51
|
Nguyen L, Lucke-Wold BP, Mookerjee SA, Cavendish JZ, Robson MJ, Scandinaro AL, Matsumoto RR. Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci 2015; 127:17-29. [PMID: 25704014 DOI: 10.1016/j.jphs.2014.12.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases with distinct genetic etiologies and pathological phenotypes appear to share common mechanisms of neuronal cellular dysfunction, including excitotoxicity, calcium dysregulation, oxidative damage, ER stress and mitochondrial dysfunction. Glial cells, including microglia and astrocytes, play an increasingly recognized role in both the promotion and prevention of neurodegeneration. Sigma receptors, particularly the sigma-1 receptor subtype, which are expressed in both neurons and glia of multiple regions within the central nervous system, are a unique class of intracellular proteins that can modulate many biological mechanisms associated with neurodegeneration. These receptors therefore represent compelling putative targets for pharmacologically treating neurodegenerative disorders. In this review, we provide an overview of the biological mechanisms frequently associated with neurodegeneration, and discuss how sigma-1 receptors may alter these mechanisms to preserve or restore neuronal function. In addition, we speculate on their therapeutic potential in the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Behavioral Medicine and Psychiatry, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States
| | - Brandon P Lucke-Wold
- Graduate Program in Neuroscience, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States
| | - Shona A Mookerjee
- Department of Biological and Pharmaceutical Sciences, Touro University California, College of Pharmacy, 1310 Club Drive, Vallejo, CA 94592, United States
| | - John Z Cavendish
- Graduate Program in Neuroscience, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States
| | - Matthew J Robson
- Department of Pharmacology, Vanderbilt University School of Medicine, 465 21st Ave, Nashville, TN 37232, United States
| | - Anna L Scandinaro
- Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Behavioral Medicine and Psychiatry, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States
| | - Rae R Matsumoto
- Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Behavioral Medicine and Psychiatry, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, School of Medicine, One Medical Center Drive, Morgantown, WV 26506, United States; Department of Biological and Pharmaceutical Sciences, Touro University California, College of Pharmacy, 1310 Club Drive, Vallejo, CA 94592, United States.
| |
Collapse
|
52
|
Sahn JJ, Granger BA, Martin SF. Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification. Org Biomol Chem 2014; 12:7659-72. [PMID: 25135846 PMCID: PMC4167917 DOI: 10.1039/c4ob00835a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
Collapse
Affiliation(s)
- James J Sahn
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, USA.
| | | | | |
Collapse
|
53
|
Sato S, Kawamata T, Kobayashi T, Okada Y. Antidepressant fluvoxamine reduces cerebral infarct volume and ameliorates sensorimotor dysfunction in experimental stroke. Neuroreport 2014; 25:731-6. [PMID: 24709917 DOI: 10.1097/wnr.0000000000000162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The sigma-1 receptor has been reported to be associated with diverse biological activities including cellular differentiation, neuroplasticity, neuroprotection, and cognitive functioning of the brain. Fluvoxamine, one of the currently known antidepressants, is a sigma-1 receptor agonist; its effectiveness in treating acute cerebral ischemia has not been reported. We studied the in-vivo effects of this compound using an animal model of focal cerebral ischemia. Forty male Sprague-Dawley rats were subjected to right middle cerebral artery occlusion and assigned to five treatment groups (n=8 each). Postischemic neurological deficits and infarct volume were determined 24 h after stroke-inducing surgery. Significant reductions in infarct volume (total and cortical) were found in group 2 (fluvoxamine 20 mg/kg given 6 h before and immediately after ischemic onset) and group 3 (fluvoxamine given immediately after ischemic onset and 2 h later) compared with controls. Fluvoxamine induced significant amelioration of sensorimotor dysfunction, as indicated by the scores of forelimb and hindlimb placing tests. Moreover, NE-100, a selective sigma-1 receptor antagonist, completely blocked the neuroprotective effect of fluvoxamine. The present findings suggest that the sigma-1 receptor agonist fluvoxamine reduces infarct volume and ameliorates neurological impairment even on postischemic treatment. From the clinical viewpoint, fluvoxamine may be a promising new therapeutic approach for cerebral infarction.
Collapse
Affiliation(s)
- Shinsuke Sato
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | |
Collapse
|
54
|
Roussotte FF, Daianu M, Jahanshad N, Leonardo CD, Thompson PM. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders. Brain Imaging Behav 2014; 8:217-233. [PMID: 24142306 PMCID: PMC3992278 DOI: 10.1007/s11682-013-9263-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.
Collapse
Affiliation(s)
- Florence F Roussotte
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Madelaine Daianu
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cassandra D Leonardo
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
55
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
56
|
Behensky AA, Yasny IE, Shuster AM, Seredenin SB, Petrov AV, Cuevas J. Stimulation of sigma receptors with afobazole blocks activation of microglia and reduces toxicity caused by amyloid-β25-35. J Pharmacol Exp Ther 2013; 347:458-67. [PMID: 24006337 DOI: 10.1124/jpet.113.208348] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the leading cause of senile dementia in the United States. Accumulation of amyloid-β (Aβ) and the effects of this peptide on microglial cells contribute greatly to the etiology of AD. Experiments were carried out to determine whether the pan-selective σ-receptor agonist afobazole can modulate microglial response to the cytotoxic Aβ fragment, Aβ25-35. Treatment with afobazole decreased microglial activation in response to Aβ, as indicated by reduced membrane ruffling and cell migration. The effects of afobazole on Aβ25-35-evoked migration were concentration dependent and consistent with σ-receptor activation. When afobazole was coapplied with either BD-1047 [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide] or rimcazole, which are σ-1- and σ-2-selective antagonists, respectively, the inhibition of Aβ25-35-induced migration by afobazole was reduced. Prolonged exposure of microglia to Aβ25-35 resulted in glial cell death that was associated with increased expression of the proapoptotic protein Bax and the death protease caspase-3. Coapplication of afobazole with Aβ25-35 decreased the number of cells expressing both Bax and caspase-3 and resulted in a concomitant enhancement in cell survival. Although afobazole inhibited activation of microglia cells by Aβ25-35, it preserved normal functional responses in these cells after exposure to the amyloid peptide. Intracellular calcium increases induced by ATP were depressed in microglia after 24-hour exposure to Aβ25-35. However, coincubation in afobazole returned these responses to near control levels. Therefore, stimulation of σ-1 and σ-2 receptors by afobazole prevents Aβ25-35 activation of microglia and inhibits Aβ25-35-associated cytotoxicity, suggesting that afobazole may be useful for AD therapeutics.
Collapse
Affiliation(s)
- Adam A Behensky
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., S.B.S.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
| | | | | | | | | | | |
Collapse
|
57
|
Behensky AA, Yasny IE, Shuster AM, Seredenin SB, Petrov AV, Cuevas J. Afobazole activation of σ-1 receptors modulates neuronal responses to amyloid-β25-35. J Pharmacol Exp Ther 2013; 347:468-77. [PMID: 24006338 DOI: 10.1124/jpet.113.208330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a continual decline of cognitive function. No therapy has been identified that can effectively halt or reverse its progression. One hallmark of AD is accumulation of the amyloid-β peptide (Aβ), which alone induces neuronal injury via various mechanisms. Data presented here demonstrate that prolonged exposure (1-24 hours) of rat cortical neurons to Aβ25-35 results in an increase in basal intracellular Ca(2+) concentration ([Ca(2+)]i), and that coincubation with the compound afobazole inhibits these [Ca(2+)]i increases. The effect of afobazole on [Ca(2+)]i is due to activation of σ-1 receptors but could not be mimicked by a second pan-selective σ receptor agonist, 1,3-di-o-tolylguanidine (DTG). Afobazole was also found to lessen nitric oxide (NO) production in response to Aβ25-35 application but did not affect elevations in reactive oxygen species elicited by the Aβ fragment. The reductions in [Ca(2+)]i and NO perturbation produced by afobazole were associated with a decrease in neuronal cell death, whereas DTG failed to enhance cell survival. Examining the molecular mechanisms involved in the increased neuronal survival demonstrates that afobazole incubation results in lower expression of the proapoptotic protein Bax and the death protease caspase-3, while at the same time increasing expression of the antiapoptotic protein, Bcl-2. Given the importance of Aβ neurotoxicity in AD etiology, the findings reported here suggest that afobazole may be an effective AD therapeutic agent. Furthermore, σ-1 receptors may represent a useful target for AD treatment, although not all σ ligands appear to be equally beneficial.
Collapse
Affiliation(s)
- Adam A Behensky
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
| | | | | | | | | | | |
Collapse
|
58
|
Crosstalk between Endoplasmic Reticulum Stress and Protein Misfolding in Neurodegenerative Diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/256404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under physiological conditions, the endoplasmic reticulum (ER) is a central subcellular compartment for protein quality control in the secretory pathway that prevents protein misfolding and aggregation. Instrumental in protein quality control in the ER is the unfolded protein response (UPR), which is activated upon ER stress to reestablish homeostasis through a sophisticated transcriptionally and translationally regulated signaling network. However, this response can lead to apoptosis if the stress cannot be alleviated. The presence of abnormal protein aggregates containing specific misfolded proteins is recognized as the basis of numerous human conformational disorders, including neurodegenerative diseases. Here, I will highlight the overwhelming evidence that the presence of specific aberrant proteins in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), prion diseases, and Amyotrophic Lateral Sclerosis (ALS) is intimately associated with perturbations in the ER protein quality control machinery that become incompetent to restore protein homeostasis and shift adaptive programs toward the induction of apoptotic signaling to eliminate irreversibly damaged neurons. Increasing our understanding about the deadly crosstalk between ER dysfunction and protein misfolding in these neurodegenerative diseases may stimulate the development of novel therapeutic strategies able to support neuronal survival and ameliorate disease progression.
Collapse
|
59
|
Hyrskyluoto A, Pulli I, Törnqvist K, Huu Ho T, Korhonen L, Lindholm D. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κB pathway. Cell Death Dis 2013; 4:e646. [PMID: 23703391 PMCID: PMC3674377 DOI: 10.1038/cddis.2013.170] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/26/2013] [Accepted: 04/23/2013] [Indexed: 12/20/2022]
Abstract
Alterations in mitochondria and increased oxidative stress are associated with the disease progression in Huntington's disease (HD). Endoplasmic reticulum (ER) stress and oxidative damage are linked through the close communication between the ER and mitochondria. Sigma-1 receptor (Sig-1R) is a chaperone protein in the ER that is involved in ER stress regulation, but little is known about its role in HD or the mechanisms for cell protection. Here we show that the Sig-1R agonist, PRE084 increases cell survival and counteracts the deleterious effects caused by N-terminal mutant huntingtin proteins in neuronal PC6.3 cells. Particularly, PRE084 increased the levels of cellular antioxidants by activating the NF-κB pathway that is compromised by the expression of mutant huntingtin proteins. These results show that the Sig-1R agonist has beneficial effects in models of HD and that compounds affecting the Sig-1R may be promising targets for future drug development in HD.
Collapse
Affiliation(s)
- A Hyrskyluoto
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - I Pulli
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - K Törnqvist
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - T Huu Ho
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - L Korhonen
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Division of Child Psychiatry, Helsinki University Central Hospital, 00029 HUS Helsinki, Finland
| | - D Lindholm
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
60
|
Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E, Dreier A, Buchkremer S, Johann S, Beyer C, Deschauer M, Troost D, Weis J. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:1581-600. [PMID: 23314020 DOI: 10.1093/hmg/ddt008] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS and to determine how these changes contribute to the pathogenesis of ALS. In the present study, we found that levels of the SigR1 protein were reduced in lumbar ALS patient spinal cord. SigR1 was abnormally accumulated in enlarged C-terminals and endoplasmic reticulum (ER) structures of alpha motor neurons. These accumulations co-localized with the 20s proteasome subunit. SigR1 accumulations were also observed in SOD1 transgenic mice, cultured ALS-8 patient's fibroblasts with the P56S-VAPB mutation and in neuronal cell culture models. Along with the accumulation of SigR1 and several other proteins involved in protein quality control, severe disturbances in the unfolded protein response and impairment of protein degradation pathways were detected in the above-mentioned cell culture systems. Furthermore, shRNA knockdown of SigR1 lead to deranged calcium signaling and caused abnormalities in ER and Golgi structures in cultured NSC-34 cells. Finally, pharmacological activation of SigR1 induced the clearance of mutant protein aggregates in these cells. Our results support the notion that SigR1 is abnormally modified and contributes to the pathogenesis of ALS.
Collapse
Affiliation(s)
- J Prause
- Institute of Neuropathology, RWTH Aachen University and JARA Brain Translational Medicine, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Prezzavento O, Arena E, Parenti C, Pasquinucci L, Aricò G, Scoto GM, Grancara S, Toninello A, Ronsisvalle S. Design and synthesis of new bifunctional sigma-1 selective ligands with antioxidant activity. J Med Chem 2013; 56:2447-55. [PMID: 23470245 DOI: 10.1021/jm3017893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the synthesis of new bifunctional sigma-1 (σ1)-selective ligands with antioxidant activity. To achieve this goal, we combined the structure of lipoic acid, a universal antioxidant, with an appropriate sigma aminic moiety. Ligands 14 and 26 displayed high affinity and selectivity for σ1 receptors (Kiσ1 = 1.8 and 5.5 nM; Kiσ2/σ1 = 354 and 414, respectively). Compound 26 exhibited in vivo antiopioid effects on kappa opioid (KOP) receptor-mediated analgesia. In rat liver and brain mitochondria (RLM, RBM), this compound significantly reduced the swelling and the oxidation of thiol groups induced by calcium ions. Our results demonstrate that the tested compound has protective effects against oxidative stress.
Collapse
Affiliation(s)
- O Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Harel D, Schepmann D, Wünsch B. Spiro[[1]benzothiophen-4,4′-piperidines] – carba analogs of potent σ1 ligands. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00228d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Yang R, Chen L, Wang H, Xu B, Tomimoto H, Chen L. Anti-amnesic effect of neurosteroid PREGS in Aβ25-35-injected mice through σ1 receptor- and α7nAChR-mediated neuroprotection. Neuropharmacology 2012; 63:1042-50. [PMID: 22884465 DOI: 10.1016/j.neuropharm.2012.07.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 11/30/2022]
Abstract
A single intracerebroventricular injection of β-amyloid 25-35 peptide (Aβ(25-35)) (9 nmol/mouse) induces the spatial cognitive deterioration and approximately 50% loss of pyramidal cells in hippocampal CA1 region within 1 week. The present study focused on exploring the effects of neurosteroid pregnenolone sulfate (PREGS), in comparison with the selective agonists of sigma-1 receptor (σ(1)R) and α7 nicotinic acetylcholine receptor (α7nAChR), on the cognitive deficits and the death of pyramidal cells in Aβ(25-35)-mice. Herein, we reported that the administration of PREGS (1-100 mg/kg) for 7 days after Aβ(25-35)-injection could dose-dependently ameliorate the cognitive deficits and attenuate the apoptosis of pyramidal cells. Either the σ(1)R antagonist NE100 or the α7nAChR antagonist MLA could block the neuroprotection of PREGS in Aβ(25-35)-mice. Both the σ(1)R agonist PRE084 and the α7nAChR agonist DMXB could mimic the PREGS-neuroprotection against the Aβ(25-35)-neurotoxicity. The neuroprotection of PRE084 was attenuated by MLA, but the DMXB-action was insensitive to NE100. The neuroprotection of PREGS, PRE084 or DMXB was blocked by the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002, whereas only the effect of PREGS or PRE084 was sensitive to the MAPK/ERK kinase (MEK) inhibitor U0126. PREGS prevented Aβ(25-35)-inhibited Akt (Serine/threonine kinase) phosphorylation leading to increase in caspase-3 activity, which was σ(1)R- and α7nAChR-dependent. By contrast, PREGS-rescued reduction of extracellular signal-related kinase-2 (ERK2) phosphorylation in Aβ(25-35)-mice only required the activation of σ(1)R. Blockage of PREGS-neuroprotection by LY294002 significantly attenuated its anti-amnesic effect in Aβ(25-35)-mice. The findings indicate that the anti-amnesic effects of PREGS in Aβ(25-35)-mice depend on the σ(1)R- and α7nAChR-mediated neuroprotection.
Collapse
Affiliation(s)
- Rong Yang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | |
Collapse
|
64
|
Dunkel P, Chai CL, Sperlágh B, Huleatt PB, Mátyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2012; 21:1267-308. [PMID: 22741814 DOI: 10.1517/13543784.2012.703178] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION According to the definition of the Committee to Identify Neuroprotective Agents in Parkinson's Disease (CINAPS), "neuroprotection would be any intervention that favourably influences the disease process or underlying pathogenesis to produce enduring benefits for patients" [Meissner W, et al. Trends Pharmacol Sci 2004;25:249-253]. Preferably, neuroprotective agents should be used before or eventually during the prodromal phase of the diseases that could start decades before the appearance of symptoms. Although several symptomatic drugs are available, a disease-modifying agent is still elusive. AREAS COVERED The aim of the present review is to give an overview of neuroprotective agents being currently investigated for the treatment of AD, PD, HD and ALS in clinical phases. EXPERT OPINION Development of effective neuroprotective therapies resulting in clinically meaningful results is hampered by several factors in all research stages, both conceptual and methodological. Novel solutions might be offered by evaluation of new targets throughout clinical studies, therapies emerging from drug repositioning approaches, multi-target approaches and network pharmacology.
Collapse
Affiliation(s)
- Petra Dunkel
- Semmelweis University, Department of Organic Chemistry, Budapest, Hungary
| | | | | | | | | |
Collapse
|
65
|
Fehér Á, Juhász A, László A, Kálmán J, Pákáski M, Kálmán J, Janka Z. Association between a variant of the sigma-1 receptor gene and Alzheimer's disease. Neurosci Lett 2012; 517:136-9. [PMID: 22561649 DOI: 10.1016/j.neulet.2012.04.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/22/2012] [Accepted: 04/19/2012] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with complex etiology and strong genetic predisposition. A number of investigations support the possible involvement of sigma non-opioid intracellular receptor 1 (SIGMAR1) in the pathophysiology of AD. We aimed to investigate the association between SIGMAR1 polymorphisms and late-onset AD, therefore we genotyped rs1799729 (GC-241-240TT) and rs1800866 (Q2P) in 322 Hungarian late-onset AD patients and 250 ethnically matched, elderly control individuals. The investigated polymorphisms were in nearly complete linkage disequilibrium resulting in the GC-Q and TT-P predominant haplotypes that were subjected to the statistical analyses. Our data demonstrates an association between the SIGMAR1 TT-P variant and the risk for developing AD (p=0.019), and a potential modest interaction effect (p=0.058) of the co-presence of the TT-P haplotype with apolipoprotein E4 allele on the risk for AD. Based on this mild significance, we could not fully support the hypothesis that TT-P haplotype in interaction with APOE E4 allele confers risk for developing AD.
Collapse
Affiliation(s)
- Ágnes Fehér
- University of Szeged, Department of Psychiatry, Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
66
|
Lu CW, Lin TY, Wang CC, Wang SJ. σ-1 Receptor agonist SKF10047 inhibits glutamate release in rat cerebral cortex nerve endings. J Pharmacol Exp Ther 2012; 341:532-42. [PMID: 22357973 DOI: 10.1124/jpet.111.191189] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
σ-1 Receptors are expressed in the brain, and their activation has been shown to prevent neuronal death associated with glutamate toxicity. This study investigates the possible mechanism and effect of [2S-(2α,6α,11R*]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol (SKF10047), a σ-1 receptor agonist, on endogenous glutamate release in the nerve terminals of rat cerebral cortex. Results show that SKF10047 inhibited the release of glutamate evoked by the K⁺ channel blocker 4-aminopyridine (4-AP), and the σ-1 receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD1047) blocked this phenomenon. The effects of SKF10047 on the evoked glutamate release were prevented by the chelating extracellular Ca²⁺ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-β-benzyl-oxyaspartate did not have any effect on the action of SKF10047. SKF10047 decreased the depolarization-induced increase in the cytosolic free Ca²⁺ concentration ([Ca²⁺](C)), but did not alter 4-AP-mediated depolarization. Furthermore, the effects of SKF10047 on evoked glutamate release were prevented by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking the ryanodine receptors or the mitochondrial Na⁺/Ca²⁺ exchange. In addition, conventional protein kinase C (PKC) inhibitors abolished the SKF10047 effect on 4-AP-evoked glutamate release. Western blot analyses showed that SKF10047 decreased the 4-AP-induced phosphorylation of PKC and PKCα. These results show that σ-1 receptor activation inhibits glutamate release from rat cortical nerve terminals. This effect is linked to a decrease in [Ca²⁺](C) caused by Ca²⁺ entry through presynaptic voltage-dependent Ca²⁺ channels and the suppression of the PKC signaling cascade.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
| | | | | | | |
Collapse
|
67
|
Bononi A, Missiroli S, Poletti F, Suski JM, Agnoletto C, Bonora M, De Marchi E, Giorgi C, Marchi S, Patergnani S, Rimessi A, Wieckowski MR, Pinton P. Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:411-37. [DOI: 10.1007/978-94-007-2888-2_17] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Roles of σ1 receptors in the mechanisms of action of CNS drugs. Transl Neurosci 2012. [DOI: 10.2478/s13380-012-0030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAccumulating evidence suggests that σ1 receptors play a role in the mechanisms of action of some therapeutic drugs, such as the selective serotonin reuptake inhibitors (SSRIs), donepezil, and ifenprodil. Among the SSRIs, fluvoxamine, a potent σ1 receptor agonist, has the highest affinity for σ1 receptors, while donepezil and ifenprodil also show high affinity for σ1 receptors. These drugs affect neuronal plasticity indicated by potentiation of nerve-growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, phencyclidine (PCP)-induced cognitive impairment, associated with animal models of schizophrenia, is significantly improved by sub-chronic administration of fluvoxamine and donepezil. These pharmacological actions are antagonised by treatment with the selective σ1 receptor antagonist NE-100. Positron emission tomography (PET) with the σ1 specific ligand carbon-11-labelled 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine ([11C]SA4503) indicated that fluvoxamine and donepezil can bind to σ1 receptors in the healthy human brain in a dose-dependent manner. These findings suggest that σ1 receptors may be involved in the mechanisms of action of some therapeutic drugs.
Collapse
|
69
|
van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PGM, Dierckx RA. The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 2011; 221:543-54. [PMID: 20060423 DOI: 10.1016/j.bbr.2009.12.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/26/2009] [Indexed: 12/31/2022]
Abstract
This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially considered as a subtype of the opioid family, are unique ligand-regulated molecular chaperones in the endoplasmatic reticulum playing a modulatory role in intracellular calcium signaling and in the activity of several neurotransmitter systems, particularly the cholinergic and glutamatergic pathways. Several central nervous system (CNS) drugs show high to moderate affinities for sigma-1 receptors, including acetylcholinesterase inhibitors (donepezil), antipsychotics (haloperidol, rimcazole), selective serotonin reuptake inhibitors (fluvoxamine, sertraline) and monoamine oxidase inhibitors (clorgyline). These compounds can influence cognitive functions both via their primary targets and by activating sigma-1 receptors in the CNS. Sigma-1 agonists show powerful anti-amnesic and neuroprotective effects in a large variety of animal models of cognitive dysfunction involving, among others (i) pharmacologic target blockade (with muscarinic or NMDA receptor antagonists or p-chloroamphetamine); (ii) selective lesioning of cholinergic neurons; (iii) CNS administration of β-amyloid peptides; (iv) aging-induced memory loss, both in normal and senescent-accelerated rodents; (v) neurodegeneration induced by toxic compounds (CO, trimethyltin, cocaine), and (vi) prenatal restraint stress.
Collapse
Affiliation(s)
- Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
2-(Cyclohexylamino)-1-(4-cyclopentylpiperazin-1-yl)-2-methylpropan-1-one, a novel compound with neuroprotective and neurotrophic effects in vitro. Neurochem Int 2011; 59:821-9. [PMID: 21854820 DOI: 10.1016/j.neuint.2011.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 11/23/2022]
Abstract
Focusing on development of novel drug candidates for the treatment of neurodegenerative diseases, we developed and synthesized a new compound, 2-(cyclohexylamino)-1-(4-cyclopentylpiperazin-1-yl)-2-methylpropan-1-one (amido-piperizine 1). The compound demonstrated robust neuroprotective properties after both glutamate excitotoxicity and peroxide induced oxidative stress in primary cortical cultures. Furthermore, amido-piperizine 1 was found to significantly induce neurite outgrowth in vitro which could suggest central reparative and regenerative potential of the compound. With these potential beneficial effects in CNS, the ability of the amido-piperizine 1 to penetrate the blood-brain barrier was tested using MDR1-MDCK cells. Amido-piperizine 1 was found not to be a P-gp substrate and to have a high blood-brain barrier penetration potential, indicating excellent availability to the CNS. Moreover, amido-piperizine 1 had a fast metabolic clearance rate in vitro, suggesting that parenteral in vivo administration seems preferable. As an attempt to elucidate a possible mechanism of action, we found that amido-piperizine 1 bound in nano-molar range to the sigma-1 receptor, which could explain the observed neuroprotective and neurotrophic properties, and with a 100-fold lower affinity to the sigma-2 receptor. These results propose that amido-piperizine 1 may hold promise as a drug candidate for the treatment of stroke/traumatic brain injury or other neurodegenerative diseases.
Collapse
|
71
|
Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T. Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma 1 (σ1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 2011; 25:1101-17. [PMID: 20829307 DOI: 10.1177/0269881110379286] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetrahydro-N, N-dimethyl-2, 2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73) binds to muscarinic acetylcholine and sigma(1) (σ(1)) receptors with affinities in the low micromolar range. We characterized its anti-amnesic and neuroprotective potentials in pharmacological and pathological amnesia models. Spatial working memory was evaluated using spontaneous alternation in the Y-maze and non-spatial memory using passive avoidance procedures. ANAVEX2-73 (0.01-3.0 mg/kg i.p.) alleviated the scopolamine- and dizocilpine-induced learning impairments. ANAVEX2-73 (300 µg/kg) also reversed the learning deficits in mice injected with Aβ(25-35) peptide, a non-transgenic Alzheimer's disease model. When the drug was injected simultaneously with Aβ(25-35), 7 days before the tests, it blocked the appearance of learning impairments. This protective activity was confirmed since ANAVEX2-73 blocked the Aβ(25-35)-induced oxidative stress in the hippocampus. This effect was differentially sensitive to the muscarinic receptor antagonist scopolamine or the σ(1) protein antagonist BD1047, confirming the mixed muscarinic/σ(1) pharmacological action. Finally, its unique demethyl metabolite, ANAVEX19-144, was also effective and ANAVEX2-73 presented a longer duration of action, effective 12 h before Aβ(25-35), than its related compound ANAVEX1-41. The neuroprotective activity of ANAVEX2-73, its mixed cholinergic/σ(1) activity, its low active dose range and its long duration of action together reinforce its therapeutic potential in Alzheimer's disease.
Collapse
|
72
|
Kaushal N, Seminerio MJ, Shaikh J, Medina MA, Mesangeau C, Wilson LL, McCurdy CR, Matsumoto RR. CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic effects of methamphetamine in mice. Neuropharmacology 2011; 61:992-1000. [PMID: 21762711 DOI: 10.1016/j.neuropharm.2011.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 05/16/2011] [Accepted: 06/28/2011] [Indexed: 01/29/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse. Low and high dose administration of METH leads to locomotor stimulation, and dopaminergic and serotonergic neurotoxicity, respectively. The behavioral stimulant and neurotoxic effects of METH can contribute to addiction and other neuropsychiatric disorders, thus necessitating the identification of potential pharmacotherapeutics against these effects produced by METH. METH binds to σ receptors at physiologically relevant concentrations. Also, σ receptors are present on and can modulate dopaminergic and serotonergic neurons. Therefore, σ receptors provide a viable target for the development of pharmacotherapeutics against the adverse effects of METH. In the present study, CM156, a σ receptor ligand with high affinity and selectivity for σ receptors over 80 other non-σ binding sites, was evaluated against METH-induced stimulant, hyperthermic, and neurotoxic effects. Pretreatment of male, Swiss Webster mice with CM156 dose dependently attenuated the locomotor stimulation, hyperthermia, striatal dopamine and serotonin depletions, and striatal dopamine and serotonin transporter reductions produced by METH, without significant effects of CM156 on its own. These results demonstrate the ability of a highly selective σ ligand to mitigate the effects of METH.
Collapse
Affiliation(s)
- Nidhi Kaushal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Abaimov DA, Kovalev GI. Sigma receptors as a pharmacological target for neuroprotectors. New horizons of pharmacotherapy of Parkinson disease. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 2011; 15:557-77. [PMID: 21375464 PMCID: PMC3076924 DOI: 10.1517/14728222.2011.560837] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Current drugs for the treatment of psychiatric or neurodegenerative disorders have limitations. Psychotherapeutic drugs such as typical and atypical antipsychotics, tricyclic antidepressants and selective monoamine reuptake inhibitors, aim to normalize the hyper- or hypo-neurotransmission of monoaminergic systems. Despite their contribution to the outcomes of psychiatric patients, these agents often exert severe side effects and require chronic treatments to promote amelioration of symptoms. Drugs available for the treatment of neurodegenerative disorders are severely limited. AREAS COVERED Recent evidence that has shed light on sigma-1 receptor ligands, which may serve as a new class of antidepressants or neuroprotective agents. Sigma-1 receptors are novel ligand-operated molecular chaperones regulating signal transduction, ER stress, cellular redox, cellular survival and synaptogenesis. Selective sigma-1 receptor ligands exert rapid antidepressant-like, anxiolytic, antinociceptive and robust neuroprotective actions in preclinical studies. Recent studies that suggest that reactive oxygen species might play a role as signal integrators downstream of Sig-1Rs are also covered. EXPERT OPINION The advances in sigma receptor research in the last decade have begun to elucidate the intracellular signal cascades upstream and downstream of sigma-1 receptors. The novel ligand-operated properties of the sigma-1 receptor chaperone may enable interventions by which stress-related cellular systems can be pharmacologically controlled.
Collapse
Affiliation(s)
- Teruo Hayashi
- National Institute on Drug Abuse, National Institutes of Health-Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
75
|
Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 2010; 31:557-66. [PMID: 20869780 PMCID: PMC2993063 DOI: 10.1016/j.tips.2010.08.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 01/13/2023]
Abstract
Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intramitochondrial calcium (Ca(2+)) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca(2+) homeostasis and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here, we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and ER-nucleus crosstalk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs might relate to this unique action of Sig-1Rs.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, suite 3304, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
76
|
Maestrup EG, Wiese C, Schepmann D, Brust P, Wünsch B. Synthesis, pharmacological activity and structure affinity relationships of spirocyclic σ(1) receptor ligands with a (2-fluoroethyl) residue in 3-position. Bioorg Med Chem 2010; 19:393-405. [PMID: 21126878 DOI: 10.1016/j.bmc.2010.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/03/2010] [Accepted: 11/06/2010] [Indexed: 11/30/2022]
Abstract
In order to develop a fluorinated radiotracer for imaging of σ(1) receptors in the central nervous system a series of (2-fluoroethyl) substituted spirocyclic piperidines 3 has been prepared. In the key step of the synthesis 2-bromocinnamaldehyde acetal 5 was added to piperidones 6 with various substituents at the N-atom. Unexpectedly, this reaction led to 2-benzoxepines 8, which were contracted with acid to afford the spirocyclic 2-benzofuranacetaldehydes 9. The best yields were obtained, when the transformations up to the alcohols 10 were performed without isolation of intermediates. Generally the (2-fluoroethyl) derivatives 3 have higher σ(1) affinity and σ(1)/σ(2) selectivity than the corresponding (3-fluoropropyl) derivatives 2. The most promising candidate for the development as radiotracer is the (2-fluoroethyl) derivative 3a (WMS-1828, fluspidine, 1'-benzyl-3-(2-fluoroethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]), which shows subnanomolar σ(1) affinity (K(i)=0.59nM) and excellent selectivity over the σ(2) subtype (1331-fold) as well as some other receptor systems. The novel synthetic strategy also allows the systematic pharmacological evaluation of intermediate alcohols 10. Despite their high σ(1) affinity (K(i)=6-32nM) and selectivity the alcohols 10 are 10-30-fold less potent than the bioisosteric fluoro derivatives 3.
Collapse
Affiliation(s)
- Eva Grosse Maestrup
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstraße 58-62, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
77
|
Sunnam SK, Schepmann D, Rack E, Fröhlich R, Korpis K, Bednarski PJ, Wünsch B. Synthesis and biological evaluation of conformationally restricted σ(1) receptor ligands with 7,9-diazabicyclo[4.2.2]decane scaffold. Org Biomol Chem 2010; 8:5525-40. [PMID: 20953473 DOI: 10.1039/c0ob00402b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The key step in the synthesis of the 7,9-diazabicyclo[4.2.2]decane system was a modified Dieckmann condensation of piperazinebutyrate 11, which makes use of trapping the first cyclized intermediate with TMS-Cl. Reduction of the bicyclic ketone 14 with LiBH(4) at -90 °C provided diastereoselectively (>99 : 1) the syn-configured alcohol 15a, which was converted into the final alcohol and ethers 16a-g. The configuration at the 2-position was established by X-ray structure analysis of methyl and ethyl ethers 15b and 15c. In contrast to bicyclic systems with a three-carbon bridge, inversion of the configuration at the 2-position of the alcohol 15a failed to give the inverted alcohol 19a. However, an unselective reduction of the ketone 24 with L-Selectride led to the diastereomeric alcohols 16a and 25a in the ratio 36 : 64. LiAlH(4) reduction of the tosylate 20 and the alkene 18 yielded the diazabicyclo-decane 26 and -decene 27 without further substituents at the four-carbon bridge. The σ(1) and σ(2) receptor affinities were investigated in receptor binding studies with radioligands. All test compounds showed a lower σ(1) affinity than the corresponding bicyclic derivatives with a three-membered bridge. The reduced σ(1) receptor affinity is attributed to the larger four-membered bridge. This hypothesis is supported by the alkene 27, which represents the most potent σ(1) ligand of this series (K(i) = 7.5 nM). In the alkene 27 the size and flexibility of the bridge is considerably reduced by the double bond. The methyl ether 25b and the unsubstituted derivatives 26 and 27 revealed moderate inhibition of the growth of the human tumor cell lines A-427, 5637 and MCF-7. Again, these compounds are less potent than the analogues with a three-membered bridge. The IC(50)-value of the most potent σ(1) ligand 27 against the small cell lung cancer cell line A-427 (IC(50) = 10 μM) should be emphasized, since this cell line is particularly sensitive to homologues with a three-carbon bridge.
Collapse
Affiliation(s)
- Sunil K Sunnam
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstraße 58-62, D-48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
78
|
Oberdorf C, Schmidt TJ, Wünsch B. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling. Eur J Med Chem 2010; 45:3116-24. [PMID: 20427100 DOI: 10.1016/j.ejmech.2010.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands.
Collapse
Affiliation(s)
- Christoph Oberdorf
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstrasse 58-62, D-48149 Münster, Germany
| | | | | |
Collapse
|
79
|
Cobos EJ, Entrena JM, Nieto FR, Cendán CM, Del Pozo E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol 2010; 6:344-66. [PMID: 19587856 PMCID: PMC2701284 DOI: 10.2174/157015908787386113] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 07/18/2008] [Accepted: 07/09/2008] [Indexed: 11/22/2022] Open
Abstract
Sigma (σ) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of σ receptors, termed σ1 and σ2. Of these two subtypes, the σ1 receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for σ1 receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates σ1 receptors. Certain neurosteroids are known to interact with σ1 receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca2+ signaling. Sigma1 receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, σ1 receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of σ1 receptors, focussing on σ1 ligand neuropharmacology and the role of σ1 receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of σ1 ligands.
Collapse
Affiliation(s)
- E J Cobos
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
80
|
Piergentili A, Amantini C, Del Bello F, Giannella M, Mattioli L, Palmery M, Perfumi M, Pigini M, Santoni G, Tucci P, Zotti M, Quaglia W. Novel highly potent and selective sigma 1 receptor antagonists related to spipethiane. J Med Chem 2010; 53:1261-9. [PMID: 20067271 DOI: 10.1021/jm901542q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conservative chemical modifications of the core structure of the lead spipethiane (1) afforded novel potent sigma(1) ligands. sigma(1) affinity and sigma(1/)sigma(2) selectivity proved to be favored by the introduction of polar functions (oxygen atom or carbonyl group) in position 3 or 4 (4-6) or by the elongation of the distance between the two hydrophobic portions of the molecule with the simultaneous presence of a carbonyl group in position 4 (8 and 9). The observed cytostatic effect against the human breast cancer cell line MCF-7/ADR, highly expressing sigma(1) receptors, and not against MCF-7, as well as the enhancement of morphine analgesia highlighted the sigma(1) antagonist profile of this series of compounds. In particular, due to its high sigma(1) affinity (pK(i) = 10.28) and sigma(1)/sigma(2) selectivity ratio (29510), compound 9 might be a novel valuable tool for sigma receptor characterization and a suitable template for the rational design of potential therapeutically useful sigma(1) antagonists.
Collapse
Affiliation(s)
- Alessandro Piergentili
- Dipartimento di Scienze Chimiche, Università di Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Meunier J, Hayashi T. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 2010; 332:388-97. [PMID: 19855099 PMCID: PMC2812109 DOI: 10.1124/jpet.109.160960] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/23/2009] [Indexed: 01/07/2023] Open
Abstract
The expression of Bcl-2, the major antiapoptotic member of the Bcl-2 family, is under complex controls of several factors, including reactive oxygen species (ROS). The sigma-1 receptor (Sig-1R), which was recently identified as a novel molecular chaperone at the mitochondria-associated endoplasmic reticulum membrane (MAM), has been shown to exert robust cellular protective actions. However, mechanisms underlying the antiapoptotic action of the Sig-1R remain to be clarified. Here, we found that the Sig-1R promotes cellular survival by regulating the Bcl-2 expression in Chinese hamster ovary cells. Although both Sig-1Rs and Bcl-2 are highly enriched at the MAM, Sig-1Rs neither associate physically with Bcl-2 nor regulate stability of Bcl-2 proteins. However, Sig-1Rs tonically regulate the expression of Bcl-2 proteins. Knockdown of Sig-1Rs down-regulates whereas overexpression of Sig-1Rs up-regulates bcl-2 mRNA, indicating that the Sig-1R transcriptionally regulates the expression of Bcl-2. The effect of Sig-1R small interfering RNA down-regulating Bcl-2 was blocked by ROS scavengers and by the inhibitor of the ROS-inducible transcription factor nuclear factor kappaB (NF-kappaB). Knockdown of Sig-1Rs up-regulates p105, the precursor of NF-kappaB, while concomitantly decreasing inhibitor of nuclear factor-kappaBalpha. Sig-1R knockdown also accelerates the conversion of p105 to the active form p50. Lastly, we showed that knockdown of Sig-1Rs potentiates H(2)O(2)-induced apoptosis; the action is blocked by either the NF-kappaB inhibitor oridonin or overexpression of Bcl-2. Thus, these findings suggest that Sig-1Rs promote cell survival, at least in part, by transcriptionally regulating Bcl-2 expression via the ROS/NF-kappaB pathway.
Collapse
Affiliation(s)
- Johann Meunier
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA, National Institutes of Health, DHHS, Triad Technology Building, Baltimore, MD, USA
| | | |
Collapse
|
82
|
Wiese C, Maestrup EG, Schepmann D, Vela JM, Holenz J, Buschmann H, Wünsch B. Pharmacological and metabolic characterisation of the potent σ1 receptor ligand 1′-benzyl-3-methoxy-3H-spiro[[2]benzofuran-1,4′-piperidine]. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.05.0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The pharmacology and metabolism of the potent σ1 receptor ligand 1′-benzyl-3-methoxy-3H-spiro[[2]benzofuran-1,4′-piperidine] were evaluated.
Methods
The compound was tested against a wide range of receptors, ion channels and neurotransmitter transporters in radioligand binding assays. Analgesic activity was evaluated using the capsaicin pain model. Metabolism by rat and human liver microsomes was investigated, and the metabolites were identified by a variety of analytical techniques.
Key findings
1′-Benzyl-3-methoxy-3H-spiro[[2]benzofuran-1,4′-piperidine] (compound 1) is a potent σ1 receptor ligand (Ki 1.14 nM) with extraordinarily high σ1/σ2 selectivity (>1100). It was selective for the σ1 receptor over more than 60 other receptors, ion channels and neurotransmitter transporters, and did not interact with the human ether-a-go-go-related gene (hERG) cardiac potassium channel. Compound 1 displayed analgesic activity against neuropathic pain in the capsaicin pain model (53% analgesia at 16 mg/kg), indicating that it is a σ1 receptor antagonist. It was rapidly metabolised by rat liver microsomes. Seven metabolites were unequivocally identified; an N-debenzylated metabolite and a hydroxylated metabolite were the major products. Pooled human liver microsomes formed the same metabolites. Studies with seven recombinant cytochrome P450 isoenzymes revealed that CYP3A4 produced all the metabolites identified. The isoenzyme CYP2D6 was inhibited by 1 (IC50 88 nM) but did not produce any metabolites.
Conclusions
1′-Benzyl-3-methoxy-3H-spiro[[2]benzofuran-1,4′-piperidine] is a potent and selective σ1 receptor antagonist, which is rapidly metabolised. Metabolically more stable σ1 ligands could be achieved by stabilising the N-benzyl substructure.
Collapse
Affiliation(s)
- Christian Wiese
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| | - Eva Große Maestrup
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| | | | | | | | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| |
Collapse
|
83
|
Hayashi T, Su TP. Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010; 51:381-98. [PMID: 20213551 PMCID: PMC3155710 DOI: 10.1007/978-90-481-8622-8_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite substantial data elucidating the roles of cholesterol in lipid rafts at the plasma membrane, the roles of cholesterol and related lipids in lipid raft microdomains at the level of subcellular membrane, such as the endoplasmic reticulum (ER) membrane, remain less understood. Growing evidence, however, begins to unveil the importance of cholesterol and lipids on the lipid raft at the ER membrane. A few ER proteins including the sigma-1 receptor chaperone were identified at lipid raft-like microdomains of the ER membrane. The sigma-1 receptor, which is highly expressed at a subdomain of ER membrane directly apposing mitochondria and known as the mitochondria-associated ER membrane or MAM, has been shown to associate with steroids as well as cholesterol. The sigma-1 receptor has been implicated in ER lipid metabolisms/transports, lipid raft reconstitution at the plasma membrane, trophic factor signalling, cellular differentiation, and cellular protection against beta-amyloid-induced neurotoxicity. Recent studies on sigma-1 receptor chaperones and other ER proteins clearly suggest that cholesterol, in concert with those ER proteins, may regulate several important functions of the ER including folding, degradation, compartmentalization, and segregation of ER proteins, and the biosynthesis of sphingolipids.
Collapse
Affiliation(s)
- Teruo Hayashi
- National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
84
|
Abstract
Originally considered an enigmatic protein, the sigma-1 receptor has recently been identified as a unique ligand-regulated molecular chaperone in the endoplasmic reticulum of cells. This discovery causes us to look back at the many proposed roles of this receptor, even before its molecular function was identified, in many diseases such as methamphetamine or cocaine addiction, amnesia, pain, depression, Alzheimer's disease, stroke, retinal neuroprotection, HIV infection, and cancer. In this review, we examine the reports that have clearly shown an agonist-antagonist relationship regarding sigma-1 receptors in models of those diseases and also review the relatively known mechanisms of action of sigma-1 receptors in an attempt to spur the speculation of readers on how the sigma-1 receptor at the endoplasmic reticulum might relate to so many diseases. We found that the most prominent action of sigma-1 receptors in biological systems including cell lines, primary cultures, and animals is the regulation and modulation of voltage-regulated and ligand-gated ion channels, including Ca(2+)-, K(+)-, Na(+), Cl(-), and SK channels, and NMDA and IP3 receptors. We found that the final output of the action of sigma-1 receptor agonists is to inhibit all above-mentioned voltage-gated ion channels, while they potentiate ligand-gated channels. The inhibition or potentiation induced by agonists is blocked by sigma-1 receptor antagonists. Other mechanisms of action of sigma-1 receptors, and to some extent those of sigma-2 receptors, were also considered. We conclude that the sigma-1 and sigma-2 receptors represent potential fruitful targets for therapeutic developments in combating many human diseases.
Collapse
Affiliation(s)
- Tangui Maurice
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases, INSERM U. 710, 34095 Montpellier Cedex 5, France
- University of Montpellier II, EPHE, CC 105, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
- EPHE, 75017 Paris, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA-NIH, Suite 3304, 333 Cassell Drive, Baltimore, MD 21224
| |
Collapse
|
85
|
Grosse Maestrup E, Wiese C, Schepmann D, Hiller A, Fischer S, Scheunemann M, Brust P, Wünsch B. Synthesis of spirocyclic sigma1 receptor ligands as potential PET radiotracers, structure-affinity relationships and in vitro metabolic stability. Bioorg Med Chem 2009; 17:3630-41. [PMID: 19394833 DOI: 10.1016/j.bmc.2009.03.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Several 3H-spiro[[2]benzofuran-1,4'-piperidines] bearing a p-fluorobenzyl residue at the N-atom and various substituents in position 3 of the benzofuran system were synthesized. The crucial reaction steps are the addition of a lithiated benzaldehyde derivative to the p-fluorobenzylpiperidone 5 and the BF(3).OEt(2) catalyzed substitution of the methoxy group of 2a by various nucleophiles. Structure-affinity relationship studies revealed that compounds with two protons (2d), a methoxy group (2a), and a cyano group (2e) in position 3 possess subnanomolar sigma(1) affinity (K(i)=0.18 nM, 0.79 nM, 0.86 nM) and high selectivity against the sigma(2) subtype. The metabolites of 2a, 2d, and 2e, which were formed upon incubation with rat liver microsomes, were identified. Additionally, the rate of metabolic degradation of 2a, 2d, and 2e was determined and compared with the degradation rate of the non-fluorinated spirocyclic compound 1. For the synthesis of the potential PET tracers [(18)F]2a and [(18)F]2e two different radiosynthetic approaches were followed.
Collapse
Affiliation(s)
- Eva Grosse Maestrup
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstrasse 58-62, D-48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, Nabeshima T, Vamvakides A, Maurice T. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 2009; 34:1552-66. [PMID: 19052542 DOI: 10.1038/npp.2008.212] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The antiamnesic and neuroprotective activities of the new aminotetrahydrofuran derivative tetrahydro-N,N-dimethyl-5,5-diphenyl-3-furanmethanamine hydrochloride (ANAVEX1-41), a nonselective muscarinic receptor ligand and sigma1 protein activator, were examined in mice injected intracerebroventricularly with amyloid beta(25-35) (Abeta(25-35)) peptide (9 nmol). Abeta(25-35) impaired significantly spontaneous alternation performance, a spatial working memory, and passive avoidance response. When ANAVEX1-41 (1-1000 microg/kg i.p.) was administered 7 days after Abeta(25-35), ie, 20 min before the behavioral tests, it significantly reversed the Abeta(25-35)-induced deficits, the most active doses being in the 3-100 microg/kg range. When the compound was preadministered 20 min before Abeta(25-35), ie, 7 days before the tests, it prevented the learning impairments at 30-100 microg/kg. Morphological analysis of corticolimbic structures showed that Abeta(25-35) induced a significant cell loss in the CA1 pyramidal cell layer of the hippocampus that was prevented by ANAVEX1-41 (100 microg/kg). Increased number of glial fibrillary acidic protein immunopositive cells in the retrosplenial cortex or throughout the hippocampus revealed an Abeta(25-35)-induced inflammation that was prevented by ANAVEX1-41. The drug also prevented the parameters of Abeta(25-35)-induced oxidative stress measured in hippocampus extracts, ie, the increases in lipid peroxidation and protein nitration. ANAVEX1-41, however, failed to prevent Abeta(25-35)-induced caspase-9 expression. The compound also blocked the Abeta(25-35)-induced caspase-3 expression, a marker of apoptosis. Both the muscarinic antagonist scopolamine and the sigma1 protein inactivator BD1047 prevented the beneficial effects of ANAVEX1-41 (30 or 100 microg/kg) against Abeta(25-35)-induced learning impairments, suggesting that muscarinic and sigma1 targets are involved in the drug effect. A synergic effect could indeed account for the very low active doses measured in vivo. These data outline the therapeutic potential of ANAVEX1-41 as a neuroprotective agent in Alzheimer's disease.
Collapse
Affiliation(s)
- Vanessa Villard
- INSERM U.710, University of Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Fontanilla D, Hajipour AR, Pal A, Chu UB, Arbabian M, Ruoho AE. Probing the steroid binding domain-like I (SBDLI) of the sigma-1 receptor binding site using N-substituted photoaffinity labels. Biochemistry 2008; 47:7205-17. [PMID: 18547058 PMCID: PMC3250216 DOI: 10.1021/bi800564j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. Using this photoprobe, we demonstrated the insertion site for [ (125)I]IACoc to be Asp188 [Chen, Y. (2007) Biochemistry 46, 3532-3542], which resides in the proposed steroid binding domain-like II (SBDLII) region (amino acids 176-194) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. An additional photoprobe based on the sigma-1 receptor ligand fenpropimorph, 1- N-(2-3-[ (125)I]iodophenyl)propane ([ (125)I]IAF), was found to label a peptide in both the SBDLII and steroid binding domain-like I (SBDLI) (amino acids 91-109) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. In this report, we describe two novel strategically positioned carrier-free, radioiodinated photoaffinity labels specifically designed to probe the putative "nitrogen interacting region" of sigma-1 receptor ligands. These two novel photoprobes are (-)-methyl 3-(benzoyloxy)-8-2-(4-azido-3-[ (125)I]iodobenzene)-1-ethyl-8-azabicyclo[3.2.1]octane-2-carboxylate ([ (125)I]-N-IACoc) and N-propyl- N-(4-azido-3-iodophenylethyl)-3-(4-fluorophenyl)propylamine ([ (125)I]IAC44). In addition to reporting their binding affinities to the sigma-1 and sigma-2 receptors, we show that both photoaffinity labels specifically and covalently derivatized the pure guinea pig sigma-1 receptor (26.1 kDa) [Ramachandran, S. (2007) Protein Expression Purif. 51, 283-292]. Cleavage of the photolabeled sigma-1 receptor using Endo Lys C and cyanogen bromide (CNBr) revealed that the [ (125)I]-N-IACoc label was located primarily in the N-terminus and SBDLI-containing peptides of the sigma-1 receptor, while [ (125)I]IAC44 was found in peptide fragments consistent with labeling of both SBDLI and SBDLII.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnold E. Ruoho
- Corresponding author. Tel: (608) 263-5382. Fax: (608) 262-1257.
| |
Collapse
|
88
|
Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007; 131:596-610. [PMID: 17981125 DOI: 10.1016/j.cell.2007.08.036] [Citation(s) in RCA: 1421] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 03/21/2007] [Accepted: 08/17/2007] [Indexed: 01/27/2023]
Abstract
Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.
Collapse
Affiliation(s)
- Teruo Hayashi
- Cellular Pathobiology Unit, Plasticity and Development Section, Cellular Neurobiology Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD 21224, USA.
| | | |
Collapse
|
89
|
Cantarella G, Bucolo C, Di Benedetto G, Pezzino S, Lempereur L, Calvagna R, Clementi S, Pavone P, Fiore L, Bernardini R. Protective effects of the sigma agonist Pre-084 in the rat retina. Br J Ophthalmol 2007; 91:1382-4. [PMID: 17522150 PMCID: PMC2001020 DOI: 10.1136/bjo.2007.118570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM With the rationale that amyloid beta (AB) is toxic to the retina, we here assessed the role of TRAIL, a mediator of AB toxicity and related signal transduction, in a rat model. We also attempted to demonstrate possible protective effects of sigma 1 receptor agonists in these processes. METHODS AB and the sigma 1 receptor agonist Pre-084 were injected intravitreally in the anaesthetised rat. In additional experiments, the sigma 1 receptor antagonist BD1047 was administered to assess specificity of the effects of Pre-084. Western blot analysis was performed on retinas to evaluate the expression of TRAIL and TRAIL receptors in the retina, as well as of Bax and phosphorylated JNK following the different treatments. Lactic dehydrogenase (LDH) levels were measured as a cytotoxicity marker. RESULTS All TRAIL receptors were expressed in rat retinas. Intravitreal injection of AB in rat eyes induced overexpression of TRAIL and the proapoptotic protein Bax, as well as phosphorylation of JNK. All these effects of AB were abrogated by pretreatment with the sigma(1) receptor agonist Pre-084. CONCLUSIONS It is likely that TRAIL is a mediator of AB effects on the retina. In light of their specific inhibitory effects upon TRAIL expression, it is plausible to hypothesise that sigma(1) receptor agonists could represent potential pharmacological tools for restraining AB related retinal damage.
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Meunier J, Ieni J, Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 2006; 149:998-1012. [PMID: 17057756 PMCID: PMC2014636 DOI: 10.1038/sj.bjp.0706927] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The acetylcholinesterase inhibitor, donepezil, is also a high affinity sigma(1) receptor agonist. We examined the involvement of sigma(1) receptors in its anti-amnesic and neuroprotective properties against amyloid beta(25-35) peptide-induced toxicity in mice. EXPERIMENTAL APPROACH Mice were given an intracerebroventricular (i.c.v.) injection of Abeta(25-35) peptide (9 nmol) 7-9 days before being tested for spontaneous alternation and passive avoidance. Hippocampal lipid peroxidation was measured 7 days after Abeta(25-35) injection to evaluate oxidative stress. Donepezil, the sigma(1) agonist PRE-084 or the cholinesterase (ChE) inhibitors tacrine, rivastigmine and galantamine were administered either 20 min before behavioural sessions to check their anti-amnesic effects, or 20 min before Abeta(25-35) injection, or 24 h after Abeta(25-35) injection and then once daily before behavioural sessions, to check their pre- and post-i.c.v. neuroprotective activity, respectively. KEY RESULTS All the drugs tested were anti-amnesic, but only the effects of PRE-084 and donepezil were prevented by the sigma(1) antagonist BD1047. Only PRE-084 and donepezil showed neuroprotection when administered pre i.c.v.; they blocked lipid peroxidation and learning deficits, effects inhibited by BD1047. Post i.c.v., PRE-084 and donepezil showed complete neuroprotection whereas the other ChE inhibitors showed partial effects. BD1047 blocked these effects of PRE-084, attenuated those of donepezil, but did not affect the partial effects of the other ChE inhibitors. CONCLUSIONS AND IMPLICATIONS The potent anti-amnesic and neuroprotective effects of donepezil against Abeta(25-35)-induced toxicity involve both its cholinergic and sigma(1) agonistic properties. This dual action may explain its sustained activity compared to other ChE inhibitors.
Collapse
|
91
|
Masters CL, Cappai R, Barnham KJ, Villemagne VL. Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. J Neurochem 2006; 97:1700-25. [PMID: 16805778 DOI: 10.1111/j.1471-4159.2006.03989.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.
Collapse
Affiliation(s)
- Colin L Masters
- Department of Pathology, The University of Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
92
|
Maurice T, Grégoire C, Espallergues J. Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 2006; 84:581-97. [PMID: 16945406 DOI: 10.1016/j.pbb.2006.07.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/30/2006] [Accepted: 07/07/2006] [Indexed: 01/05/2023]
Abstract
Steroids from peripheral sources or synthesized in the brain, i.e. neurosteroids, exert rapid modulations of neurotransmitter responses through specific interactions with membrane receptors, mainly the gamma-aminobutyric acid type A (GABA(A)) receptor and N-methyl-d-aspartate (NMDA) type of glutamate receptor. Progesterone and 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) act as inhibitory steroids while pregnenolone sulfate or dehydroepiandrosterone sulfate act as excitatory steroids. Some steroids also interact with an atypical protein, the sigma(1) (sigma(1)) receptor. This receptor has been cloned in several species and is centrally expressed in neurons and oligodendrocytes. Activation of the sigma(1) receptor modulates cellular Ca(2+) mobilization, particularly from endoplasmic reticulum pools, and contributes to the formation of lipid droplets, translocating towards the plasma membrane and contributing to the recomposition of lipid microdomains. The present review details the evidences showing that the sigma(1) receptor is a target for neurosteroids in physiological conditions. Analysis of the sigma(1) protein sequence confirmed homologies with the ERG2/emopamil binding protein family but also with the steroidogenic enzymes isopentenyl diphosphate isomerase and 17beta-estradiol dehydrogenase. Biochemical and physiological arguments for an interaction of neuro(active)steroids with the sigma(1) receptor are analyzed and the impact on physiopathological outcomes in neuroprotection is illustrated.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U. 710, Montpellier, F-34095 France University of Montpellier II, Montpellier, F-34095 France c EPHE, Paris, F-75007 France.
| | | | | |
Collapse
|
93
|
Bucolo C, Marrazzo A, Ronsisvalle S, Ronsisvalle G, Cuzzocrea S, Mazzon E, Caputi A, Drago F. A novel adamantane derivative attenuates retinal ischemia-reperfusion damage in the rat retina through sigma1 receptors. Eur J Pharmacol 2006; 536:200-3. [PMID: 16580663 DOI: 10.1016/j.ejphar.2006.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 11/22/2022]
Abstract
The effects of a novel N-methyladamantan-1-amine derivative [(-)-MR22] with high sigma1 receptor affinity were investigated on retinal degeneration using a rat model of ischemia-reperfusion injury. The animals were anaesthetized and retinal ischemia was induced by elevating the intraocular pressure to 120 mm Hg for 45 min. The drug was injected intraperitoneally before the ischemic damage. Retinal biochemical changes, i.e. increase of lactate content and decrease of glucose and ATP were significantly inhibited by the new and selective sigma1 receptor ligand compared to the ischemic control group. The effect of (-)-MR22 was antagonized by pre-treatment with the sigma1 site antagonist. The protective effect of (-)-MR22 on ischemic retina was confirmed by the histological analysis. These findings suggest that (-)-MR22 serves as a retinal neuroprotective agent and acts as a sigma1 receptor agonist.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Experimental and Clinical Pharmacology, School of Medicine, University of Catania, Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Corbera J, Vaño D, Martínez D, Vela JM, Zamanillo D, Dordal A, Andreu F, Hernandez E, Perez R, Escriche M, Salgado L, Yeste S, Serafini MT, Pascual R, Alegre J, Calvet MC, Cano N, Carro M, Buschmann H, Holenz J. A Medicinal-Chemistry-Guided Approach to Selective and Druglike Sigma 1 Ligands. ChemMedChem 2006; 1:140-54. [PMID: 16892345 DOI: 10.1002/cmdc.200500034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Based on a medicinal-chemistry-guided approach, three novel series of druglike cycloalkyl-annelated pyrazoles were synthesized and display high affinity (pKi>8) for the sigma1 receptor. Structure-affinity relationships were established, and the different scaffolds were optimized with respect to sigma1 binding and selectivity versus the sigma2 receptor and the hERG channel, resulting in selective compounds that have Ki values (for sigma1) in the subnanomolar range. Selected compounds were screened for cytochrome P450 inhibition (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4), metabolic stability (rat and human liver microsomes), and cell-membrane permeability (Caco-2). They showed favorable in vitro ADME properties as well as favorable calculated druglike and experimental physicochemical properties. Furthermore, compounds 7 f and 17 a, for example, displayed high selectivity (affinity) for the sigma1 receptor against a wide range of other receptors (>60). With these valuable tool compounds in hand, we are further exploring the role of the sigma1 receptor in relevant animal models corresponding to such medicinal indications as drug abuse, pain, depression, anxiety, and psychosis.
Collapse
Affiliation(s)
- Jordi Corbera
- Department of Medicinal Chemistry, Laboratorios Dr. Esteve S.A. Av. Mare de Déu de Montserrat 221, 08041 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|