51
|
Moreno C, Prieto P, Macías Á, Pimentel-Santillana M, de la Cruz A, Través PG, Boscá L, Valenzuela C. Modulation of voltage-dependent and inward rectifier potassium channels by 15-epi-lipoxin-A4 in activated murine macrophages: implications in innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:6136-6146. [PMID: 24249731 DOI: 10.4049/jimmunol.1300235] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Potassium channels modulate macrophage physiology. Blockade of voltage-dependent potassium channels (Kv) by specific antagonists decreases macrophage cytokine production and inhibits proliferation. In the presence of aspirin, acetylated cyclooxygenase-2 loses the activity required to synthesize PGs but maintains the oxygenase activity to produce 15R-HETE from arachidonate. This intermediate product is transformed via 5-LOX into epimeric lipoxins, termed 15-epi-lipoxins (15-epi-lipoxin A4 [e-LXA4]). Kv have been proposed as anti-inflammatory targets. Therefore, we studied the effects of e-LXA4 on signaling and on Kv and inward rectifier potassium channels (Kir) in mice bone marrow-derived macrophages (BMDM). Electrophysiological recordings were performed in these cells by the whole-cell patch-clamp technique. Treatment of BMDM with e-LXA4 inhibited LPS-dependent activation of NF-κB and IκB kinase β activity, protected against LPS activation-dependent apoptosis, and enhanced the accumulation of the Nrf-2 transcription factor. Moreover, treatment of LPS-stimulated BMDM with e-LXA4 resulted in a rapid decrease of Kv currents, compatible with attenuation of the inflammatory response. Long-term treatment of LPS-stimulated BMDM with e-LXA4 significantly reverted LPS effects on Kv and Kir currents. Under these conditions, e-LXA4 decreased the calcium influx versus that observed in LPS-stimulated BMDM. These effects were partially mediated via the lipoxin receptor (ALX), because they were significantly reverted by a selective ALX receptor antagonist. We provide evidence for a new mechanism by which e-LXA4 contributes to inflammation resolution, consisting of the reversion of LPS effects on Kv and Kir currents in macrophages.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli, or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized proresolving mediators, specifically lipoxins, resolvins, protectins, and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung.
Collapse
Affiliation(s)
- Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | | |
Collapse
|
53
|
Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat 2013; 107:64-76. [DOI: 10.1016/j.prostaglandins.2013.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
|
54
|
El-Agamy DS, Makled MN, Gamil NM. Protective effects of BML-111 against acetaminophen-induced acute liver injury in mice. J Physiol Biochem 2013; 70:141-9. [DOI: 10.1007/s13105-013-0288-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
55
|
Planagumà A, Domenech T, Jover I, Ramos I, Sentellas S, Malhotra R, Miralpeix M. Lack of activity of 15-epi-lipoxin A₄ on FPR2/ALX and CysLT1 receptors in interleukin-8-driven human neutrophil function. Clin Exp Immunol 2013; 173:298-309. [PMID: 23607720 DOI: 10.1111/cei.12110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2013] [Indexed: 01/21/2023] Open
Abstract
Neutrophil recruitment and survival are important control points in the development and resolution of inflammatory processes. 15-epi-lipoxin (LX)A interaction with formyl peptide receptor 2 (FPR2)/ALX receptor is suggested to enhance anti-inflammatory neutrophil functions and mediate resolution of airway inflammation. However, it has been reported that 15-epi-LXA₄ analogues can also bind to cysteinyl leukotriene receptor 1 (CysLT1) and that the CysLT1 antagonist MK-571 binds to FPR2/ALX, so cross-reactivity between FPR2/ALX and CysLT1 ligands cannot be discarded. It is not well established whether the resolution properties reported for 15-epi-LXA4 are mediated through FPR2/ALX, or if other receptors such as CysLT1 may also be involved. Evaluation of specific FPR2/ALX ligands and CysLT1 antagonists in functional biochemical and cellular assays were performed to establish a role for both receptors in 15-epi-LXA₄-mediated signalling and function. In our study, a FPR2/ALX synthetic peptide (WKYMVm) and a small molecule FPR2/ALX agonist (compound 43) induced FPR2/ALX-mediated signalling, enhancing guanosine triphosphate-gamma (GTPγ) binding and decreasing cyclic adenosine monophosphate (cAMP) levels, whereas 15-epi-LXA₄ was inactive. Furthermore, 15-epi-LXA4 showed neither binding affinity nor signalling towards CysLT1. In neutrophils, 15-epi-LXA₄ showed a moderate reduction of interleukin (IL)-8-mediated neutrophil chemotaxis but no effect on neutrophil survival was observed. In addition, CysLT1 antagonists were inactive in FPR2/ALX signalling or neutrophil assays. In conclusion, 15-epi-LXA₄ is not a functional agonist or an antagonist of FPR2/ALX or CysLT1, shows no effect on IL-8-induced neutrophil survival and produces only moderate inhibition in IL-8-mediated neutrophil migration. Our data do not support an anti-inflammatory role of 15-epi-LXA₄- FPR2/ALX interaction in IL-8-induced neutrophil inflammation.
Collapse
Affiliation(s)
- A Planagumà
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
56
|
Effect of lipoxin A4 on myocardial ischemia reperfusion injury following cardiac arrest in a rabbit model. Inflammation 2013; 36:468-75. [PMID: 23114480 DOI: 10.1007/s10753-012-9567-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the present study, we investigated the effect of lipoxin A4 on myocardial ischemia-reperfusion injury (IRI) following cardiac arrest (CA) in a rabbit model. Lipoxin A4 is a metabolite of arachidonic acid in the eicosanoid, it is called "brake signal" for its anti-inflammatory activity. Some inflammatory factors (IL-1β, IL-6, TNF-α, and IL-10), NF-κB p65, infarct ratios, apoptotic index, cardiac troponin I (cTnI), hemodynamic and myocardial structures were measured or observed in different groups. Lipoxin A4 inhibits the expression of IL-1β, IL-6, and TNF-α, the values of the infarct ratios, apoptotic index, the level of serum cTnI and NF-κB p65. Meanwhile, it improves the expression of IL-10, hemodynamic, myocardial structure, and function. These indicate that lipoxin A4 mitigates postresuscitation myocardial IRI in which anti-inflammation and suppression of NF-κB activation may play an important role.
Collapse
|
57
|
Dual role of lipoxin A4 in pneumosepsis pathogenesis. Int Immunopharmacol 2013; 17:283-92. [PMID: 23816538 DOI: 10.1016/j.intimp.2013.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
Abstract
Lipoxin A4 (LXA4) is an endogenous lipid mediator with potent anti-inflammatory actions but its role in infectious processes is not well understood. We investigated the involvement of LXA4 and its receptor FPR2/ALX in the septic inflammatory dysregulation. Pneumosepsis was induced in mice by inoculation of Klebsiella pneumoniae. LXA4 levels and FPR2/ALX expression in the infectious focus as well as the effects of treatment with receptor agonists (LXA4 and BML-111) and antagonists (BOC-2 and WRW(4)) in early (1h) and late (24h) sepsis were studied. Sepsis induced an early increase in LXA4, FPR2/ALX lung expression, local and systemic infection and inflammation, and mortality. Treatment with BOC-2 in early sepsis increased leukocyte migration to the focus, and reduced bacterial load and dissemination. Inhibition of 5- and 15-lipoxygenase in early sepsis also increased leukocyte migration. Early treatment with WRW(4) and BOC-2 improved survival. Treatment with authentic LXA4 or BML-111 in early sepsis decreased cell migration and worsened the infection. In late sepsis, treatment with BOC-2 had no effect, but LXA4 improved the survival rate by reducing the excessive inflammatory response, this effect being abolished by pretreatment with BOC-2. Thus, the anti-inflammatory and pro-resolution mediator LXA4 and its receptor FPR2/ALX levels were increased in the early phase of sepsis, contributing to the septic inflammatory dysregulation. In addition, LXA4 has a dual role in sepsis and that its beneficial or harmful effects are critically dependent on the time. Therefore, a proper interference with LXA4 system may be a new therapeutic avenue to treat sepsis.
Collapse
|
58
|
Haworth O, Levy BD. Lipoxins, resolvins and protectins: new leads for the treatment of asthma. Expert Opin Drug Discov 2013; 3:1209-22. [PMID: 23489078 DOI: 10.1517/17460441.3.10.1209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathobiology of asthma is characterized by the production of pro-inflammatory eicosanoids that play important roles in regulating airway responses. Recognition of the biosynthetic pathways and sites of action for 5-lipoxygenase-derived leukotrienes has led to the successful development of two different classes of asthma therapeutics. OBJECTIVES In this review, we describe structurally distinct lipid mediators derived from arachidonic acid and ω-3 fatty acids that have anti-inflammatory and pro-resolving actions. These counter-regulatory lipid mediators are generated in the airway during asthma and defects in their production are associated with disease severity. CONCLUSION These natural small molecules are rapidly inactivated, but serve as rationale templates for the design of stable analogues with protective actions that could serve as new therapeutic leads for asthma.
Collapse
Affiliation(s)
- Oliver Haworth
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts, MA 02115, USA +1 617 525 8362 ; +1 617 264 5133 ;
| | | |
Collapse
|
59
|
Levy BD. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways. Front Immunol 2012; 3:390. [PMID: 23293638 PMCID: PMC3531584 DOI: 10.3389/fimmu.2012.00390] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022] Open
Abstract
Resolvins are generated from omega-3 fatty acids during inflammatory responses in the lung. These natural mediators interact with specific receptors to decrease lung inflammation and promote its resolution in healthy tissues. There are several lung diseases of chronic inflammation that fail to resolve, most notable asthma. This common disorder has a lifetime prevalence of nearly 10% and is characterized, in part, by chronic, non-resolving inflammation of the airway. Pro-resolving mediators are generated during asthma; however, their biosynthesis is decreased in severe and uncontrolled asthma, suggesting that the chronic, adaptive inflammation in asthmatic airways may result from a resolution defect. This article focuses on recent insights into the cellular and molecular mechanisms for resolvins that limit adaptive immune responses in healthy airways.
Collapse
Affiliation(s)
- Bruce D. Levy
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA,*Correspondence: Bruce D. Levy, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Room 855, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. e-mail:
| |
Collapse
|
60
|
Recchiuti A, Serhan CN. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating miRNA in Novel Resolution Circuits in Inflammation. Front Immunol 2012; 3:298. [PMID: 23093949 PMCID: PMC3477628 DOI: 10.3389/fimmu.2012.00298] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022] Open
Abstract
Unresolved inflammation is associated with several widely occurring diseases such as arthritis, periodontal diseases, cancer, and atherosclerosis. Endogenous mechanisms that curtail excessive inflammation and prompt its timely resolution are of considerable interest. In recent years, previously unrecognized chemical mediators derived from polyunsaturated fatty acids were identified that control the acute inflammatory response by activating local resolution programs. Among these are the so-called specialized pro-resolving lipid mediators (SPMs) that include lipoxins (LX), resolvins (Rv), protectins (PD), and maresins (MaR), because they are enzymatically biosynthesized during resolution of self-limited inflammation. They each possess distinct chemical structures and regulate cellular pathways by their ability to activate pro-resolving G-protein coupled receptors (GPCRs) in a stereospecific manner. For instance, RvD1 controls several miRNAs of interest in self-limited acute inflammation that counter-regulate the mediators and proteins that are involved in inflammation. Here, we overview some of the biosynthesis and mechanisms of SPM actions with focus on the recently reported miR involved in their pro-resolving responses that underscore their beneficial actions in the regulation of acute inflammation and its timely resolution. The elucidation of these mechanisms operating in vivo to keep acute inflammation within physiologic boundaries as well as stimulate resolution have opened resolution pharmacology and many new opportunities to target inflammation-related human pathologies via activating resolution mechanisms.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Boston, MA, USA
| | | |
Collapse
|
61
|
Patent Highlights. Pharm Pat Anal 2012. [DOI: 10.4155/ppa.12.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D
Collapse
|
62
|
Abstract
The resolution of inflammation in healthy airways is an active process, with specialized mediators and cellular mechanisms enlisted to restore tissue homeostasis. This article focuses on recent discoveries of natural mediators derived from essential fatty acids, including ω-3 fatty acids, with anti-inflammatory and pro-resolving. These pro-resolving mediators serve as agonists at specific receptors. Asthma is an incurable disease of chronic, nonresolving inflammation of the airways. While the biosynthesis of pro-resolving mediators occurs during asthma, defects in their production are associated with disease severity, suggesting that the pathobiology of asthma may result in part from impaired resolution of airway inflammation.
Collapse
Affiliation(s)
- Bruce D Levy
- Harvard Medical School, Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|
63
|
Norling LV, Dalli J, Flower RJ, Serhan CN, Perretti M. Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci: receptor-dependent actions. Arterioscler Thromb Vasc Biol 2012; 32:1970-8. [PMID: 22499990 PMCID: PMC3401489 DOI: 10.1161/atvbaha.112.249508] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Resolvin D1 (RvD1) limits neutrophil recruitment during acute inflammation and is derived from omega-3 docosahexaenoic acid to promote catabasis. The contribution of its specific receptors, the lipoxin A(4)/Annexin-A1 receptor formyl-peptide receptor 2 (FPR2/ALX) and the orphan receptor G-protein-coupled receptor 32 (GPR32) are of considerable interest. METHODS AND RESULTS RvD1 reduced human polymorphonuclear leukocytes recruitment to endothelial cells under shear conditions as quantified using a flow chamber system. Receptor-specific antibodies blocked these anti-inflammatory actions of RvD1, with low (1 nmol/L) concentrations sensitive to GPR32 blockade, while the higher (10 nmol/L) concentration appeared FPR2/ALX-specific. Interestingly, polymorphonuclear leukocytes surface expression of FPR2/ALX but not GPR32 increased following activation with pro-inflammatory stimuli, corresponding with secretory vesicle mobilization. Lipid mediator metabololipidomics carried out with 24-hour exudates revealed that RvD1 in vivo gave a significant reduction in the levels of a number of pro-inflammatory mediators including prostaglandins and leukotriene B(4). These actions of RvD1 were abolished in fpr2 null mice. CONCLUSIONS Pro-resolving lipid mediators and their receptors, such as RvD1 and the 2 G-protein-coupled receptors, studied here regulate resolution and may provide new therapeutic strategies for diseases with a vascular inflammatory component.
Collapse
Affiliation(s)
- Lucy V. Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Roderick J. Flower
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
64
|
Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2018-27. [PMID: 22449948 DOI: 10.1016/j.ajpath.2012.01.028] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 01/17/2023]
Abstract
Resolution of acute inflammation is an active process that involves the biosynthesis of specialized proresolving lipid mediators. Among them, resolvin D1 (RvD1) actions are mediated by two G protein-coupled receptors (GPCRs), ALX/FPR2 and GPR32, that also regulate specific microRNAs (miRNAs) and their target genes in novel resolution circuits. We report the ligand selectivity of RvD1 activation of ALX/FPR2 and GPR32. In addition to RvD1, its aspirin-triggered epimer and RvD1 analogs each dose dependently and effectively activated ALX/FPR2 and GPR32 in GPCR-overexpressing β-arrestin systems using luminescence and electric cell-substrate impedance sensing. To corroborate these findings in vivo, neutrophil infiltration in self-limited peritonitis was reduced in human ALX/FPR2-overexpressing transgenic mice that was further limited to 50% by RvD1 treatment with as little as 10 ng of RvD1 per mouse. Analysis of miRNA expression revealed that RvD1 administration significantly up-regulated miR-208a and miR-219 in exudates isolated from ALX/FPR2 transgenic mice compared with littermates. Overexpression of miR-208a in human macrophages up-regulated IL-10. In comparison, in ALX/FPR2 knockout mice, RvD1 neither significantly reduced leukocyte infiltration in zymosan-induced peritonitis nor regulated miR-208a and IL-10 in these mice. Together, these results demonstrate the selectivity of RvD1 interactions with receptors ALX/FPR2 and GPR32. Moreover, they establish a new molecular circuit that is operative in the resolution of acute inflammation activated by the proresolving mediator RvD1 involving specific GPCRs and miRNAs.
Collapse
|
65
|
Waechter V, Schmid M, Herova M, Weber A, Günther V, Marti-Jaun J, Wüst S, Rösinger M, Gemperle C, Hersberger M. Characterization of the Promoter and the Transcriptional Regulation of the Lipoxin A4 Receptor (FPR2/ALX) Gene in Human Monocytes and Macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:1856-67. [DOI: 10.4049/jimmunol.1101788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
66
|
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30:459-89. [PMID: 22224774 DOI: 10.1146/annurev-immunol-020711-074942] [Citation(s) in RCA: 1175] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neutrophils are the most abundant white blood cells in circulation, and patients with congenital neutrophil deficiencies suffer from severe infections that are often fatal, underscoring the importance of these cells in immune defense. In spite of neutrophils' relevance in immunity, research on these cells has been hampered by their experimentally intractable nature. Here, we present a survey of basic neutrophil biology, with an emphasis on examples that highlight the function of neutrophils not only as professional killers, but also as instructors of the immune system in the context of infection and inflammatory disease. We focus on emerging issues in the field of neutrophil biology, address questions in this area that remain unanswered, and critically examine the experimental basis for common assumptions found in neutrophil literature.
Collapse
Affiliation(s)
- Borko Amulic
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
67
|
Abstract
Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite. Chagas disease remains a serious health problem in large parts of Mexico and Central and South America, where it is a major cause of morbidity and mortality. This disease is being increasingly recognized in non-endemic regions due to immigration. Heart disease develops in 10-30% of infected individuals. It is increasingly clear that parasite- and host-derived bioactive lipids potently modulate disease progression. Many of the changes that occur during acute and chronic Chagas disease can be accounted for by the effects of arachidonic acid (AA)-derived lipids such as leukotrienes, lipoxins, H(P)ETEs, prostaglandins (PGs) and thromboxane. During the course of infection with T. cruzi, changes in circulating levels of AA metabolites are observed. Antagonism of PG synthesis with cyclooxygenase (COX) inhibitors has both beneficial and adverse effects. Treatment with COX inhibitors during acute infection may result in increased parasite load and mortality. However, treatment instituted during chronic infection may be beneficial with no increase in mortality and substantial improvement with cardiac function. Recently, T. cruzi infection of mice deficient in AA biosynthetic enzymes for various pathways has yielded more insightful data than pharmacological inhibition and has highlighted the potential deleterious effects of inhibitors due to "off-target" actions. Using COX-1 null mice, it was observed that parasite biosynthesis is dependent upon host metabolism, that the majority of TXA(2) liberated during T. cruzi infection is derived from the parasite and that this molecule may act as a quorum sensor to control parasite growth/differentiation. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to, and maintenance of, the chronic stage of the disease. It is also likely that the same mediators that initially function to ensure host survival may later contribute to cardiovascular damage. Collectively, the eicosanoids represent a new series of targets for therapy in Chagas disease with defined potential therapeutic windows in which to apply these agents for greatest effect. A deeper understanding of the mechanism of action of non-steroidal anti-inflammatory drugs may provide clues to the differences between host responses in acute and chronic T. cruzi infection.
Collapse
|
68
|
Simiele F, Recchiuti A, Mattoscio D, De Luca A, Cianci E, Franchi S, Gatta V, Parolari A, Werba JP, Camera M, Favaloro B, Romano M. Transcriptional regulation of the human FPR2/ALX gene: evidence of a heritable genetic variant that impairs promoter activity. FASEB J 2011; 26:1323-33. [PMID: 22131270 DOI: 10.1096/fj.11-198069] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipoxin (LX) A(4,) a main endogenous stop-signal of inflammation, activates the G-protein-coupled receptor FPR2/ALX, which triggers potent anti-inflammatory signaling in vivo. Thus, the regulation of FPR2/ALX expression may have pathophysiological and therapeutic relevance. Here, we mapped a nucleotide sequence with strong FPR2/ALX promoter activity. Chromatin immunoprecipitation revealed specificity protein 1 (Sp1) binding to the core promoter. Site-directed mutagenesis of the Sp1 cis-acting element and Sp1 overexpression established that this transcription factor is key for maximal promoter activity, which is instead suppressed by DNA methylation. LXA(4) enhanced FPR2/ALX promoter activity (+74%) and mRNA expression (+87.5%) in MDA-MB231 cells. A single nucleotide mutation (A/G) was detected in the core promoter of one subject with history of cardiovascular disease and of his two daughters. This mutation reduced by ∼35-90% the promoter activity in vitro. Moreover, neutrophils from individuals carrying the A/G variant displayed ∼10- and 3-fold reduction in FPR2/ALX mRNA and protein, respectively, compared with cells from their relatives or healthy volunteers expressing the wild-type allele. These results uncover FPR2/ALX transcriptional regulation and provide the first evidence of mutations that affect FPR2/ALX transcription, thus opening new opportunities for the understanding of the LXA(4)-FPR2/ALX axis in human disease.
Collapse
Affiliation(s)
- Felice Simiele
- Department of Biomedical Sciences, Center of Excellence on Aging, Ce.S.I., G. d'Annunzio University Foundation, Via Colle dell'Ara, 66013 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
70
|
Kenchegowda S, Bazan NG, Bazan HEP. EGF stimulates lipoxin A4 synthesis and modulates repair in corneal epithelial cells through ERK and p38 activation. Invest Ophthalmol Vis Sci 2011; 52:2240-9. [PMID: 21220563 DOI: 10.1167/iovs.10-6199] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect of epidermal growth factor (EGF) on lipoxin A4 (LXA4) synthesis and how it regulates corneal epithelial wound healing through mitogen-activated kinases, extracellular regulated kinase (ERK) 1/2, and p38. METHODS Rabbit corneal epithelial (RCE) cells were stimulated with EGF or LXA4 at different times. In some experiments, cells were pretreated with 12/15-lipoxygenase (12/15-LOX) inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), ERK1/2 inhibitor PD98059, or p38 inhibitor SB203580. For wound-healing experiments, corneas from rabbits and 12/15-LOX (ALOX-15)-deficient mice were injured by epithelial removal and maintained in organ culture in the presence of EGF or LXA4 with or without inhibitors. Epithelial cell proliferation was assayed by immunofluorescence with Ki67 and cell counting. Scrape migration assays were performed in 6-well plates. LXA4 synthesis was analyzed by liquid chromatography-tandem mass spectrometry analysis. RESULTS EGF activated ERK1/2 and p38 in RCE cells in a sustained manner. EGF activation was partially inhibited by CDC. EGF and LXA4 increased corneal epithelial wound closure. ERK1/2 inhibition with PD98059 or p38 with SB203580 blocked the effect of LXA4 on wound healing. ALOX-15 corneas displayed inhibition of epithelial wound closure promoted by EGF, whereas LXA4 stimulation induced similar wound closure in wild-type and knockout mice. EGF-stimulated LXA4 synthesis in RCE cells was inhibited by CDC or the EGF receptor antagonist AG1478. CONCLUSIONS These results demonstrate that EGF-stimulated epithelial wound healing is partially mediated through a 12/15-LOX-LXA4 pathway, and activation of ERK1/2 and p38 is required for LXA4 action.
Collapse
Affiliation(s)
- Sachidananda Kenchegowda
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
71
|
Chen H, Takahara M, Xie L, Takeuchi S, Tu Y, Nakahara T, Uchi H, Moroi Y, Furue M. Lipoxin A(4), a potential anti-inflammatory drug targeting the skin. J Dermatol Sci 2011; 62:67-9. [PMID: 21334856 DOI: 10.1016/j.jdermsci.2011.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/14/2011] [Accepted: 01/28/2011] [Indexed: 11/16/2022]
|
72
|
Levy BD, Zhang QY, Bonnans C, Primo V, Reilly JJ, Perkins DL, Liang Y, Amin Arnaout M, Nikolic B, Serhan CN. The endogenous pro-resolving mediators lipoxin A4 and resolvin E1 preserve organ function in allograft rejection. Prostaglandins Leukot Essent Fatty Acids 2011; 84:43-50. [PMID: 20869861 PMCID: PMC3019284 DOI: 10.1016/j.plefa.2010.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022]
Abstract
Allograft rejection remains a major limitation to successful solid organ transplantation. Here, we investigated the biosynthesis and bioactions of the pro-resolving mediators lipoxin A(4) and resolvin E1 in host responses to organ transplantation. In samples obtained during screening bronchoscopy after human lung transplantation, bronchoalveolar lavage fluid levels of lipoxin A(4) were increased in association with the severity of allograft rejection that was graded independently by clinical pathology. Lipoxin A(4) significantly inhibited calcineurin activation in human neutrophils, and lipoxin A(4) stable analogs prevented acute rejection of vascularized cardiac and renal allografts. Transgenic animals expressing human lipoxin A(4) receptors revealed important sites of action in host tissues for lipoxin A(4)'s protective effects. Resolvin E1 displays counter-regulatory actions for leukocytes, in part, via increased lipoxin A(4) biosynthesis, yet RvE1 administered (1μg, iv) to donor (days -1 and 0) and recipient mice (days -1, 0 and +4) was even more potent than a lipoxin stable analog (1μg, iv) in prolonging renal allograft survival (median survival time=74.0 days with RvE1 and 37.5 days with a LXA(4) analog). Together, these results highlight the potential for pro-resolving mediators in prolonging survival of solid organ transplants.
Collapse
Affiliation(s)
- Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Affiliation(s)
- Yoshitaka TAKETOMI
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science
| | - Makoto MURAKAMI
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
74
|
Serhan CN, Krishnamoorthy S, Recchiuti A, Chiang N. Novel anti-inflammatory--pro-resolving mediators and their receptors. Curr Top Med Chem 2011; 11:629-47. [PMID: 21261595 PMCID: PMC3094721 DOI: 10.2174/1568026611109060629] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/02/2010] [Indexed: 01/04/2023]
Abstract
Resolution of inflammation, an actively coordinated program, is essential to maintain host health. It involves effective removal of inflammatory stimuli and the spatio-temporal control of leukocyte trafficking as well as chemical mediator generation. During the active resolution process, new classes of small, local acting endogenous autacoids, namely the lipoxins, D and E series resolvins, (neuro)protectins, and maresins have been identified. These specialized pro-resolving lipid mediators (SPM) prevent excessive inflammation and promote removal of microbes and apoptotic cells, thereby expediting resolution and return to tissue homeostasis. As part of their molecular mechanism, SPM exert their potent actions via activating specific pro-resolving G-protein coupled receptors. Together these SPM and their receptors provide new concepts and opportunities for therapeutics, namely promoting active resolution as opposed to the conventionally used enzyme inhibitors and receptor antagonists. This approach may offer new targets suitable for drug design for treating inflammation related diseases, for the new terrain of resolution pharmacology.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115,USA.
| | | | | | | |
Collapse
|
75
|
Conte FP, Menezes-de-Lima O, Verri WA, Cunha FQ, Penido C, Henriques MG. Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br J Pharmacol 2010; 161:911-24. [PMID: 20860668 DOI: 10.1111/j.1476-5381.2010.00950.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Lipoxin A(4) (LXA(4)) is a lipid mediator involved in the resolution of inflammation. Increased levels of LXA(4) in synovial fluid and enhanced expression of the formyl peptide receptor 2/lipoxin A(4) receptor (FPR2/ALX) in the synovial tissues of rheumatoid arthritis patients have been reported. Endothelins (ETs) play a pivotal pro-inflammatory role in acute articular inflammatory responses. Here, we evaluated the anti-inflammatory role of LXA(4), during the acute phase of zymosan-induced arthritis, focusing on the modulation of ET-1 expression and its effects. EXPERIMENTAL APPROACH The anti-inflammatory effects of LXA(4), BML-111 (agonist of FPR2/ALX receptors) and acetylsalicylic acid (ASA) pre- and post-treatments were investigated in a murine model of zymosan-induced arthritis. Articular inflammation was assessed by examining knee joint oedema; neutrophil accumulation in synovial cavities; and levels of prepro-ET-1 mRNA, leukotriene (LT)B(4), tumour necrosis factor (TNF)-α and the chemokine KC/CXCL1, after stimulation. The direct effect of LXA(4) on ET-1-induced neutrophil activation and chemotaxis was evaluated by shape change and Boyden chamber assays respectively. KEY RESULTS LXA(4), BML-111 and ASA administered as pre- or post-treatment inhibited oedema and neutrophil influx induced by zymosan stimulation. Zymosan-induced preproET-1 mRNA, KC/CXCL1, LTB(4) and TNF-α levels were also decreased after LXA(4) pretreatment. In vitro, ET-1-induced neutrophil chemotaxis was inhibited by LXA(4) pretreatment. LXA(4) treatment also inhibited ET-1-induced oedema formation and neutrophil influx into mouse knee joints. CONCLUSION AND IMPLICATION LXA(4) exerted anti-inflammatory effects on articular inflammation through a mechanism that involved the inhibition of ET-1 expression and its effects.
Collapse
Affiliation(s)
- F P Conte
- Laboratório de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 2010; 107:1170-84. [PMID: 21071715 PMCID: PMC3027152 DOI: 10.1161/circresaha.110.223883] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/10/2010] [Indexed: 02/05/2023]
Abstract
The resolution of acute inflammation is a process that allows for inflamed tissues to return to homeostasis. Resolution was held to be a passive process, a concept now overturned with new evidence demonstrating that resolution is actively orchestrated by distinct cellular events and endogenous chemical mediators. Among these, lipid mediators, such as the lipoxins, resolvins, protectins, and newly identified maresins, have emerged as a novel genus of potent and stereoselective players that counter-regulate excessive acute inflammation and stimulate molecular and cellular events that define resolution. Given that uncontrolled, chronic inflammation is associated with many cardiovascular pathologies, an appreciation of the endogenous pathways and mediators that control timely resolution can open new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation, as well as correcting the impact of chronic inflammation in cardiovascular disorders. Here, we overview and update the biosynthesis and actions of proresolving lipid mediators, highlighting their diverse protective roles relevant to vascular systems and their relation to aspirin and statin therapies.
Collapse
Affiliation(s)
- Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
77
|
Sogawa Y, Ohyama T, Maeda H, Hirahara K. Inhibition of neutrophil migration in mice by mouse formyl peptide receptors 1 and 2 dual agonist: indication of cross-desensitization in vivo. Immunology 2010; 132:441-50. [PMID: 21039475 DOI: 10.1111/j.1365-2567.2010.03367.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has been reported that the stimulation of neutrophils with N-formyl-Met-Leu-Phe (fMLF), an agonist for formyl peptide receptor (Fpr) 1, renders cells unresponsive to other chemoattractants in vitro. This is known as cross-desensitization, but its functional relevance in neutrophil migration in vivo has not been investigated. Here, we show that precedent stimulation of mouse neutrophils with compound 43, a non-peptidyl agonist for mouse Fpr1 and Fpr2, rendered the cells unresponsive to a second stimulation with C5a, leukotriene B₄, or keratinocyte-derived cytokine (KC) in calcium mobilization and chemotaxis assays in vitro. The expression of chemokine (C-X-C motif) receptor 2 (CXCR2) on the surface of neutrophils was concomitantly diminished by stimulating the cells with the compound. Moreover, oral administration of the compound to mice before they were exposed to lipopolysaccharide (LPS) aerosol resulted in a dose-dependent reduction in the neutrophil count in bronchoalveolar lavage fluid. The expression of CXCR2 on blood neutrophils was also reduced in the compound-administered mice. The recipient mice that underwent adoptive transfer of fluorescence-labelled neutrophils that had been incubated with the compound showed a substantial decrease in neutrophil counts in bronchoalveolar lavage fluid after they were exposed to LPS, when compared with the control mice to which vehicle-treated neutrophils had been transferred. These results are consistent with the idea that the agonist for Fpr1 and Fpr2 induced cross-desensitization in neutrophils and attenuated neutrophil migration into the airways. Our results also revealed the unpredicted effect of an Fpr1 and Fpr2 dual agonist, which may act as a functional antagonist for multiple chemoattractant receptors in vivo.
Collapse
Affiliation(s)
- Yoshitaka Sogawa
- Cardiovascular-Metabolics Research Laboratories, Daiichi Sankyo, Co., Ltd, Shinagawa-ku, Tokyo
| | | | | | | |
Collapse
|
78
|
Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1576-91. [PMID: 20813960 PMCID: PMC2947253 DOI: 10.2353/ajpath.2010.100322] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 01/08/2023]
Abstract
Because inflammation is appreciated as a unifying basis of many widely occurring diseases, the mechanisms involved in its natural resolution are of considerable interest. Using contained, self-limited inflammatory exudates and a systems approach, novel lipid-derived mediators and pathways were uncovered in the resolution of inflammatory exudates. These new families of local mediators control both the duration and magnitude of acute inflammation as well as the return of the site to homeostasis in the process of catabasis. This new genus of specialized proresolving mediators (SPM) includes essential fatty acid-derived lipoxins, resolvins, protectins, and, most recently, maresins. These families were named based on their unique structures and potent stereoselective actions. The temporally initiated biosynthesis of SPM and their direct impact on leukocyte trafficking and macrophage-directed clearance mechanisms provide clear evidence that resolution is an active, programmed response at the tissue level. Moreover, SPM that possess anti-inflammatory (ie, limiting PMN infiltration) and proresolving (enhance macrophage uptake and clearance of apoptotic PMN and microbial particles) actions as well as stimulating mucosal antimicrobial responses demonstrate that anti-inflammation and proresolution are different responses of the host and novel defining properties of these molecules. The mapping of new resolution circuits has opened the possibility for understanding mechanisms that lead from acute to chronic inflammation, or to the resolution thereof, as well as to potential, resolution-based immunopharmacological therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Director, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, HIM 8, Boston, MA 02115, USA.
| |
Collapse
|
79
|
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 2010; 50:35-51. [PMID: 20655950 DOI: 10.1016/j.plipres.2010.07.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023]
Abstract
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|
80
|
Gronert K. Resolution, the grail for healthy ocular inflammation. Exp Eye Res 2010; 91:478-85. [PMID: 20637194 DOI: 10.1016/j.exer.2010.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/03/2010] [Accepted: 07/07/2010] [Indexed: 01/06/2023]
Abstract
Acute inflammation is a frequent, essential and beneficial response to maintain normal tissue function. PMN are the primary effector cells of acute inflammatory responses and their timely resolution by macrophages from an injured, stressed or infected tissues are required for the successful execution of this routine tissue response. Dysregulation of this fundamental program is a major factor in the global disease burden and contributes to many ocular diseases. Counter-regulatory signals are critical to the controlled activation of innate and adaptive immune responses in the eye and recent studies have identified two circuits in the cornea, uvea and/or retina, namely 15-lipoxygenase and heme-oxygenase, which control inflammation, promote resolution of PMN and afford neuroprotection. The role of these counter-regulator and pro-resolution circuits may provide insight into ocular inflammatory diseases and opportunities to restore stressed ocular tissue to a pre-inflammatory state, namely homeostasis, rather than limiting therapeutic options to palliative inhibition of pro-inflammatory circuits.
Collapse
Affiliation(s)
- Karsten Gronert
- Vision Science Program, School of Optometry, University of California, 594 Minor Hall, MC 2020, Berkeley, CA 94720, USA.
| |
Collapse
|
81
|
Leedom AJ, Sullivan AB, Dong B, Lau D, Gronert K. Endogenous LXA4 circuits are determinants of pathological angiogenesis in response to chronic injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:74-84. [PMID: 20008149 DOI: 10.2353/ajpath.2010.090678] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inflammation and angiogenesis are intimately linked, and their dysregulation leads to pathological angiogenesis in human diseases. 15-lipoxygenase (15-LOX) and lipoxin A(4) receptors (ALX) constitute a LXA(4) circuit that is a key feature of inflammatory resolution. LXA(4) analogs have been shown to regulate vascular endothelial growth factor (VEGF)-A-induced angiogenic response in vitro. 15-LOX and ALX are highly expressed in the avascular and immune-privileged cornea. However, the role of this endogenous LXA(4) circuit in pathological neovascularization has not been determined. We report that suture-induced chronic injury in the cornea triggered polymorphonuclear leukocytes (PMN) infiltration, pathological neovascularization, and up-regulation of mediators of inflammatory angiogenesis, namely VEGF-A and the VEGF-3 receptor (FLT4). Up-regulation of the VEGF circuit and neovascularization correlated with selective changes in both 15-LOX (Alox15) and ALX (Fpr-rs2) expression and a temporally defined increase in basal 15-LOX activity. More importantly, genetic deletion of 15-LOX or 5-LOX, key and obligatory enzymes in the formation of LXA(4), respectively, led to exacerbated inflammatory neovascularization coincident with increased VEGF-A and FLT4 expression. Direct topical treatment with LXA(4), but not its metabolic precursor 15-hydroxyeicosatetraenoic acid, reduced expression of VEGF-A and FLT4 and inflammatory angiogenesis and rescued 15-LOX knockout mice from exacerbated angiogenesis. In summary, our findings and the prominent expression of 15-LOX and ALX in epithelial cells and macrophages place the LXA(4) circuit as an endogenous regulator of pathological angiogenesis.
Collapse
Affiliation(s)
- Alexander J Leedom
- Vision Science Program, School of Optometry, University of California, Berkeley, CA 94720-2020, USA
| | | | | | | | | |
Collapse
|
82
|
Krönke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, Schabbauer G, Zarbock A, Koenders MI, Axmann R, Zwerina J, Baenckler HW, van den Berg W, Voll RE, Kühn H, Joosten LAB, Schett G. 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. THE JOURNAL OF IMMUNOLOGY 2009; 183:3383-9. [PMID: 19675173 DOI: 10.4049/jimmunol.0900327] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eicosanoids are essential mediators of the inflammatory response and contribute both to the initiation and the resolution of inflammation. Leukocyte-type 12/15-lipoxygenase (12/15-LO) represents a major enzyme involved in the generation of a subclass of eicosanoids, including the anti-inflammatory lipoxin A(4) (LXA(4)). Nevertheless, the impact of 12/15-LO on chronic inflammatory diseases such as arthritis has remained elusive. By using two experimental models of arthritis, the K/BxN serum-transfer and a TNF transgenic mouse model, we show that deletion of 12/15-LO leads to uncontrolled inflammation and tissue damage. Consistent with these findings, 12/15-LO-deficient mice showed enhanced inflammatory gene expression and decreased levels of LXA(4) within their inflamed synovia. In isolated macrophages, the addition of 12/15-LO-derived eicosanoids blocked both phosphorylation of p38MAPK and expression of a subset of proinflammatory genes. Conversely, 12/15-LO-deficient macrophages displayed significantly reduced levels of LXA(4), which correlated with increased activation of p38MAPK and an enhanced inflammatory gene expression after stimulation with TNF-alpha. Taken together, these results support an anti-inflammatory and tissue-protective role of 12/15-LO and its products during chronic inflammatory disorders such as arthritis.
Collapse
Affiliation(s)
- Gerhard Krönke
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Resolution of inflammation has historically been viewed as a passive process, occurring as a result of the withdrawal of pro-inflammatory signals, including lipid mediators such as leukotrienes and prostaglandins. Thus, most anti-inflammatory drugs have traditionally targeted primarily mediator pathways that are engaged at the onset of inflammation. Only recently has it been established that inflammation resolution is an active process with a distinct set of chemical mediators. Several clinical and epidemiological studies have identified beneficial effects of polyunsaturated fatty acids (PUFAs) for a variety of inflammatory diseases, yet without mechanistic explanations for these beneficial effects. Resolvins and protectins are recently identified molecules that are generated from omega-3 PUFA precursors and can orchestrate the timely resolution of inflammation in model systems. Dysregulation of pro-resolving mediators is associated with diseases of prolonged inflammation, so designing pharmacological mimetics of naturally occurring pro-resolving mediators offers exciting new targets for drug design. This review describes the discovery and synthesis of these novel lipid mediators, their receptors and mechanisms of action, and summarizes the studies to date that have uncovered roles for resolvins and protectins in disease states.
Collapse
Affiliation(s)
- Payal Kohli
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
84
|
Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61:119-61. [PMID: 19498085 PMCID: PMC2745437 DOI: 10.1124/pr.109.001578] [Citation(s) in RCA: 621] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.
Collapse
Affiliation(s)
- Richard D Ye
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, M/C 868, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Blandizzi C, Tuccori M, Colucci R, Fornai M, Antonioli L, Ghisu N, Del Tacca M. Role of coxibs in the strategies for gastrointestinal protection in patients requiring chronic non-steroidal anti-inflammatory therapy. Pharmacol Res 2008; 59:90-100. [PMID: 19073262 DOI: 10.1016/j.phrs.2008.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 12/16/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed drugs due to their high efficacy in the treatment of pain, fever, inflammation and rheumatic disorders. However, their use is associated with the occurrence of adverse effects at the level of digestive tract, ranging from dyspeptic symptoms, gastrointestinal erosions and peptic ulcers to more serious complications, such as overt bleeding or perforation. To overcome problems related to NSAID-induced digestive toxicity, different therapeutic strategies can presently be considered, including the co-administration of drugs endowed with protective activity on the upper gastrointestinal tract, such as the proton pump inhibitors, or the prescription of coxibs, which have been clinically developed as anti-inflammatory/analgesic drugs characterized by reduced damaging activity on gastrointestinal mucosa. The availability of different treatment options, to reduce the risk of NSAID-induced adverse digestive effects, has fostered intensive preclinical and clinical research aimed at addressing a number of unresolved issues and to establish rational criteria for an appropriate use of coxibs in the medical practice. Particular attention is being paid to the management of patients with high degrees of digestive risk, resulting by concomitant treatment with low-dose aspirin for anti-thrombotic prophylaxis or ongoing symptomatic gastroduodenal ulcers. The present review discusses the most relevant lines of evidence concerning the position of coxibs in the therapeutic strategies for gastrointestinal protection in patients who require NSAID therapy and hold different levels of risk of developing adverse effects at the level of digestive tract.
Collapse
Affiliation(s)
- Corrado Blandizzi
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Via Roma 55, Pisa 56126, Italy.
| | | | | | | | | | | | | |
Collapse
|
86
|
Souza DG, Fagundes CT, Amaral FA, Cisalpino D, Sousa LP, Vieira AT, Pinho V, Nicoli JR, Vieira LQ, Fierro IM, Teixeira MM. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. THE JOURNAL OF IMMUNOLOGY 2008; 179:8533-43. [PMID: 18056401 DOI: 10.4049/jimmunol.179.12.8533] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The appropriate development of an inflammatory response is central for the ability of a host to deal with any infectious insult. However, excessive, misplaced, or uncontrolled inflammation may lead to acute or chronic diseases. The microbiota plays an important role in the control of inflammatory responsiveness. In this study, we investigated the role of lipoxin A4 and annexin-1 for the IL-10-dependent inflammatory hyporesponsiveness observed in germfree mice. Administration of a 15-epi-lipoxin A4 analog or an annexin-1-derived peptide to conventional mice prevented tissue injury, TNF-alpha production, and lethality after intestinal ischemia/reperfusion. This was associated with enhanced IL-10 production. Lipoxin A4 and annexin-1 failed to prevent reperfusion injury in IL-10-deficient mice. In germfree mice, there was enhanced expression of both lipoxin A4 and annexin-1. Blockade of lipoxin A4 synthesis with a 5-lipoxygenase inhibitor or Abs against annexin-1 partially prevented IL-10 production and this was accompanied by partial reversion of inflammatory hyporesponsiveness in germfree mice. Administration of BOC-1, an antagonist of ALX receptors (at which both lipoxin A4 and annexin-1 act), or simultaneous administration of 5-lipoxygenase inhibitor and anti-annexin-1 Abs, was associated with tissue injury, TNF-alpha production, and lethality similar to that found in conventional mice. Thus, our data demonstrate that inflammatory responsiveness is tightly controlled by the presence of the microbiota and that the innate capacity of germfree mice to produce IL-10 is secondary to their endogenous greater ability to produce lipoxin A4 and annexin-1.
Collapse
Affiliation(s)
- Danielle G Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The popular view that all lipid mediators are pro-inflammatory arises largely from the finding that nonsteroidal anti-inflammatory drugs block the biosynthesis of prostaglandins. The resolution of inflammation was widely held as a passive event until recently, with the characterization of novel biochemical pathways and lipid-derived mediators that are actively turned on in resolution and that possess potent anti-inflammatory and proresolving actions. A lipid-mediator informatics approach was employed to systematically identify new families of endogenous local-acting mediators from omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) in resolving exudates, which also contain lipoxins and aspirin-triggered lipoxins generated from arachidonic acid. Given their potent bioactions, these new chemical mediator families were termed resolvins and protectins. Here, we review the recent advances in our understanding of the biosynthesis and stereospecific actions of these new proresolving mediators, which have also proven to be organ protective and antifibrotic.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
88
|
Frohn M, Xu H, Zou X, Chang C, McElvaine M, Plant MH, Wong M, Tagari P, Hungate R, Bürli RW. New ‘chemical probes’ to examine the role of the hFPRL1 (or ALXR) receptor in inflammation. Bioorg Med Chem Lett 2007; 17:6633-7. [DOI: 10.1016/j.bmcl.2007.09.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
|
89
|
Yacoubian S, Serhan CN. New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases. ACTA ACUST UNITED AC 2007; 3:570-9; quiz 1 p following 589. [PMID: 17906612 DOI: 10.1038/ncprheum0616] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 06/04/2007] [Indexed: 02/07/2023]
Abstract
Prostaglandins and leukotrienes are lipid mediators that carry out pivotal roles in host defense and acute inflammation. Failure to completely resolve an acute inflammatory response can lead to chronic inflammation, scarring, and eventual loss of tissue function. Until recently, it was thought that tissue resolution of acute inflammation was a passive event. However, it is now known than lipoxins, which--like prostaglandins and leukotrienes--are also derived from arachidonic acid, are active anti-inflammatory and proresolution mediators, acting in part by reducing neutrophil entry to the inflammation site and stimulating the uptake of apoptotic polymorphonuclear leukocytes by macrophages. Novel families of locally acting and locally generated mediators derived from omega-3 polyunsaturated fatty acids have also been identified as biosynthetically active components in the resolution phase of inflammation. The new families of chemical mediators are termed 'resolvins' and 'protectins' because individual members of each family are stereospecific in controlling the duration and magnitude of inflammation in animal models. Possible deficiencies in the biosynthesis of lipoxins, resolvins, and protectins, and/or their signal transduction, might underlie some aspects of pathogenesis in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Stephanie Yacoubian
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
90
|
Zhang L, Wan J, Li H, Wu P, Jin S, Zhou X, Yuan P, Xiong W, Li Y, Ye D. Protective effects of BML-111, a lipoxin A(4) receptor agonist, on carbon tetrachloride-induced liver injury in mice. Hepatol Res 2007; 37:948-56. [PMID: 17610505 DOI: 10.1111/j.1872-034x.2007.00154.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lipoxins (LX) are trihydroxytetraene-containing eicosanoids that display unique anti-inflammatory and pro-resolving actions during various inflammatory conditions, but the pathophysiological significance of LX in liver disorders remains unknown. METHODS In the present study, we used a murine model of carbon tetrachloride (CCl(4))-induced acute liver injury to investigate the effects of LX on the progression of acute liver injury. RESULTS The results indicated that the lipoxin A(4) receptor (ALX) was upregulated after giving CCl(4). BML-111, a commercially available ALX agonist, effectively protected the liver from CCl(4)-induced injury as evidenced by decreased serum aminotransferase (ALT, AST) levels and improved histological damage. The dampened liver injury was accompanied byreduced malondialdehyde (MDA) content in liver homogenates and decreased concentration of tumor necrosis factor-alpha (TNF-alpha) in the serum. Most interestingly, BML-111 markedly upregulated hepatic heme oxygenase-1 (HO-1) expression in CCl(4)-treated mice, which might provide antioxidative activities in the liver. CONCLUSION These data indicate that ALX agonist BML-111 plays a critical protective role in CCl(4)-induced acute liver injury through limiting the inflammatory response and promoting antioxidative protein expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 178:3912-7. [PMID: 17339491 DOI: 10.4049/jimmunol.178.6.3912] [Citation(s) in RCA: 481] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resolvin E1 (RvE1) is a potent anti-inflammatory and proresolving mediator derived from omega-3 eicosapentaenoic acid generated during the resolution phase of inflammation. RvE1 possesses a unique structure and counterregulatory actions that stop human polymorphonuclear leukocyte (PMN) transendothelial migration and PMN infiltration in several murine inflammatory models. To examine the mechanism(s) underlying anti-inflammatory actions on PMNs, we prepared [(3)H]RvE1 and characterized its interactions with human PMN. Results with membrane fractions of human PMN demonstrated specific binding with a K(d) of 48.3 nM. [(3)H]RvE1 specific binding to human PMN was displaced by leukotriene B(4) (LTB(4)) and LTB(4) receptor 1 (BLT1) antagonist U-75302, but not by chemerin peptide, a ligand specific for another RvE1 receptor ChemR23. Recombinant human BLT1 gave specific binding with [(3)H]RvE1 with a K(d) of 45 nM. RvE1 selectively inhibited adenylate cyclase with BLT1, but not with BLT2. In human PBMC, RvE1 partially induced calcium mobilization, and blocked subsequent stimulation by LTB(4). RvE1 also attenuated LTB(4)-induced NF-kappaB activation in BLT1-transfected cells. In vivo anti-inflammatory actions of RvE1 were sharply reduced in BLT1 knockout mice when given at low doses (100 ng i.v.) in peritonitis. In contrast, RvE1 at higher doses (1.0 mug i.v.) significantly reduced PMN infiltration in a BLT1-independent manner. These results indicate that RvE1 binds to BLT1 as a partial agonist, potentially serving as a local damper of BLT1 signals on leukocytes along with other receptors (e.g., ChemR23-mediated counterregulatory actions) to mediate the resolution of inflammation.
Collapse
Affiliation(s)
- Makoto Arita
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
93
|
Serhan CN, Lu Y, Hong S, Yang R. Mediator Lipidomics: Search Algorithms for Eicosanoids, Resolvins, and Protectins. Methods Enzymol 2007; 432:275-317. [DOI: 10.1016/s0076-6879(07)32012-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
94
|
Abstract
Resolvins and protectins are new families consisting of distinct chemical series of lipid-derived mediators, each with unique structures and apparent complementary anti-inflammatory actions. Both families of compounds, Rv and protectins, are also generated when aspirin is given in mammalian systems in their respective epimeric forms. The resolvins and protectins each dampen inflammation and PMN-mediated injury from within, which is a key culprit in many common human diseases. The results of these initial studies underscore the roles of resolvins and protectins in inflammation resolution as well as catabasis and spotlight the therapeutic potential for this new arena of immunomodulation and host protection. It is likely that the resolvins, protectins, and their AT-related forms may play roles in other tissues and organs. Moreover, it is noteworthy that fish (eg, trout) generate lipoxygenase products such as LXAs from endogenous EPA and also biosynthesize RvDs and protectins from endogenous DHA. Taken together, these findings suggest that these novel lipid mediators (eg, resolvins and protectins) are conserved in evolution as self-protective and host-protective chemical mediators. In view of the essential roles of DHA and EPA in human biology and medicine uncovered to date, the physiologic relevance of the resolvins and protectins is likely to extend beyond our current appreciation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
95
|
Chiang N, Serhan CN, Dahlén SE, Drazen JM, Hay DWP, Rovati GE, Shimizu T, Yokomizo T, Brink C. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 2006; 58:463-87. [PMID: 16968948 DOI: 10.1124/pr.58.3.4] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipoxins (LXs) and aspirin-triggered LX (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A(4) (LXA(4)), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. ALX was the first receptor cloned and identified as a G protein-coupled receptor (GPCR) for lipoxygenase-derived eicosanoids with demonstrated cell type-specific signaling pathways. ALX at the level of DNA has sequence homology to the N-formylpeptide receptor and as an orphan GPCR was initially referred to as the N-formylpeptide receptor-like 1. Although LXA(4) is the endogenous potent ligand for ALX activation, a number of peptides can also activate this receptor to stimulate calcium mobilization and chemotaxis in vitro. In contrast with LXA(4), the counterparts of many of these peptides in vivo remain to be established. The purpose of this review is to highlight the molecular characterization of the ALX receptor and provide an overview of the ALX-LXA(4) axis responsible for anti-inflammatory and proresolving signals in vivo. The information in this review provides further support for the initial nomenclature proposition for this GPCR as ALX.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kapoor M, Kojima F, Crofford LJ. Arachidonic acid-derived eicosanoids in rheumatoid arthritis: implications and future targets. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460816.1.3.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Motohashi E, Kawauchi H, Endo H, Kondo H, Kitasato H, Kuramoto H, Majima M, Unno N, Hayashi I. Regulatory expression of lipoxin A4 receptor in physiologically estrus cycle and pathologically endometriosis. Biomed Pharmacother 2006; 59:330-8. [PMID: 15996849 DOI: 10.1016/j.biopha.2005.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression of receptors for prostaglandin (PG) and leukotriene (LT) has been reported to detect in endometrium and smooth muscle of uterus, suggesting involvement of these arachidonic metabolites in endometrial pathology and reproductive biology. Lipoxin (LX), which is produced by lipoxygenases from arachidonic acid, has been characterized as an anti-inflammatory lipid mediator. Biological actions of Lipoxin A4 (LXA4) are mediated through the specific receptor. In order to know roles of LXA4 in female genitalia, expression of LXA4 receptor mRNA was quantified by real-time polymerase chain reaction. Significantly higher expression of the receptor was detected in endometrium and myometrium than ovary in normal rats. Expression of the receptor in endometrium was increased at stage of proestrus cycle under physiological condition. Exogenous administration of progesterone into female rats significantly reduced the expression, while administration of estradiol or pregnant mare serum gonadotropin (PMSG) did not. Both, endometrium in experimental endometriosis induced in rats and the tissues from patients with ectopic endometriosis showed a higher expression of LXA4 receptor compared to the normal tissues. In contrast, expressions of BLT1 and BLT2, receptors for leukotriene B4, did not change in the endometriosis. These observations suggest a possible role of LXA4 and the receptor under physiological estrus cycle and pathological condition as endometriosis.
Collapse
Affiliation(s)
- E Motohashi
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara-shi, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Mingomataj EC, Xhixha F, Gjata E. Helminths can protect themselves against rejection inhibiting hostile respiratory allergy symptoms. Allergy 2006; 61:400-6. [PMID: 16512800 DOI: 10.1111/j.1398-9995.2006.00983.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of common environmental allergens to stimulate IgE responses and thus to produce allergic diseases has tended to overshadow the fact that helminthic parasites are possibly the most potent inducers of this immunoglobulin that exists in nature. Although it has been well established that during these infections there is a stimulation of IgE against their own antigens as well as a strong induction of nonspecific TH2/IL-4 polyclonal IgE, similarly to the allergic processes, many authors debate if the presence of these infections correlates inversely or not with the rate prevalence of atopy or respiratory allergy. Interpreting this relationship, we suggest that sometimes the intensive infections of hosts, especially with soil helminths which migrate in the respiratory ways or use there as entrance, can induce the production of some mediators ('helminth(k)ines'), to reduce the possibility of their reactive expulsion from the host. The ability to suppress hostile allergic symptoms despite the simultaneous induction of IgE response and local inflammation maybe is established due to the selective evolution, to assure for the parasites better chances for an effective life and reproduction within their mammalian hosts.
Collapse
Affiliation(s)
- E C Mingomataj
- Department of Allergology, Mother Theresa School of Medicine, Tirana, Albania
| | | | | |
Collapse
|
99
|
Abstract
Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have impacts on the periodontium, and reciprocal effects of periodontal diseases are being considered as factors potentially affecting the progression of these diseases. Successful management of the inflammatory disorders in the human body depends on the identification of common pathways that would lead to a better understanding of the disease processes and development of novel treatment strategies. In this review, our objective is to identify the inflammatory basis of periodontal disease and common inflammatory mechanisms underlying several disorders elsewhere in the body, with an emphasis on how the potential extrinsic and intrinsic control methods could be used to prevent or treat the harmful effects linked to inflammation.
Collapse
Affiliation(s)
- Alpdogan Kantarci
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| | - Thomas E. Van Dyke
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| |
Collapse
|
100
|
Machado FS, Johndrow JE, Esper L, Dias A, Bafica A, Serhan CN, Aliberti J. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 2006; 12:330-4. [PMID: 16415877 DOI: 10.1038/nm1355] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/10/2005] [Indexed: 01/21/2023]
Abstract
Control of inflammation is crucial to prevent damage to the host during infection. Lipoxins and aspirin-triggered lipoxins are crucial modulators of proinflammatory responses; however, their intracellular mechanisms have not been completely elucidated. We previously showed that lipoxin A4 (LXA4) controls migration of dendritic cells (DCs) and production of interleukin (IL)-12 in vivo. In the absence of LXA4 biosynthetic pathways, the resulting uncontrolled inflammation during infection is lethal, despite pathogen clearance. Here we show that lipoxins activate two receptors in DCs, AhR and LXAR, and that this activation triggers expression of suppressor of cytokine signaling (SOCS)-2. SOCS-2-deficient DCs are hyper-responsive to microbial stimuli, as well as refractory to the inhibitory actions of LXA4, but not to IL-10. Upon infection with an intracellular pathogen, SOCS-2-deficient mice had uncontrolled production of proinflammatory cytokines, decreased microbial proliferation, aberrant leukocyte infiltration and elevated mortality. We also show that SOCS-2 is a crucial intracellular mediator of the anti-inflammatory actions of aspirin-induced lipoxins in vivo.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27705, USA
| | | | | | | | | | | | | |
Collapse
|