidence of intrauterine growth restriction (IUGR). CLONING AND STEM CELLS 2007; 9:229-36. [PMID: 17579555 DOI: 10.1089/clo.2006.0079] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While somatic cell nuclear transfer (SCNT) has been successful in several species, many pregnancies are lost and anomalies are found in fetal and perinatal stages. In this study SCNT and artificial inseminations (AI) populations were compared for litter size, average birth weight, piglets alive at birth, stillborn, mummies, dead at the first week, intrauterine growth restriction (IUGR) and large for gestational age (LGA). Twenty-three SCNT litters (143 individuals) were compared to 112 AI litters (1300 individuals). Litter size average was 11.5 for AI and 6.2 for SCNT. Litter weight and average birth weight adjusted by litter size were significantly (p < 0.05) higher in AI than in SCNT litters. The SCNT population had a significant (p < 0.01) increase in the number of IUGRs per litter with LSmeans 7.2 +/- 1.4 versus 19.4 +/- 3.5 and means 8.0 +/- 10.8 versus 15.5 +/- 24.5 for AI and SCNT, respectively. Additionally, there was a trend for higher postnatal mortality and stillbirths in the SCNT population. These findings demonstrate that there are some differences between SCNT-derived and AI litters. SCNT-derived pigs are excellent models to study epigenetic factors and genes involved in IUGRs, and to develop effective means to improve fetal growth in humans and animals.
Collapse
Affiliation(s)
- Jose Estrada
- Molecular and Biomedical Sciences Department, North Carolina State University, Raleigh, North Carolina 27607, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Senda S, Wakayama T, Arai Y, Yamazaki Y, Ohgane J, Tanaka S, Hattori N, Yanagimachi R, Shiota K. DNA Methylation Errors in Cloned Mice Disappear with Advancement of Aging. CLONING AND STEM CELLS 2007; 9:293-302. [PMID: 17907940 DOI: 10.1089/clo.2006.0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cloned animals have various health problems. Aberrant DNA methylation is a possible cause of the problems. Restriction landmark genomic scanning (RLGS) that enabled us to analyze more than 1,000 CpG islands simultaneously demonstrated that all cloned newborns had aberrant DNA methylation. To study whether this aberration persists throughout the life of cloned individuals, we examined genome-wide DNA methylation status of newborn (19.5 dpc, n=2), adult (8-11 months old, n=3), and aged (23-27 months old, n=4) cloned mice using kidney cells as representatives. In the adult and aged groups, cloning was repeated using cumulus cells of the adult founder clone of each group as nucleus donor. Two newborn clones had three with aberrantly methylated loci, which is consistent with previous reports that all cloned newborns had DNA methylation aberrations. Interestingly, we could detect only one aberrantly methylated locus in two of the three adult clones in mid-age and none of four senescent clones, indicating that errors in DNA methylation disappear with advancement of animals' aging.
Collapse
Affiliation(s)
- Sho Senda
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Miglino MA, Pereira FTV, Visintin JA, Garcia JM, Meirelles FV, Rumpf R, Ambrósio CE, Papa PC, Santos TC, Carvalho AF, Leiser R, Carter AM. Placentation in cloned cattle: Structure and microvascular architecture. Theriogenology 2007; 68:604-17. [PMID: 17568663 DOI: 10.1016/j.theriogenology.2007.04.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
To elucidate the morphological differences between placentas from normal and cloned cattle pregnancies reaching term, the umbilical cord, placentomes and interplacentomal region of the fetal membranes were examined macroscopically as well as by light and scanning electron microscopy. In pregnancies established by somatic nucleus transfer (NT), the umbilical cord and fetal membranes were edematous. Placentomal fusion was common, resulting in increased size and a decreased number of placentomes. Extensive areas of the chorioallantoic membrane were devoid of placentomes. An increased number of functional or accessory microcotyledons (<1 cm) were present at the maternally oriented surface of fetal membranes. Extensive areas of extravasated maternal blood were present within the placentomes and in the interplacentomal region. The crypts on the caruncular surface were dilated and accommodated complexes of more than one primary villus, as opposed to a single villus in non-cloned placentae. Scanning electron microscopy of blood vessel casts revealed that there was also more than one stem artery per villous tree and that the ramification of the vessels failed to form dense complexes of capillary loops and sinusoidal dilations as in normal pregnancies. At the materno-fetal interface, however, the trophoblast and uterine epithelium had normal histology. In conclusion, the NT placentas had a range of pathomorphological changes; this was likely associated with the poor clinical outcome of NT pregnancies.
Collapse
Affiliation(s)
- M A Miglino
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman JR, Tanaka S. Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation 2007; 75:268-78. [PMID: 17359302 DOI: 10.1111/j.1432-0436.2006.00137.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously reported that a mutation in the ankyrin repeats of mouse Notch2 results in embryonic lethality by embryonic day 11.5 (E11.5), showing developmental retardation at E10.5. This indicated that Notch2 plays an essential role in postimplantation development in mice. Here, we demonstrate that whole embryo culture can circumvent developmental retardation of Notch2 mutant embryos for up to 1 day, suggesting that the lethality was primarily caused by extraembryonic defects. Histological examinations revealed delayed entry of maternal blood into the mutant placenta and poor blood sinus formation at later stages. Notch2-expressing cells appeared around maternal blood sinuses. Specification of trophoblast subtypes appeared not to be drastically disturbed and expression of presumptive downstream genes of Notch2 signaling was not altered by the Notch2 mutation. Thus, in the developing mouse placenta, Notch2 is unlikely to be involved in cell fate decisions, but rather participates in formation of maternal blood sinuses. In aggregation chimeras with wild-type tetraploid embryos, the mutant embryos developed normally until E12.5, but died before E13.5. The chimeric placentas showed a restored maternal blood sinus formation when compared with the mutant placentas, but not at the level of wild-type diploid placentas. Therefore, it was concluded that the mutant suffers from defects in maternal blood sinus formation. Thus, Notch2 is not cell autonomously required for the early cell fate determination of subtypes of trophoblast cells, but plays an indispensable role in the formation of maternal blood sinuses in the developing mouse placenta.
Collapse
Affiliation(s)
- Yoshio Hamada
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
100
|
Kishigami S, Wakayama S, Thuan NV, Ohta H, Mizutani E, Hikichi T, Bui HT, Balbach S, Ogura A, Boiani M, Wakayama T. Production of cloned mice by somatic cell nuclear transfer. Nat Protoc 2007; 1:125-38. [PMID: 17406224 DOI: 10.1038/nprot.2006.21] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning remains < 5%. Nevertheless, the techniques have potential as important tools for future research in basic biology. We have been able to develop a stable NT method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although manipulation of the piezo unit is complex, once mastered it is of great help not only in NT experiments but also in almost all other forms of micromanipulation. In addition to this technique, embryonic stem (ES) cell lines established from somatic cell nuclei by NT can be generated relatively easily from a variety of mouse genotypes and cell types. Such NT-ES cells can be used not only for experimental models of human therapeutic cloning but also as a backup of the donor cell's genome. Our most recent protocols for mouse cloning, as described here, will allow the production of cloned mice in > or = 3 months.
Collapse
|