51
|
Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017; 11:127. [PMID: 28373831 PMCID: PMC5357634 DOI: 10.3389/fnins.2017.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
Abstract
Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Andrew L Gundlach
- Neuropeptides Division, The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of MelbourneParkville, VIC, Australia
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian UniversityKrakow, Poland; Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|
52
|
Katahira H, Sunagawa M, Watanabe D, Kanada Y, Katayama A, Yamauchi R, Takashima M, Ishikawa S, Hisamitsu T. Antistress effects of Kampo medicine "Yokukansan" via regulation of orexin secretion. Neuropsychiatr Dis Treat 2017; 13:863-872. [PMID: 28360524 PMCID: PMC5365329 DOI: 10.2147/ndt.s129418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Various stressors induce stress responses through the hypothalamic-pituitary-adrenal and the sympathetic-adrenal-medullary axes, which are regulated, in part, by orexin. For example, secretion of orexin in the hypothalamus is increased in rats exposed to the stress of social isolation for 1 week. In this study, the antistress effects of Kampo medicine Yokukansan (YKS) via the regulation of orexin secretion were investigated using a rat model. METHODS AND RESULTS The administration of 300 mg/kg per day of YKS to rats for 1 week significantly decreased the plasma orexin levels compared with non-treated rats, whereas the administration of 1,000 mg/kg of YKS had no effect on orexin levels. Therefore, 300 mg/kg of YKS was an effective dose for controlling orexin secretion. Subsequently, rats were divided into group-housed control (Con), individually housed stress (Stress), and individually housed YKS (300 mg/kg)-treated stress (Stress + YKS) groups. After 1 week, a resident-intruder aggression test was performed, and the plasma levels of orexin and corticosterone were measured. In the Stress group, aggressive behavior and the levels of corticosterone and orexin significantly increased compared with the Con group; however, these effects were inhibited in the Stress + YKS group. Further, an orexin receptor antagonist (TCS 1102; 10 mg/kg) was intraperitoneally administered to rats exposed to isolation stress to determine whether orexin was involved in stress responses. Under these conditions, aggressive behavior and the level of corticosterone significantly decreased compared with the Stress group. CONCLUSION These results suggest that orexin is involved in the control of stress response and that YKS exerts an antistress effect via the regulation of orexin secretion.
Collapse
Affiliation(s)
| | | | - Daishi Watanabe
- Department of Physiology
- Department of Neurology, School of Medicine, Showa University
| | - Yasuaki Kanada
- Department of Physiology
- Department of Surgery, Showa University Koto Toyosu Hospital, Tokyo
| | | | | | - Masashi Takashima
- Department of Orthopaedic Surgery, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | | | | |
Collapse
|
53
|
Orexin 2 receptor regulation of the hypothalamic-pituitary-adrenal (HPA) response to acute and repeated stress. Neuroscience 2017; 348:313-323. [PMID: 28257896 DOI: 10.1016/j.neuroscience.2017.02.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Orexins are hypothalamic neuropeptides that have a documented role in mediating the acute stress response. However, their role in habituation to repeated stress, and the role of orexin receptors (OX1R and OX2R) in the stress response, has yet to be defined. Orexin neuronal activation and levels in the cerebrospinal fluid (CSF) were found to be stimulated with acute restraint, but were significantly reduced by day five of repeated restraint. As certain disease states such as panic disorder are associated with increased central orexin levels and failure to habituate to repeated stress, the effect of activating orexin signaling via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on the hypothalamic-pituitary-adrenal (HPA) response was evaluated after repeated restraint. While vehicle-treated rats displayed habituation of Adrenocorticotropic Hormone (ACTH) from day 1 to day 5 of restraint, stimulating orexins did not further increase ACTH beyond vehicle levels for either acute or repeated restraint. We delineated the roles of orexin receptors in acute and repeated stress using a selective OX2R antagonist (MK-1064). Pretreatment with MK-1064 reduced day 1 ACTH levels, but did not allow further habituation on day 5 compared with vehicle-treated rats, indicating that endogenous OX2R activity plays a role in acute stress, but not in habituation to repeated stress. However, in restrained rats with further stimulated orexins by DREADDs, MK-1064 decreased ACTH levels on day 5. Collectively, these results indicate that the OX2R plays a role in acute stress, and can prevent habituation to repeated stress under conditions of high orexin release.
Collapse
|
54
|
Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017; 41:551-561. [PMID: 28097729 DOI: 10.1111/acer.13336] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent reports have demonstrated that binge-like ethanol (EtOH) drinking leads to an increase in hypothalamic orexin (OX) signaling and that suppressing this signaling via systemic administration of an orexin receptor (OXR) antagonist blocks this behavior; however, the specific OX pathways that modulate this behavior remain unknown. The goal of this study was to further elucidate the role of the OX system in binge-like EtOH drinking using behavioral, molecular, and pharmacological techniques. METHODS The drinking-in-the-dark (DID) paradigm was used to model binge-like drinking behavior in male C57BL/6J mice. Experiment 1 examined changes in the OX precursor, prepro-orexin, within the hypothalamus following multiple cycle EtOH or sucrose DID using polymerase chain reaction (PCR) analysis. In experiments 2a and 2b, we used site-directed infusion of an OXR antagonist to examine the individual contribution of each OXR subtype within the ventral tegmental area (VTA) and central nucleus of the amygdala (CeA), respectively, in binge-like EtOH or sucrose drinking. RESULTS Findings from our PCR study revealed that multiple cycles of binge-like EtOH drinking did not lead to changes in prepro-orexin mRNA as a function of binge-like EtOH drinking. However, data from site-directed pharmacology studies indicate that the orexin-1 receptor (OX1R) is the predominate receptor subtype within the VTA and CeA that regulates binge-like EtOH drinking. Interestingly, inhibition of OX1Rs did not affect binge-like sucrose intake, which suggests that these OX circuits are specific for EtOH consumption. CONCLUSIONS As a whole, these data suggest that the VTA and CeA are important regions in which OX regulates binge-like EtOH drinking behavior. Moreover, these findings identify OXR antagonists as a potential treatment option that may be used to ameliorate problematic drinking behavior while leaving responding to natural rewards relatively intact.
Collapse
Affiliation(s)
- Jeffrey J Olney
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Montserrat Navarro
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
55
|
Liguori G, Squillacioti C, Assisi L, Mirabella N, Langella E, Costagliola A, Vittoria A. Localization of orexin B and receptor 2 for orexins in testicular cytotypes of the camelid alpaca (Vicugna pacos
). Reprod Domest Anim 2017; 52:452-458. [DOI: 10.1111/rda.12931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
Affiliation(s)
- G Liguori
- Department of Veterinary Medicine and Animal Productions; University of Naples Federico II; Naples Italy
| | - C Squillacioti
- Department of Veterinary Medicine and Animal Productions; University of Naples Federico II; Naples Italy
| | - L Assisi
- Department of Biology; University of Naples Federico II; Naples Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions; University of Naples Federico II; Naples Italy
| | - E Langella
- School of Agricultural, Forestry, Food and Environmental Sciences; University of Basilicata; Potenza Italy
| | - A Costagliola
- Department of Veterinary Medicine and Animal Productions; University of Naples Federico II; Naples Italy
| | - A Vittoria
- Department of Veterinary Medicine and Animal Productions; University of Naples Federico II; Naples Italy
| |
Collapse
|
56
|
Toyama S, Shimoyama N, Shimoyama M. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain. Neuropeptides 2017; 61:95-100. [PMID: 28041630 DOI: 10.1016/j.npep.2016.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 11/26/2022]
Abstract
Orexins are neuropeptides that are localized to neurons in the lateral and dorsal hypothalamus but its receptors are distributed to many different regions of the central nervous system. Orexins are implicated in a variety of physiological functions including sleep regulation, energy homeostats, and stress reactions. Furthermore, orexins administered exogenously have been shown to have analgesic effects in animal models. A type of intractable pain in patients is pain due to chemotherapy-induced peripheral neuropathy (CIPN). Several chemotherapeutic agents used for the treatment of malignant diseases induce dose-limiting neuropathic pain that compromises patients' quality of life. Here, we examined the analgesic effect of orexin-A in a murine model of CIPN, and compared it with the effect of duloxetine, the only drug recommended for the treatment of CIPN pain in patients. CIPN was induced in male BALB/c mice by repeated intraperitoneal injection of oxaliplatin, a platinum chemotherapeutic agent used for the treatment of advanced colorectal cancer. Neuropathic mechanical allodynia was assessed by the von Frey test, and the effect on acute thermal pain was assessed by the tail flick test. Intracerebroventricularly administered orexin-A dose-dependently attenuated oxaliplatin-induced mechanical allodynia and increased tail flick latencies. Oxaliplatin-induced mechanical allodynia was completely reversed by orexin-A at a low dose that did not increase tail flick latency. Duloxetine only partially reversed mechanical allodynia and had no effect on tail flick latency. The analgesic effect of orexin-A on oxaliplatin-induced mechanical allodynia was completely antagonized by prior intraperitoneal injection of SB-408124 (orexin type-1 receptor antagonist), but not by prior intraperitoneal injection of TCS-OX2-29 (orexin type-2 receptor antagonist). Our findings suggest that orexin-A is more potent than duloxetine in relieving pain CIPN pain and its analgesic effect is mediated by orexin type-1 receptors. Orexin type-1 receptor agonists may have potential therapeutic roles in the treatment of CIPN pain in patients.
Collapse
Affiliation(s)
- Satoshi Toyama
- Department of Anesthesiology, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 299-0111, Japan.
| | - Naohito Shimoyama
- Department of Anesthesiology, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 299-0111, Japan.
| | - Megumi Shimoyama
- Department of Anesthesiology, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 299-0111, Japan.
| |
Collapse
|
57
|
Elbaz I, Levitas-Djerbi T, Appelbaum L. The Hypocretin/Orexin Neuronal Networks in Zebrafish. Curr Top Behav Neurosci 2017; 33:75-92. [PMID: 28012092 DOI: 10.1007/7854_2016_59] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.
Collapse
Affiliation(s)
- Idan Elbaz
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Talia Levitas-Djerbi
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
58
|
Czerwinska J, Chojnowska K, Kaminski T, Bogacka I, Smolinska N, Kaminska B. Orexin receptor expression in the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle. Gen Comp Endocrinol 2017; 240:103-113. [PMID: 27664717 DOI: 10.1016/j.ygcen.2016.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Orexins are hypothalamic neuropeptides acting via two G protein-coupled receptors in mammals: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). In European beavers, which are seasonally breeding animals, the presence and functions of orexins and their receptors remain unknown. Our study aimed to determine the expression of OXR mRNAs and the localization of OXR proteins in hypothalamic-pituitary-adrenal/gonadal (HPA/HPG) axes in free-living beavers. The expression of OXR genes (OX1R, OX2R) and proteins was found in all analysed tissues during three periods of beavers' reproductive cycle (April, July, November). The expression of OXR mRNAs in the beaver HPA axis varied seasonally (P<0.05). The levels of OX1R mRNA also differed between the sexes (P<0.05). In the mediobasal hypothalamus, OX1R transcript content increased in pregnant females in April (P<0.05) and OX2R expression increased in males in July (P<0.05). In the pituitary and adrenals, OX1R mRNA levels were relatively constant in females and peaked in July in males (P<0.05), whereas the OX2R was most highly expressed in males in November and in females in April (P<0.05). In gonads, OX1R expression did not fluctuate between seasons or sexes, but transcript levels were elevated in the testes in November and in the ovaries in July (P<0.05). In turn, OX2R mRNA levels varied between the sexes (P<0.05) and were higher in females (July and November) than in males (P<0.05). The circannual variations in OXR mRNA levels in HPA and HPG axes suggest that the expression of these receptors is associated with sex-specific changes in beavers' reproductive activity and their environmental adaptations.
Collapse
Affiliation(s)
- Joanna Czerwinska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Katarzyna Chojnowska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Iwona Bogacka
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Barbara Kaminska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| |
Collapse
|
59
|
Ogawa Y, Irukayama-Tomobe Y, Murakoshi N, Kiyama M, Ishikawa Y, Hosokawa N, Tominaga H, Uchida S, Kimura S, Kanuka M, Morita M, Hamada M, Takahashi S, Hayashi Y, Yanagisawa M. Peripherally administered orexin improves survival of mice with endotoxin shock. eLife 2016; 5. [PMID: 28035899 PMCID: PMC5245965 DOI: 10.7554/elife.21055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/29/2016] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin's direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock.
Collapse
Affiliation(s)
- Yasuhiro Ogawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoko Irukayama-Tomobe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Maiko Kiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yui Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Naoto Hosokawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Hiromu Tominaga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Shuntaro Uchida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Saki Kimura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Miho Morita
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Molecular Genetics and Howard Hughes Medical Institute, Unversity of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
60
|
Ueta Y, Ozaki Y, Saito J, Onaka T. Involvement of Novel Feeding-Related Peptides in Neuroendocrine Response to Stress. Exp Biol Med (Maywood) 2016; 228:1168-74. [PMID: 14610256 DOI: 10.1177/153537020322801011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Various stressors are known to cause eating disorders. However, it is not known in detail about the neural network and molecular mechanism that are involved in the stress-induced changes of feeding behavior in the central nervous system. Many novel feeding-regulated peptides such as orexins/hypocretins and ghrelin have been discovered since the discovery of leptin derived from adipocytes as a product of the ob gene. These novel peptides were identified as endogenous ligands of orphan G protein-coupled receptors. The accumulating evidence reveals that these peptides may be involved in stress responses via the central nervous system, as well as feeding behavior. The possible involvement of novel feeding-related peptides in neuroendocrine responses to stress is reviewed here.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | |
Collapse
|
61
|
Messina A, De Fusco C, Monda V, Esposito M, Moscatelli F, Valenzano A, Carotenuto M, Viggiano E, Chieffi S, De Luca V, Cibelli G, Monda M, Messina G. Role of the Orexin System on the Hypothalamus-Pituitary-Thyroid Axis. Front Neural Circuits 2016; 10:66. [PMID: 27610076 PMCID: PMC4997012 DOI: 10.3389/fncir.2016.00066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998. Since their discovery, they have been one of the most studied neuropeptide systems because of their projecting fields innervating various brain areas. The orexinergic system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their system hypofunction. Orexinergic system is also involved in many other autonomic functions such as feeding, thermoregulation, cardiovascular and neuroendocrine regulation. The main aim of this mini review article is to investigate the relationship between ORX and thyroid system regulation. Although knowledge about the ORX system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis still appear unclear. We analyzed some studies about ORX control of HPT axis to know better the relationship between them. The studies that were analyzed suggest Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or inhibitory) of this possible interaction remains actually unclear and needs to be confirmed.
Collapse
Affiliation(s)
- Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Carolina De Fusco
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Maria Esposito
- Neapolitan Brain Group (NBG), Clinic of Child and Adolescent Neuropsychiatry, Department of Mental, Physical Health and Preventive Medicine, Second University of Naples Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marco Carotenuto
- Neapolitan Brain Group (NBG), Clinic of Child and Adolescent Neuropsychiatry, Department of Mental, Physical Health and Preventive Medicine, Second University of Naples Naples, Italy
| | - Emanuela Viggiano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of NaplesNaples, Italy; Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| |
Collapse
|
62
|
Manzardo AM, Johnson L, Miller JL, Driscoll DJ, Butler MG. Higher plasma orexin A levels in children with Prader-Willi syndrome compared with healthy unrelated sibling controls. Am J Med Genet A 2016; 170:2097-102. [PMID: 27214028 DOI: 10.1002/ajmg.a.37749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder associated with maladaptive social behavior, hyperphagia, and morbid obesity. Orexin A is a hypothalamic neuropeptide important as a homeostatic regulator of feeding behavior and in energy metabolism through actions in the lateral hypothalamus. Dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia seen in PWS and we sought to assess orexin A levels in PWS relative to controls children. Morning fasting plasma orexin A levels were analyzed in 23 children (aged 5-11 years) with genetically confirmed PWS and 18 age and gender matched healthy unrelated siblings without PWS. Multiplex immune assays utilized the Milliplex Human Neuropeptide Magnetic panel and the Luminex platform. Natural log-transformed orexin A data were analyzed using general linear model adjusting for diagnosis, gender, age, total body fat and body mass index (BMI). Plasma orexin A levels were significantly higher (P < 0.006) in children with PWS (average ±SD = 1028 pg/ml ± 358) compared with unrelated siblings (average ±SD = 609 pg/ml ± 351; P < 0.001). Orexin A levels correlated with age in females and were significantly elevated in PWS even after these effects were controlled. These findings support the hypothesis that dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia in PWS. Further studies are warranted to better understand the complex relationship between orexin A levels and the problematic behaviors consistently found in individuals with PWS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa Johnson
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Daniel J Driscoll
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
63
|
Heat and oxidative stress alter the expression of orexin and its related receptors in avian liver cells. Comp Biochem Physiol A Mol Integr Physiol 2015; 191:18-24. [PMID: 26419694 DOI: 10.1016/j.cbpa.2015.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Orexins (A and B) or hypocretins (1 and 2) are hypothalamic orexigenic neuropeptides that are involved in the regulation of several physiological processes in mammals. Recently, orexin has been shown to activate the hypothalamic-pituitary-adrenal (HPA) stress axis and emerging evidences identify it as a stress modulator in mammals. However, the regulation of orexin system by stress itself remains unclear. Here, we investigate the effects of heat, 4-Hydroxynonenal (4-HNE) and hydrogen peroxide (H2O2) stress on the hepatic expression of orexin (ORX) and its related receptors (ORXR1/2) in avian species. Using in vivo and in vitro models, we found that heat stress significantly down-regulated ORX and ORXR1/2 mRNA and protein abundances in quail liver and LMH cells. H2O2, however, decreased ORX protein and increased ORX mRNA levels in a dose dependent manner (P<0.05). The absence of correlation between orexin mRNA and protein levels suggests that H2O2 treatment modulates post-transcriptional mechanisms. 4-HNE had a biphasic effect on orexin system expression, with a significant up-regulation at low doses (10 and 20μM) and a significant down-regulation at a high dose (30μM). Taken together, our data indicated that hepatic orexin system could be a molecular signature in the heat and oxidative stress response.
Collapse
|
64
|
Involvement of the dopaminergic system in the central orexin-induced antinociceptive action against colonic distension in conscious rats. Neurosci Lett 2015; 605:34-8. [DOI: 10.1016/j.neulet.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
|
65
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
66
|
Aguilera G. Regulation of the hypothalamic-pituitary-adrenal axis by neuropeptides. Horm Mol Biol Clin Investig 2015; 7:327-36. [PMID: 25961271 DOI: 10.1515/hmbci.2011.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/12/2011] [Indexed: 01/01/2023]
Abstract
The major endocrine response to stress occurs via activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading ultimately to increases in circulating glucocorticoids, which are essential for the metabolic adaptation to stress. The major players in the HPA axis are the hypothalamic neuropeptide, corticotropin releasing hormone (CRH), the pituitary hormone adrenocorticotropic hormone, and the negative feedback effects of adrenal glucocorticoids. In addition, a number of other neuropeptides, including vasopressin (VP), angiotensin II, oxytocin, pituitary adenylate cyclase activating peptide, orexin and cholecystokinin, and nesfatin can affect HPA axis activity by influencing the expression and secretion of CRH, and also by modulating pituitary corticotroph function or adrenal steroidogenesis. Of these peptides, VP co-secreted with CRH from axonal terminals in the external zone of the median eminence plays a prominent role by potentiating the stimulatory effect of CRH and by increasing the number of pituitary corticotrophs during chronic challenge. Although the precise role and significance of many of these neuropeptides in regulating HPA axis activity requires further investigation, it is likely that they are part of a multifactorial system mediating the fine tuning of HPA axis activity during adaptation to a variety of physiological and stressful conditions.
Collapse
|
67
|
Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015; 6:6266. [PMID: 25695914 PMCID: PMC4335349 DOI: 10.1038/ncomms7266] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses. The hypothalamic-pituitary-adrenal axis coordinates behavioral and physiological responses to stress but the mechanisms are poorly understood. Here, the authors show that neurons that produce hypocretin/orexin in the lateral hypothalamic area regulate corticosterone release and a variety of behaviors related to the stress response.
Collapse
Affiliation(s)
- Patricia Bonnavion
- 1] Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road , Stanford, California 94305, USA [2] Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB)-UNI, 1070 Brussels, Belgium
| | - Alexander C Jackson
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA [2] Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road , Stanford, California 94305, USA
| |
Collapse
|
68
|
Antinociceptive action against colonic distension by brain orexin in conscious rats. Brain Res 2015; 1598:12-7. [DOI: 10.1016/j.brainres.2014.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/16/2023]
|
69
|
Abstract
Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with at least a brief period of arousal and wakefulness, the subsequent amount and architecture of recovery sleep can vary dramatically across conditions even though classical markers of acute stress such as corticosterone are virtually the same. Sleep after stress appears to be highly influenced by situational variables including whether the stressor was controllable and/or predictable, whether the individual had the possibility to learn and adapt, and by the relative resilience and vulnerability of the individual experiencing stress. There are multiple brain regions and neurochemical systems linking stress and sleep, and the specific balance and interactions between these systems may ultimately determine the alterations in sleep-wake architecture. Factors that appear to play an important role in stress-induced wakefulness and sleep changes include various monominergic neurotransmitters, hypocretins, corticotropin releasing factor, and prolactin. In addition to the brain regions directly involved in stress responses such as the hypothalamus, the locus coeruleus, and the amygdala, differential effects of stressor controllability on behavior and sleep may be mediated by the medial prefrontal cortex. These various brain regions interact and influence each other and in turn affect the activity of sleep-wake controlling centers in the brain. Also, these regions likely play significant roles in memory processes and participate in the way stressful memories may affect arousal and sleep. Finally, stress-induced changes in sleep-architecture may affect sleep-related neuronal plasticity processes and thereby contribute to cognitive dysfunction and psychiatric disorders.
Collapse
Affiliation(s)
- Larry D Sanford
- Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23507, USA,
| | | | | |
Collapse
|
70
|
Sugimoto K, Ohmomo H, Shutoh F, Nogami H, Hisano S. Presentation of noise during acute restraint stress attenuates expression of immediate early genes and arginine vasopressin in the hypothalamic paraventricular nucleus but not corticosterone secretion in rats. Neurosci Res 2014; 96:20-9. [PMID: 25496933 DOI: 10.1016/j.neures.2014.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/12/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
The present study investigated the effect of acoustic stimulation on the activation of the hypothalamic-pituitary-adrenal (HPA) axis in rats submitted to acute restraint stress, through semi-quantitative histochemical analysis of expression of immediate early gene products (c-Fos, JunB and phosphorylated c-Jun) and arginine vasopressin (AVP) hnRNA in the paraventricular nucleus (PVN). Simultaneous presentation of white or pink noise with restraint resulted in a significant attenuation of stress-induced c-Fos and JunB expression in the dorsal body of dorsal medial parvicellular subdivision (mpdd) of the PVN, as compared with restraint without noise. However, this presentation did not change phosphorylation of c-Jun and the plasma corticosterone level. Moreover, white noise presentation during restraint led to a reduction in the number of c-Fos- or JunB-expressing corticotropin-releasing hormone (CRH) neurons and the number of neurons expressing AVP hnRNA in the mpdd. Dual-histochemical labeling revealed co-expression of c-Fos and JunB, as well as JunB and AVP hnRNA in mpdd neurons. These data suggest that acoustic stimuli have an attenuation effect on the restraint-induced activation of neuroendocrine CRH neurons, resulting in the reduction in AVP production as an adaptation of HPA axis to repeated stress.
Collapse
Affiliation(s)
- Koji Sugimoto
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Fumihiro Shutoh
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Laboratory of Neuroendocrinology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruo Nogami
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Laboratory of Neuroendocrinology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Setsuji Hisano
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Laboratory of Neuroendocrinology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
71
|
Hurley SW, Johnson AK. The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors. Front Syst Neurosci 2014; 8:216. [PMID: 25431553 PMCID: PMC4230038 DOI: 10.3389/fnsys.2014.00216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/13/2014] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behaviors. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA). It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd) and perifornical area (PeF) provide a link between neural systems that regulate homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA), providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is “fed into” mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony, and salt deficiency.
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Alan Kim Johnson
- Department of Psychology, University of Iowa Iowa City, IA, USA ; Department of Pharmacology, University of Iowa Iowa City, IA, USA ; Department of Health and Human Physiology, University of Iowa Iowa City, IA, USA ; François M. Abboud Cardiovascular Center, University of Iowa Iowa City, IA, USA
| |
Collapse
|
72
|
López JM, Sanz-Morello B, González A. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides 2014; 61:23-37. [PMID: 25169954 DOI: 10.1016/j.peptides.2014.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023]
Abstract
Cladistians are primitive actinopterygian fishes mostly neglected in neuroanatomical studies. In the present study, the detailed neuroanatomical distribution of orexin (hypocretin)-like immunoreactive (OX-ir) cell bodies and fibers was analyzed in the brain of two species representative of the two extant genera of cladistians. Antibodies against mammalian orexin-A and orexin-B peptides were used. Simultaneous detection of orexins with neuropeptide Y (NPY), tyrosine hydroxylase (TH), and serotonin (5-HT) was used to establish accurately the topography of the orexin system and to evaluate the possible interactions with NPY and monoaminergic systems. A largely common pattern of OX-ir distribution in the two cladistian species was observed. Most OX-ir cells were located in the suprachiasmatic nucleus and tuberal hypothalamus, whereas scarce cells were observed in the posterior tubercle. In addition, a population of OX-ir cells was found in the preoptic area only in Polypterus and some cells also contained TH. The observed widespread distribution of OX-ir fibers was especially abundant in the retrobulbar area, subpallial areas, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic area, prethalamus, thalamus, pretectum, optic tectum, and tegmentum. Low innervation was found in relation to monoaminergic cell groups, whereas a high NPY innervation was observed in all OX-ir cell groups. These relationships would represent the anatomical substrate for the functional interdependence between these systems. The organization of the orexin system in cladistians revealed a pattern largely consistent with those reported for all studied groups of vertebrates, suggesting that the primitive organization of this peptidergic system occurred in the common ancestor of gnathostome vertebrates.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Berta Sanz-Morello
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
73
|
Gatta C, Russo F, Russolillo MG, Varricchio E, Paolucci M, Castaldo L, Lucini C, de Girolamo P, Cozzi B, Maruccio L. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus). PLoS One 2014; 9:e105009. [PMID: 25144456 PMCID: PMC4140726 DOI: 10.1371/journal.pone.0105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Finizia Russo
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
- * E-mail:
| | | | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| |
Collapse
|
74
|
James MH, Campbell EJ, Walker FR, Smith DW, Richardson HN, Hodgson DM, Dayas CV. Exercise reverses the effects of early life stress on orexin cell reactivity in male but not female rats. Front Behav Neurosci 2014; 8:244. [PMID: 25100956 PMCID: PMC4107856 DOI: 10.3389/fnbeh.2014.00244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/26/2014] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) is a known antecedent for the development of mood disorders such as depression. Orexin neurons drive arousal and motivated behaviors in response to stress. We tested the hypothesis that ELS alters orexin system function and leads to an altered stress-induced behavioral phenotype in adulthood. We also investigated if voluntary exercise during adolescent development could reverse the ELS-induced changes. Male and female Wistar rats were subjected to maternal separation stress on postnatal days (PND) 2-14. A subset of animals was given access to running wheels in late adolescence (1hr/day, PND40-70). In adulthood, rats were exposed to restraint stress and then tested on the open field (OF) and elevated plus maze (EPM). Brains were processed for Fos-protein and orexin or tyrosine hydroxylase immunohistochemistry. Restraint stress stimulated Fos-protein expression in perifornical area orexin cells, the paraventricular hypothalamic nucleus, and paraventricular thalamic nuclei, but this neuronal response was dampened in male and female rats exposed to ELS. ELS also reduced exploration in the OF, without affecting EPM behavior. These neural and behavioral changes are consistent with a depressive-like phenotype. Adolescent exercise reversed the orexin and behavioral deficits in ELS males. Exercise was not protective in females, although this may be due to sex differences in running behavior. Our findings highlight the inherent plasticity of the orexin system—a trait that may lead to a state of pathological rewiring but could also be treated using non-pharmacological approaches. We also highlight a need to better understand the sex-specific changes in orexin circuits and stress-related pathology.
Collapse
Affiliation(s)
- Morgan H James
- Neurobiology of Addiction Laboratory, The Centre for Brain and Mental Health Research, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle Newcastle, NSW, Australia
| | - Erin J Campbell
- Neurobiology of Addiction Laboratory, The Centre for Brain and Mental Health Research, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle Newcastle, NSW, Australia
| | - Frederick R Walker
- Neurobiology of Addiction Laboratory, The Centre for Brain and Mental Health Research, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle Newcastle, NSW, Australia
| | - Doug W Smith
- Neurobiology of Addiction Laboratory, The Centre for Brain and Mental Health Research, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle Newcastle, NSW, Australia
| | - Heather N Richardson
- Neurobiology of Stress and Addiction Laboratory, Department of Psychology, University of Massachusetts Amherst, MA, USA
| | - Deborah M Hodgson
- Neurobiology of Addiction Laboratory, The Centre for Brain and Mental Health Research, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle Newcastle, NSW, Australia
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, The Centre for Brain and Mental Health Research, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle Newcastle, NSW, Australia
| |
Collapse
|
75
|
Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014; 29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/11/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023]
Abstract
Hypocretin (also known as orexin) is a peptide neuromodulator that is expressed exclusively in the lateral hypothalamic area and plays a fundamental role in wakefulness and arousal. Chronic stress and compulsive drug-seeking are two examples of dysregulated states of hyperarousal that are influenced by hypocretin transmission throughout hypothalamic, extended amygdala, brainstem, and mesolimbic pathways. Here, we review current advances in the understanding of hypocretin's modulatory actions underlying conditions of negative and positive emotional valence, focusing particularly on mechanisms that facilitate adaptive (and maladaptive) responses to stressful or rewarding environmental stimuli. We conclude by discussing progress toward integrated theories for hypocretin modulation of divergent behavioral domains.
Collapse
Affiliation(s)
- William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, P154, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, P154, Stanford, CA 94305, USA.
| |
Collapse
|
76
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
77
|
Duncan MJ, Franklin KM, Peng X, Yun C, Legan SJ. Circadian rhythm disruption by a novel running wheel: roles of exercise and arousal in blockade of the luteinizing hormone surge. Physiol Behav 2014; 131:7-16. [PMID: 24727338 DOI: 10.1016/j.physbeh.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 11/24/2022]
Abstract
Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7h before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2days from ZT 5-11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10-14days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P=0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as those in Expt. 1 except that they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD)). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, P<0.02) and also inhibited wheel running and circadian phase shifts, indicating that activation of orexin 1 receptors is necessary for these effects. Expt. 3 tested the hypothesis that novel wheel exposure activates orexin neurons. Proestrous hamsters were transferred at ZT 5 to a nearby room within the animal facility and were exposed to a new cage with a locked or unlocked novel wheel or left in their home cages. At ZT 8, the hamsters were anesthetized, blood was withdrawn, they were perfused with fixative and brains were removed for immunohistochemical localization of Fos, GnRH, and orexin. Exposure to a wheel, whether locked or unlocked, suppressed circulating LH concentrations at ZT 8, decreased the proportion of Fos-activated GnRH neurons, and increased Fos-immunoreactive orexin cells. Unlocked wheels had greater effects than locked wheels on all three endpoints. Thus in a familiar environment, exercise potentiated the effect of the novel wheel on Fos expression because a locked wheel was not a sufficient stimulus to block the LH surge. In conclusion, these studies indicate that novel wheel exposure activates orexin neurons and that blockade of orexin 1 receptors prevents novel wheel blockade of the LH surge. These findings are consistent with a role for both exercise and arousal in mediating novel wheel blockade of the LH surge.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, United States.
| | - Kathleen M Franklin
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - Xiaoli Peng
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - Christopher Yun
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - Sandra J Legan
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, United States
| |
Collapse
|
78
|
Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014; 8:36. [PMID: 24616658 PMCID: PMC3934415 DOI: 10.3389/fnins.2014.00036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/10/2014] [Indexed: 11/20/2022] Open
Abstract
The tight regulation of sleep/wake states is critical for mental and physiological wellbeing. For example, dysregulation of sleep/wake systems predisposes individuals to metabolic disorders such as obesity and psychiatric problems, including depression. Contributing to this understanding, the last decade has seen significant advances in our appreciation of the complex interactions between brain systems that control the transition between sleep and wake states. Pivotal to our increased understanding of this pathway was the description of a group of neurons in the lateral hypothalamus (LH) that express the neuropeptides orexin A and B (hypocretin, Hcrt-1 and Hcrt-2). Orexin neurons were quickly placed at center stage with the demonstration that loss of normal orexin function is associated with the development of narcolepsy—a condition in which sufferers fail to maintain normal levels of daytime wakefulness. Since these initial seminal findings, much progress has been made in our understanding of the physiology and function of the orexin system. For example, the orexin system has been identified as a key modulator of autonomic and neuroendocrine function, arousal, reward and attention. Notably, studies in animals suggest that dysregulation of orexin function is associated with neuropsychiatric states such as addiction and mood disorders including depression and anxiety. This review discusses the progress associated with therapeutic attempts to restore orexin system function and treat neuropsychiatric conditions such as addiction, depression and anxiety. We also highlight potential pitfalls and challenges associated with targeting this system to treat these neuropsychiatric states.
Collapse
Affiliation(s)
- Jiann Wei Yeoh
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Erin J Campbell
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Morgan H James
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Brett A Graham
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| |
Collapse
|
79
|
Patel AX, Miller SR, Nathan PJ, Kanakaraj P, Napolitano A, Lawrence P, Koch A, Bullmore ET. Neuroendocrine and sympathetic responses to an orexin receptor antagonist, SB-649868, and alprazolam following insulin-induced hypoglycemia in humans. Psychopharmacology (Berl) 2014; 231:3817-28. [PMID: 24770625 PMCID: PMC4159598 DOI: 10.1007/s00213-014-3520-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/24/2014] [Indexed: 02/02/2023]
Abstract
RATIONALE The orexin-hypocretin system is important for translating peripheral metabolic signals and central neuronal inputs to a diverse range of behaviors, from feeding, motivation and arousal, to sleep and wakefulness. Orexin signaling is thus an exciting potential therapeutic target for disorders of sleep, feeding, addiction, and stress. OBJECTIVES/METHODS Here, we investigated the low dose pharmacology of orexin receptor antagonist, SB-649868, on neuroendocrine, sympathetic nervous system, and behavioral responses to insulin-induced hypoglycemic stress, in 24 healthy male subjects (aged 18-45 years; BMI 19.0-25.9 kg/m(2)), using a randomized, double-blind, placebo-controlled, within-subject crossover design. Alprazolam, a licensed benzodiazepine anxiolytic, was used as a positive comparator, as it has previously been validated using the insulin tolerance test (ITT) model in humans. RESULTS Of the primary endpoints, ITT induced defined increases in pulse rate, plasma cortisol, and adrenocorticotropic hormone in the placebo condition, but these responses were not significantly impacted by alprazolam or SB-649868 pre-treatment. Of the secondary endpoints, ITT induced a defined increase in plasma concentrations of adrenaline, noradrenaline, growth hormone (GH), and prolactin in the placebo condition. Alprazolam pre-treatment significantly reduced the GH response to ITT (p < 0.003), the peak electromyography (p < 0.0001) and galvanic skin response (GSR, p = 0.04) to acoustic startle, the resting GSR (p = 0.01), and increased appetite following ITT (p < 0.0005). SB-649868 pre-treatment produced no significant results. CONCLUSION We concluded that the ITT model may be informative for assessing the effects of drugs directly acting on the neuroendocrine or sympathetic nervous systems, but could not be validated for studying low dose orexin antagonist activity.
Collapse
Affiliation(s)
- Ameera X. Patel
- Brain Mapping Unit, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - Sam R. Miller
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Pradeep J. Nathan
- Brain Mapping Unit, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK ,Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK ,School of Psychology and Psychiatry, Monash University, Melbourne, Australia
| | - Ponmani Kanakaraj
- Quantitative Sciences India, GlaxoSmithKline Pharmaceuticals Ltd, Bangalore, India
| | - Antonella Napolitano
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Philip Lawrence
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Annelize Koch
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Edward T. Bullmore
- Brain Mapping Unit, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK ,Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| |
Collapse
|
80
|
Russo F, Maruccio L, Calamo A, de Girolamo P, Varricchio E. Orexin 1 receptor in the seminiferous tubules of boar testis: an immunohistochemical study. Acta Histochem 2014; 116:286-8. [PMID: 23746541 DOI: 10.1016/j.acthis.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/26/2022]
Abstract
Orexin receptor 1 (OX₁R) and orexin receptor 2 (OX₂R) are two G-protein-coupled receptors that bind their ligands, orexin A (OXA) and B (OXB), with different affinities. The male genital system represents an important target for OXA, which appears to play a role in the control of steroidogenesis and germ cell development in the testis. It is known that among domestic breeding animals, in the boar the number of Leydig cells is very high and OXA appears to have stimulatory activity on testosterone production. In this study, we aimed to evaluate the presence of OX₁R in the boar testis in order to extend our knowledge concerning the distribution and a potential functional role of the orexinergic system in the male reproductive tract of farm animals. The presence of OX₁R immunopositive cells in seminiferous tubules of the boar testis enables us to hypothesize a possible role of OXA on male germ cells cycle in pig. Further investigations, involving functional and ultrastructural analysis, may contribute to our understanding of the role of orexins in the boar genital system.
Collapse
|
81
|
Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders. Int J Neuropsychopharmacol 2014; 17:157-68. [PMID: 23702225 DOI: 10.1017/s1461145713000552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.
Collapse
|
82
|
Xu TR, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal 2013; 25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022]
|
83
|
Emmerzaal T, Doelen RV, Roubos E, Kozicz T. Orexinergic innervation of urocortin1 and cocaine and amphetamine regulated transcript neurons in the midbrain centrally projecting Edinger–Westphal nucleus. J Chem Neuroanat 2013; 54:34-41. [DOI: 10.1016/j.jchemneu.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
|
84
|
Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav 2013; 130:182-90. [PMID: 24140988 DOI: 10.1016/j.physbeh.2013.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 08/23/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Maladaptation to stress is associated with psychopathology. However, our understanding of the underlying neural circuitry involved in adaptations to stress is limited. Previous work from our lab indicated the paraventricular hypothalamic neuropeptides orexins/hypocretins regulate behavioral and neuroendocrine responses to stress. To further elucidate the role of orexins in adaptation to stress, we employed optogenetic techniques to specifically examine the effects of orexin cell activation on behavior in the social interaction test and in the home cage as well as orexin receptor 1 internalization and ERK phosphorylation in brain regions receiving orexin inputs. In the social interaction test, optogenetic stimulation of orexin neurons decreased time spent in the interaction zone while increasing the frequency of entries into the interaction zone. In addition, optogenetic stimulation of orexin neurons increased the total distance traveled in the social interaction arena but had no effect on their home cage behavior. Together, these results suggest that orexin release increases anxiety in the social interaction test while increasing the salience of novel but not familiar environmental stimuli. Consistent with activation of orexin neurons, optogenetic stimulation increased orexin receptor1 internalization and ERK phosphorylation in the paraventricular thalamus (PVT) and locus coeruleus (LC), two regions heavily innervated by orexin neurons. Together these results show for the first time that elevation of orexin activity, possibly in the PVT and LC, is associated with increased anxiety, activity, and arousal in a context-specific manner.
Collapse
Affiliation(s)
- W Heydendael
- Children's hospital of Philadelphia, United States; University of Pennsylvania, United States.
| | - A Sengupta
- Children's hospital of Philadelphia, United States
| | - S Beck
- Children's hospital of Philadelphia, United States; University of Pennsylvania, United States
| | - S Bhatnagar
- Children's hospital of Philadelphia, United States; University of Pennsylvania, United States
| |
Collapse
|
85
|
Qi K, Wei C, Li Y, Sui N. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference. Front Behav Neurosci 2013; 7:144. [PMID: 24133421 PMCID: PMC3794194 DOI: 10.3389/fnbeh.2013.00144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 01/17/2023] Open
Abstract
Orexins are found to participate in mediating stress-induced drug relapse. However, the neuroanatomical basis that orexin transmission modulates stress-induced drug seeking remains unknown. The nucleus accumbens shell (NAcSh), best known for its role in appetitive and negative motivation via dopamine receptors, is likely to be the potential important brain area where the orexin system mediates stress-induced drug relapse since the function of dopamine system in the NAcSh can be regulated by orexin transmission. In the present study, a morphine conditioned place preference (CPP) model was used to determine whether the two types of orexin receptors would be involved into footshock-induced and/or drug priming-induced CPP reinstatement differentially. The results showed that blockade of orexin-1 or orexin-2 receptor in the NAcSh significantly attenuated stress-induced morphine CPP reinstatement, but neither of the orexin antagonists had any effect on morphine priming-induced reinstatement. These findings indicate that the NAcSh is a brain area through which orexins participate in stress but not drug priming-induced relapse of opioid seeking.
Collapse
Affiliation(s)
- Keke Qi
- 1Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; 2Institute of Psychology, University of Chinese Academy of Sciences Beijing, China
| | | | | | | |
Collapse
|
86
|
Central administration of an orexin receptor 1 antagonist prevents the stimulatory effect of Olanzapine on endogenous glucose production. Brain Res 2013; 1527:238-45. [DOI: 10.1016/j.brainres.2013.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022]
|
87
|
Başar MM, Han Ü, Çakan M, Alpcan S, Başar H. Orexin expression in different prostate histopathologic examinations: Can it be a marker for prostate cancer? A preliminary result. Turk J Urol 2013; 39:78-83. [PMID: 26328085 DOI: 10.5152/tud.2013.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 11/19/2012] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of the orexin receptor in different prostate pathologies, including prostate adenocarcinoma, benign prostate hyperplasia and chronic prostatitis. MATERIAL AND METHODS A total of 90 patients (mean age 64.01±7.2 years) were enrolled in the study. The patients were divided into three groups of equal numbers based on their histopathologic findings: prostate cancer (Group 1), benign prostate hyperplasia (Group 2) and chronic prostatitis (Group 3). All the tissues were incubated with a primary antibody recognizing the Orexin receptor. The specific cytoplasmic immunoreactivity of the Orexin receptor was semiquantitatively scored for intensity and distribution based on a grading scale. The staining intensity and orexin expression were evaluated using Pearson χ(2) test. RESULTS A heterogeneous staining pattern of the Orexin receptor was observed between the groups. The expression rates were 90% (27/30) in Group 1, 53.3% (16/30) in Group 2 and 26.7% (8/30) in Group 3. While 5 patients (9.3%) in Group 1 showed strong staining, all samples from the other 2 groups showed only weak staining. There were significant differences in staining intensity between the three groups. The expression and distribution of the Orexin receptor was more widespread in Group 1 than in the other groups and was higher in patients with poorly differentiated malignancy. However, there was no significant difference based on Gleason score. CONCLUSION Orexin receptors are found in human prostate tissues and their expression is widespread in prostate cancer and in patients with a higher Gleason score. Therefore, we believe that Orexin immunoreactivity can be considered to be an indicator of poor prognosis and of poorly differentiated prostate cancer cases.
Collapse
Affiliation(s)
- Murad Mehmet Başar
- Department of Urology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Ünsal Han
- Clinic of Pathology, Ankara Dışkapı Yıldırım Beyazıt Education and Training Hospital, Ankara, Turkey
| | - Murat Çakan
- Clinic of Urology, Ankara Dışkapı Yıldırım Beyazıt Education and Training Hospital, Ankara, Turkey
| | - Serhan Alpcan
- Department of Urology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Halil Başar
- Department of Urology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
88
|
Bayard S, Dauvilliers YA. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy. Front Behav Neurosci 2013; 7:50. [PMID: 23734110 PMCID: PMC3661950 DOI: 10.3389/fnbeh.2013.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Major advances in the past decade have led a better understanding of the pathophysiology of narcolepsy with cataplexy (NC) caused by the early loss of hypothalamic hypocretin neurons. Although a role for hypocretin in the regulation of sleep/wakefulness state is widely recognized, other functions, not necessarily related to arousal, have been identified. Hence, the hypocretin system enhances signaling in the mesolimbic pathways regulating reward processing, emotion and mood regulation, and addiction. Although studies on hypocretin-deficient mice have shown that hypocretin plays an essential role in reward-seeking, depression-like behavior and addiction, results in human narcolepsy remained subject to debate. Most of studies revealed that hypocretin-deficient narcolepsy patients either drug-free or medicated with psychostimulant had preferences toward risky choices in a decision-making task under ambiguity together with higher frequency of depressive symptoms and binge eating disorder compared to controls. However, human studies mostly reported the lack of association with pathological impulsivity and gambling, and substance and alcohol abuse in the context of narcolepsy-cataplexy. Prospective larger studies are required to confirm these findings in drug-free and medicated patients with narcolepsy. Inclusion of patients with other central hypersomnias without hypocretin deficiency will provide answer to the major question of the role of the hypocretin system in reward-based behaviors and emotional processing in humans.
Collapse
Affiliation(s)
- Sophie Bayard
- Department of Neurology, National Reference Network for Narcolepsy, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM U1061, University of Montpellier 1 Montpellier, France
| | | |
Collapse
|
89
|
Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013; 7:28. [PMID: 23616752 PMCID: PMC3629303 DOI: 10.3389/fnbeh.2013.00028] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Abstract
Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. However, orexin neurons are “multi-tasking” neurons that regulate sleep/wake states as well as feeding behavior, emotion, and reward processes. Orexin deficiency causes abnormalities in energy homeostasis, stress-related behavior, and reward systems. Orexin excites waking-active monoaminergic and cholinergic neurons in the hypothalamus and brain stem regions to maintain a long, consolidated waking period. Orexin neurons also have reciprocal links with the hypothalamic nuclei, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues suggests that these neurons have an important role as a link between energy homeostasis and vigilance states. The link between orexin and the ventral tegmental nucleus serves to motivate an animal to engage in goal-directed behavior. This review focuses on the interaction of orexin neurons with emotion, reward, and energy homeostasis systems. These connectivities are likely to be highly important to maintain proper vigilance states.
Collapse
Affiliation(s)
- Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | | |
Collapse
|
90
|
Steiner MA, Sciarretta C, Brisbare-Roch C, Strasser DS, Studer R, Jenck F. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat. Psychoneuroendocrinology 2013; 38:560-71. [PMID: 22917622 DOI: 10.1016/j.psyneuen.2012.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.
Collapse
Affiliation(s)
- Michel A Steiner
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | | | | | | | | | | |
Collapse
|
91
|
Liguori G, Paino S, Mirabella N, Squillacioti C, De Luca A, Vittoria A. Expression of Orexin A and its Receptor 1 in the Epididymis of the South American Camelid Alpaca (Vicugna pacos). Anat Histol Embryol 2013; 43:42-7. [DOI: 10.1111/ahe.12046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
Affiliation(s)
- G. Liguori
- Department of Biological Structures; Functions and Technologies; University of Naples Federico II; Via Veterinaria 1 I-80137 Naples Italy
| | - S. Paino
- Department of Animal Sciences; University of Basilicata; Via dell'Ateneo Lucano 10 I-85100 Potenza Italy
| | - N. Mirabella
- Department of Biological Structures; Functions and Technologies; University of Naples Federico II; Via Veterinaria 1 I-80137 Naples Italy
| | - C. Squillacioti
- Department of Biological Structures; Functions and Technologies; University of Naples Federico II; Via Veterinaria 1 I-80137 Naples Italy
| | - A. De Luca
- Department of Biological Structures; Functions and Technologies; University of Naples Federico II; Via Veterinaria 1 I-80137 Naples Italy
| | - A. Vittoria
- Department of Biological Structures; Functions and Technologies; University of Naples Federico II; Via Veterinaria 1 I-80137 Naples Italy
| |
Collapse
|
92
|
Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice. Behav Brain Res 2013; 243:213-9. [PMID: 23333844 DOI: 10.1016/j.bbr.2012.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022]
Abstract
Although several lines of evidence have recently implicated orexins and their receptors in fear and anxiety, there is also a growing number of apparently inconsistent and/or negative findings. In the present study, we have used ethological methods to comprehensively profile the behavioural effects of the orexin-1 receptor antagonist SB-334867 (3-30 mg/kg) in mice exposed to the elevated plus-maze. Two experiments were performed, the first involving test-naïve animals and the second using prior undrugged experience of the maze to induce a qualitatively different emotional response to that seen on first exposure. In Experiment 1, a reference benzodiazepine (chlordiazepoxide, CDP, 15 mg/kg) produced a robust anxioselective profile comprising substantial increases in open arm exploration and reduced risk assessment without any signiifcant change in general activity levels. In contrast, SB-334867 failed to produce any behavioural effects over the dose range tested. In Experiment 2, 5 min undrugged experience of the maze 24h prior to testing increased open arm avoidance and abolished the anxiolytic efficacy of CDP. Despite this altered baseline, SB-334867 again failed to alter plus-maze behaviour. These findings agree with several recent reports that orexin receptor antagonists, such as SB-334867 and almorexant, do not alter basal anxiety levels in rats but markedly contrast with the anxiolytic-like effects of the same agents when anxiety levels have been exacerbated by fear conditioning, drug challenge or hypercapnia. This unique pattern of activity suggests that orexin receptor antagonists may have therapeutic value in those clinical anxiety disorders characterised by intense emotional arousal.
Collapse
|
93
|
Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central functions of the orexinergic system. Neurosci Bull 2013; 29:355-65. [PMID: 23299718 DOI: 10.1007/s12264-012-1297-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/18/2012] [Indexed: 10/27/2022] Open
Abstract
The neuropeptide orexin is synthesized by neurons exclusively located in the hypothalamus. However, these neurons send axons over virtually the entire brain and spinal cord and therefore constitute a unique central orexinergic system. It is well known that central orexin plays a crucial role in the regulation of various basic non-somatic and somatic physiological functions, including feeding, energy homeostasis, the sleep/wake cycle, reward, addiction, and neuroendocrine, as well as motor control. Moreover, the absence of orexin results in narcolepsy-cataplexy, a simultaneous somatic and non-somatic dysfunction. In this review, we summarize these central functions of the orexinergic system and associated diseases, and suggest that this system may hold a key position in somatic-non-somatic integration.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | | | | | | | | |
Collapse
|
94
|
Srinivasan S, Shariff M, Bartlett SE. The role of the glucocorticoids in developing resilience to stress and addiction. Front Psychiatry 2013; 4:68. [PMID: 23914175 PMCID: PMC3730062 DOI: 10.3389/fpsyt.2013.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that individuals have the capacity to learn to be resilient by developing protective mechanisms that prevent them from the maladaptive effects of stress that can contribute to addiction. The emerging field of the neuroscience of resilience is beginning to uncover the circuits and molecules that protect against stress-related neuropsychiatric diseases, such as addiction. Glucocorticoids (GCs) are important regulators of basal and stress-related homeostasis in all higher organisms and influence a wide array of genes in almost every organ and tissue. GCs, therefore, are ideally situated to either promote or prevent adaptation to stress. In this review, we will focus on the role of GCs in the hypothalamic-pituitary adrenocortical axis and extra-hypothalamic regions in regulating basal and chronic stress responses. GCs interact with a large number of neurotransmitter and neuropeptide systems that are associated with the development of addiction. Additionally, the review will focus on the orexinergic and cholinergic pathways and highlight their role in stress and addiction. GCs play a key role in promoting the development of resilience or susceptibility and represent important pharmacotherapeutic targets that can reduce the impact of a maladapted stress system for the treatment of stress-induced addiction.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- Ernest Gallo Clinic and Research Center at the University of California San Francisco , Emeryville, CA , USA
| | | | | |
Collapse
|
95
|
Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci 2012. [PMID: 23189046 PMCID: PMC3504295 DOI: 10.3389/fnbeh.2012.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Orexins (hypocretins) are neuropeptides synthesized in neurons located in the lateral (LH), perifornical, and dorsomedial (DMH) hypothalamus. These neurons innervate many regions in the brain and modulate multiple other neurotransmitter systems. As a result of these extensive projections and interactions orexins are involved in numerous functions, such as feeding behavior, neuroendocrine regulation, the sleep-wake cycle, and reward-seeking. This review will summarize the literature to date which has evaluated a role of orexins in the behavioral effects of alcohol, with a focus on understanding the importance of this peptide and its potential as a clinical therapeutic target for alcohol use disorders.
Collapse
Affiliation(s)
- Andrezza K Kim
- Addiction Neuroscience Laboratory, Behavioural Neuroscience Division, Florey Neuroscience Institutes, University of Melbourne Parkville, VIC, Australia ; Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
96
|
Suzuki H, Yamamoto T. Orexin-B-like immunoreactivity localizes in both luteinizing-hormone-containing cells and melanin-concentrating hormone-containing fibers in the red-bellied piranha (Pygocentrus nattereri) pituitary. Cell Tissue Res 2012; 351:175-82. [PMID: 23161098 DOI: 10.1007/s00441-012-1516-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/08/2012] [Indexed: 11/24/2022]
Abstract
We examined orexin-like immunoreactivity in the pituitary of the red-bellied piranha (Pygocentrus nattereri). Orexin-B-immunoreactive (IR) cells corresponded to luteinizing hormone (LH)-containing cells in the pars distalis, and orexin-B-IR fibers corresponded to melanin-concentrating hormone (MCH)-containing fibers in the pars nervosa. In the pars distalis, orexin-B-IR puncta that were also immunoreactive for MCH were observed around the orexin-B-IR cells. In the ventral hypothalamus, orexin-B-IR and MCH-IR neurons were found in the nucleus lateralis tuberis. Immunoelectron-microscopic analysis revealed that the orexin-B-like substance co-localized with LH in secretory granules and with MCH in MCH-containing neurons. Some of the MCH secreted in the pituitary might participate in the modulation of LH secretion from the gonadotrophs, together with orexin-B, leading to food intake by the stimulation of growth hormone secretion from the somatotrophs.
Collapse
Affiliation(s)
- Hirohumi Suzuki
- Department of Biology, Fukuoka University of Education, Akamabunkyo-machi, Munakata, Fukuoka, Japan.
| | | |
Collapse
|
97
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
98
|
Liguori G, Assisi L, Squillacioti C, Paino S, Mirabella N, Vittoria A. Presence, distribution and steroidogenic effect of the peptides orexin A and receptor 1 for orexins in the testis of the South American camelid alpaca (Vicugna pacos). Gen Comp Endocrinol 2012; 179:137-42. [PMID: 22909972 DOI: 10.1016/j.ygcen.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 11/27/2022]
Abstract
The orexins A (oxA) and B are peptides discovered in the rat hypothalamus and successively found in some peripheral organs of the mammalian body. They binds two protein G-coupled receptors defined receptor 1 (ox1r) and 2 for orexins, the first of which is highly specific for oxA while the second binds both the peptides with equal affinity. This work aimed to detect the presence of oxA and ox1r in the testis of the South American camelid alpaca (Vicugna pacos) and investigate the role played by them on Leydig cell steroidogenesis. The species alpaca acquired, in the last years, increasing zootechnical interest for the quality of the wool produced and its breeding spread from the country of origin to USA, Australia and Europe. Immunohistochemistry allowed us to detect oxA in Leydig and Sertoli cells, spermatogonia, resting spermatocytes, round and oval spermatids. Ox1r-immunoreactivity was found in Leydig cells and round, oval and elongated spermatids. The expression of the two peptides in tissue extracts was established by using Western blotting technique. Such results demonstrated that in the alpaca testis exists in a cellular complex able to produce and/or internalize oxA. Finally, the effect of oxA on steroidogenesis was investigated by means of in vitro cultured thin testis slices which were added with oxA or/and Müllerian Inhibiting Substance (MIS), a steroidolitic agent basally produced by the Sertoli cell. OxA evoked increase of testosterone production while MIS a decrease. The consecutive addition of oxA and MIS, or vice versa, highlighted an antagonistic interplay between the two substances which has been thought to be the main molecular event at the basis of the oxA-stimulated steroidogenesis mechanism.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Structures, Functions and Biological Technologies, University of Naples Federico II, Via Veterinaria 1, I-80137 Naples, Italy
| | | | | | | | | | | |
Collapse
|
99
|
Hsiao YT, Jou SB, Yi PL, Chang FC. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats. Behav Brain Res 2012; 233:224-31. [PMID: 22579972 DOI: 10.1016/j.bbr.2012.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The frequency of electroencephalograms (EEGs) is predominant in theta rhythm during stress (e.g., footshock) in rats. Median raphe nucleus (MRN) desynchronizes hippocampal theta waves via activation of GABAergic neurons in the medial septum-diagonal band of Broca (MS-DBB), a theta rhythm pacemaker. Increased hypocretin mediates stress responses in addition to the maintenance of wakefulness. Hypocretin receptors are abundant in the MRN, suggesting a possible role of hypocretin in modulating stress-induced theta rhythm. Our results indicated that the intensity of theta waves was enhanced by footshock and that a hypocretin receptor antagonist (TCS1102) suppressed the footshock-induced theta waves. Administration of hypocretin-1 (1 and 10 μg) and hypocretin-2 (10 μg) directly into the MRN simulated the effect of footshock and significantly increased theta waves. Co-administration of GABA(A) receptor antagonist, bicuculline, into the MRN blocked the increase of theta waves induced by hypocretins or footshock. These results suggested that stress enhances the release of hypocretins, activates GABAergic neurons in the MRN, blocks the ability of MRN to desynchronize theta waves, and subsequently increases the intensity of theta rhythm.
Collapse
Affiliation(s)
- Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
100
|
Laorden ML, Ferenczi S, Pintér-Kübler B, González-Martín LL, Lasheras MC, Kovács KJ, Milanés MV, Núñez C. Hypothalamic orexin--a neurons are involved in the response of the brain stress system to morphine withdrawal. PLoS One 2012; 7:e36871. [PMID: 22590628 PMCID: PMC3348891 DOI: 10.1371/journal.pone.0036871] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Both the hypothalamus-pituitary-adrenal (HPA) axis and the extrahypothalamic brain stress system are key elements of the neural circuitry that regulates the negative states during abstinence from chronic drug exposure. Orexins have recently been hypothesized to modulate the extended amygdala and to contribute to the negative emotional state associated with dependence. This study examined the impact of chronic morphine and withdrawal on the lateral hypothalamic (LH) orexin A (OXA) gene expression and activity as well as OXA involvement in the brain stress response to morphine abstinence. Male Wistar rats received chronic morphine followed by naloxone to precipitate withdrawal. The selective OX1R antagonist SB334867 was used to examine whether orexins' activity is related to somatic symptoms of opiate withdrawal and alterations in HPA axis and extended amygdala in rats dependent on morphine. OXA mRNA was induced in the hypothalamus during morphine withdrawal, which was accompanied by activation of OXA neurons in the LH. Importantly, SB334867 attenuated the somatic symptoms of withdrawal, and reduced morphine withdrawal-induced c-Fos expression in the nucleus accumbens (NAc) shell, bed nucleus of stria terminalis, central amygdala and hypothalamic paraventricular nucleus, but did not modify the HPA axis activity. These results highlight a critical role of OXA signalling, via OX1R, in activation of brain stress system to morphine withdrawal and suggest that all orexinergic subpopulations in the lateral hypothalamic area contribute in this response.
Collapse
Affiliation(s)
- M. Luisa Laorden
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Szilamér Ferenczi
- Molecular Neuroendocrinology Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Pintér-Kübler
- Molecular Neuroendocrinology Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Laura L. González-Martín
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - M. Carmen Lasheras
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Krisztina J. Kovács
- Molecular Neuroendocrinology Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - M. Victoria Milanés
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- * E-mail:
| | - Cristina Núñez
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|