51
|
McDonnell EE, Buckley CT. Investigating the physiological relevance of ex vivo disc organ culture nutrient microenvironments using in silico modeling and experimental validation. JOR Spine 2021; 4:e1141. [PMID: 34337330 PMCID: PMC8313156 DOI: 10.1002/jsp2.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ex vivo disc organ culture systems have become a valuable tool for the development and pre-clinical testing of potential intervertebral disc (IVD) regeneration strategies. Bovine caudal discs have been widely selected due to their large availability and comparability to human IVDs in terms of size and biochemical composition. However, despite their extensive use, it remains to be elucidated whether their nutrient microenvironment is comparable to human degeneration. AIMS This work aims to create the first experimentally validated in silico model which can be used to predict and characterize the metabolite concentrations within ex vivo culture systems. MATERIALS & METHODS Finite element models of cultured discs governed by previously established coupled reaction-diffusion equations were created using COMSOL Multiphysics. Experimental validation was performed by measuring oxygen, glucose and pH levels within discs cultured for 7 days, in a static compression bioreactor. RESULTS The in silico model was successfully validated through good agreement between the predicted and experimentally measured concentrations. For an ex vivo organ cultured in high glucose medium (4.5 g/L or 25 mM) and normoxia, a larger bovine caudal disc (Cd1-2 to Cd3-4) had a central concentration of ~2.6 %O2, ~8 mM of glucose and a pH value of 6.7, while the smallest caudal discs investigated (Cd6-7 and Cd7-8), had a central concentration of ~6.5 %O2, ~12 mM of glucose and a pH value of 6.9. DISCUSSION This work advances the knowledge of ex vivo disc culture microenvironments and highlights a critical need for optimization and standardization of culturing conditions. CONCLUSION Ultimately, for assessment of cell-based therapies and successful clinical translation based on nutritional demands, it is imperative that the critical metabolite values within organ cultures (minimum glucose, oxygen and pH values) are physiologically relevant and comparable to the stages of human degeneration.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
52
|
Kim JW, Jeon N, Shin DE, Lee SY, Kim M, Han DH, Shin JY, Lee S. Regeneration in Spinal Disease: Therapeutic Role of Hypoxia-Inducible Factor-1 Alpha in Regeneration of Degenerative Intervertebral Disc. Int J Mol Sci 2021; 22:ijms22105281. [PMID: 34067899 PMCID: PMC8155933 DOI: 10.3390/ijms22105281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
The intervertebral disc (IVD) is a complex joint structure comprising three primary components—namely, nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP). The IVD retrieves oxygen from the surrounding vertebral body through CEP by diffusion and likely generates ATP via anaerobic glycolysis. IVD degeneration is characterized by a cascade of cellular, compositional, structural changes. With advanced age, pronounced changes occur in the composition of the disc extracellular matrix (ECM). NP and AF cells in the IVD possess poor regenerative capacity compared with that of other tissues. Hypoxia-inducible factor (HIF) is a master transcription factor that initiates a coordinated cellular cascade in response to a low oxygen tension environment, including the regulation of numerous enzymes in response to hypoxia. HIF-1α is essential for NP development and homeostasis and is involved in various processes of IVD degeneration process, promotes ECM in NP, maintains the metabolic activities of NP, and regulates dystrophic mineralization of NP, as well as angiogenesis, autophagy, and apoptosis during IVD degeneration. HIF-1α may, therefore, represent a diagnostic tool for early IVD degeneration and a therapeutic target for inhibiting IVD degeneration
Collapse
Affiliation(s)
- Jin-Woo Kim
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Korea; (J.-W.K.); (N.J.); (M.K.)
| | - Neunghan Jeon
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Korea; (J.-W.K.); (N.J.); (M.K.)
| | - Dong-Eun Shin
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13488, Korea; (D.-E.S.); (D.H.H.)
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13488, Korea;
| | - Myongwhan Kim
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Korea; (J.-W.K.); (N.J.); (M.K.)
| | - Dong Hun Han
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13488, Korea; (D.-E.S.); (D.H.H.)
| | - Jae Yeon Shin
- Department of Computer Science, College of IT Engineering, SeMyung University, Jechun 27136, Korea;
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13488, Korea; (D.-E.S.); (D.H.H.)
- Correspondence: ; Tel.: +82-31-780-5289; Fax: +82-31-708-3578
| |
Collapse
|
53
|
ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY) 2021; 13:10703-10723. [PMID: 33824228 PMCID: PMC8064223 DOI: 10.18632/aging.202850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Stem cell approaches have become an attractive therapeutic option for intervertebral disc degeneration (IVDD). Nucleus pulposus mesenchymal stem cells (NP-MSCs) participate in the regeneration and homeostasis of the intervertebral disc (IVD), but the molecular mechanisms governing these processes remain to be elucidated. Acid-sensing ion channels (ASICs) which act as key receptors for extracellular protons in central and peripheral neurons, have been implicated in IVDD where degeneration is associated with reduced microenvironmental pH. Here we show that ASIC1 and ASIC3, but not ASIC2 and ASIC4 are upregulated in human IVDs according to the degree of clinical degeneration. Subjecting IVD-derived NP-MSCs to pH 6.6 culture conditions to mimic pathological IVD changes resulted in decreased cell proliferation that was associated with cell cycle arrest and induction of senescence. Key molecular changes observed were increased expression of p53, p21, p27, p16 and Rb1. Instructively, premature senescence in NP-MSCs could be largely alleviated using ASIC inhibitors, suggesting both ASIC1 and ASIC3 act decisively upstream to activate senescence programming pathways including p53-p21/p27 and p16-Rb1 signaling. These results highlight the potential of ASIC inhibitors as a therapeutic approach for IVDD and broadly define an in vitro system that can be used to evaluate other IVDD therapies.
Collapse
|
54
|
Bian J, Cai F, Chen H, Tang Z, Xi K, Tang J, Wu L, Xu Y, Deng L, Gu Y, Cui W, Chen L. Modulation of Local Overactive Inflammation via Injectable Hydrogel Microspheres. NANO LETTERS 2021; 21:2690-2698. [PMID: 33543616 DOI: 10.1021/acs.nanolett.0c04713] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although injectable hydrogel microsphere has demonstrated tremendous promise in clinical applications, local overactive inflammation in degenerative diseases could jeopardize biomaterial implantation's therapeutic efficacy. Herein, an injectable "peptide-cell-hydrogel" microsphere was constructed by covalently coupling of APETx2 and further loading of nucleus pulposus cells, which could inhibit local inflammatory cytokine storms to regulate the metabolic balance of ECM in vitro. The covalent coupling of APETx2 preserved the biocompatibility of the microspheres and achieved a controlled release of APETx2 for more than 28 days in an acidic environment. By delivering "peptide-cell-hydrogel" microspheres to a rat degenerative intervertebral disc at 4 weeks, the expression of ASIC-3 and IL-1β was significantly decreased for 3.53-fold and 7.29-fold, respectively. Also, the content of ECM was significantly recovered at 8 weeks. In summary, the proposed strategy provides an effective approach for tissue regeneration under overactive inflammatory responses.
Collapse
Affiliation(s)
- Jiang Bian
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Cai
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Hao Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Zhenzhou Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Jincheng Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Liang Wu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Yichang Xu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Yong Gu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Liang Chen
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
55
|
Kandil K, Zaïri F, Messager T, Zaïri F. A microstructure-based modeling approach to assess aging-sensitive mechanics of human intervertebral disc. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105890. [PMID: 33317872 DOI: 10.1016/j.cmpb.2020.105890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The human body soft tissues are hierarchic structures interacting in a complex manner with the surrounding biochemical environment. The loss of soft tissues functionality with age leads to more vulnerability regarding to the external mechanical loadings and increases the risk of injuries. As a main example of the human body soft tissues, the intervertebral disc mechanical response evolution with age is explored. Although the age-dependence of the intervertebral disc microstructure is a well-known feature, no noticeable age effect on the disc stiffness is evidenced in the in-vitro experimental studies of the literature. So, if the disc intrinsic mechanics remains constant, how to explain the correlation of disc degeneration and disc functionality loss with age. METHODS A microstructure-based modeling approach was developed to assess in-silico the aging-sensitive mechanics of human intervertebral disc. The model considers the relationship between stress/volumetric macro-response and microstructure along with effective age effects acting at the lamellar and multi-lamellar scales. The stress-stretch and transversal responses of the different disc regions were computed for various age groups (13-18, 36, 58, 69 and 82 years old) and their evolution with age was studied. RESULTS While matching with in-vitro experimental data, the predicted stiffness was found to increase while passing from adolescent young discs to mature older discs and then to remain almost constant for the rest of life. Important age-related changes in the disc transversal behavior were also predicted affecting the flexibility of the disc, changing its volumetric behavior, and modifying its dimensions. CONCLUSION The developed approach was found able to bring new conclusions about age-dependent mechanical properties including regional dependency. The disc mechanics in terms of rigidity, radial and axial transversal responses were found to alter going from adolescent to middle age where the disc reaches a certain maturity. After reaching maturity, the mechanical properties undergo very slight changes until becoming almost constant with age.
Collapse
Affiliation(s)
- Karim Kandil
- Lille University, Unité de Mécanique de Lille (EA 7572 UML), 59000 Lille, France; Lille University, Civil Engineering and geo-Environmental Laboratory (ULR 4515 LGCgE), 59000 Lille, France
| | - Fahmi Zaïri
- Lille University, Civil Engineering and geo-Environmental Laboratory (ULR 4515 LGCgE), 59000 Lille, France.
| | - Tanguy Messager
- Lille University, Unité de Mécanique de Lille (EA 7572 UML), 59000 Lille, France
| | - Fahed Zaïri
- Ramsay Générale de Santé, Hôpital privé Le Bois, 59000 Lille, France
| |
Collapse
|
56
|
Snuggs JW, Tessier S, Bunning RAB, Shapiro IM, Risbud MV, Le Maitre CL. TonEBP regulates the hyperosmotic expression of aquaporin 1 and 5 in the intervertebral disc. Sci Rep 2021; 11:3164. [PMID: 33542263 PMCID: PMC7862284 DOI: 10.1038/s41598-021-81838-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
The central region of the intervertebral disc (IVD) is rich in proteoglycans, leading to a hyperosmotic environment, which fluctuates with daily loading. The cells of the nucleus pulposus (NP cells) have adapted to this environment via the function of tonicity enhancer binding protein (TonEBP), and NP cells have been shown to express several water channels known as aquaporins (AQP). We have previously shown that AQP1 and 5 decrease during IVD degeneration. Here, the regulation of AQP1 and 5 by hyperosmotic conditions and the role of TonEBP in this regulation was investigated. AQP1 and 5 gene expression was upregulated by hyperosmotic conditions mimicking the osmolality of the healthy IVD, which was abrogated by TonEBP knockdown. Furthermore, AQP1 and 5 immunopositivity was significantly reduced in TonEBPΔ/Δ E17.5 mice when compared with wildtype controls, indicating in vivo expression of AQP1 and 5 is controlled at least in part by TonEBP. This hyperosmotic regulation of AQP1 and 5 could help to explain the decreased AQP1 and 5 expression during degeneration, when the osmolality of the NP decreases. Together this data suggests that TonEBP-regulated osmo-adaptation may be disrupted during IVD degeneration when the expression of both AQPs is reduced.
Collapse
Affiliation(s)
- J. W. Snuggs
- grid.5884.10000 0001 0303 540XBiomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB UK
| | - S. Tessier
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA USA
| | - R. A. B. Bunning
- grid.5884.10000 0001 0303 540XBiomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB UK
| | - I. M. Shapiro
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
| | - M. V. Risbud
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
| | - C. L. Le Maitre
- grid.5884.10000 0001 0303 540XBiomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB UK
| |
Collapse
|
57
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
58
|
Exosomes Derived from Human Urine-Derived Stem Cells Inhibit Intervertebral Disc Degeneration by Ameliorating Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6697577. [PMID: 33488928 PMCID: PMC7787770 DOI: 10.1155/2020/6697577] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at determining the effects of human urine-derived stem cell-derived exosomes (USCs-exos) on pressure-induced nucleus pulposus cell (NPC) apoptosis and intervertebral disc degeneration (IDD) and on the ERK and AKT signaling pathways. Methods The NPCs were obtained from patients with herniated lumbar discs. Western blot analysis (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine endoplasmic reticulum (ER) stress levels of NPCs under stress. Human USCs were identified using an inverted microscope, three-line differentiation experiments, and flow cytometry. A transmission microscope, nanoparticle size analysis, and WB procedures were used to identify the extracted exosomes and observe NPC uptake. A control group, a 48 h group, and a USCs-exos group were established. The control group was untreated, and the 48 h group was pressure-trained for 48 h, while the USCs-exos group was pressure-trained for 48 h and treated with USCs-exos. WB, qRT-PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis were used to determine the ER stress levels in stress conditions and after exosomal treatment. The AKT and ERK pathways were partially detected. Magnetic Resonance Imaging (MRI) and computed tomography (CT) were used to evaluate cell degeneration while exosomal effects on the intervertebral disc (IVD) tissue were determined by hematoxylin and eosin (HE) staining, Safranin O-fast green staining, immunohistochemical staining (IHC), nuclear magnetic resonance (NMR), spectrometric detection, and total correlation spectroscopy (TOCSY). IVD metabolites were also identified and quantified. Results After pressure culture, ER stress markers (GRP78 and C/EBP homologous protein (CHOP)) in the NPCs were significantly elevated with time (p < 0.05). Human USCs are short and spindle-shaped. They can successfully undergo osteogenic, adipogenic, and chondrogenic differentiation. In this study, these stem cells were found to be positive for CD29, CD44, and CD73. The exosomes were centrally located with a diameter of 50-100 nm. CD63 and Tsg101 were highly expressed while the expression of Calnexin was suppressed. The exosomes can be ingested by NPCs. USCs-exos significantly improved ER stress responses and inhibited excessive activation of the unfolded protein response (UPR) as well as cell apoptosis and disc degeneration through the AKT and ERK signaling pathways (p < 0.05). Conclusion Through the AKT and ERK signaling pathways, USCs-exos significantly inhibit ER stress-induced cell apoptosis and IDD under pressure conditions. It is, therefore, a viable therapeutic strategy.
Collapse
|
59
|
Mitochondrial Dysfunction in Intervertebral Disc Degeneration: From Pathogenesis to Therapeutic Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8880320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondria are cytosolic organelles essential for cellular function and survival. The function of mitochondria is maintained by mitochondrial quality control systems including mitochondrial fission and fusion to adapt the altered environment and mitophagy for removal of damaged mitochondria. Mitochondrial dysfunction is closely involved in aging-related diseases. Intervertebral disc (IVD) degeneration, an aging-associated process, is the major contributor to low back pain. Growing evidence has suggested that the mitochondrial function in IVD cells is severely compromised during the degenerative process of IVD, and dysfunctional mitochondria along with impaired mitochondrial dynamics and mitophagy cause a series of cascade reactions that have been implicated in increased oxidative stress, senescence, matrix catabolism, and apoptosis of IVD cells, thereby contributing to the degeneration of IVD. Accordingly, therapies that target mitochondrial dysfunction and related mechanisms, such as ROS generation, mitophagy, and specific molecules and signaling, hold great promise. The present review summarizes the current state of the role of mitochondrial dysfunction in the pathophysiology of IVD degeneration and potential therapeutic strategies that could be developed.
Collapse
|
60
|
Zhao K, An R, Xiang Q, Li G, Wang K, Song Y, Liao Z, Li S, Hua W, Feng X, Wu X, Zhang Y, Das A, Yang C. Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc degeneration. Cell Prolif 2020; 54:e12941. [PMID: 33111436 PMCID: PMC7791185 DOI: 10.1111/cpr.12941] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Lactate accumulation is an important factor in the intervertebral disc degeneration (IVDD). Currently, the effect and underlying mechanism of action of lactate on nucleus pulposus (NP) cell inflammation during IVDD are unclear. Previous studies have found that the NLRP3 inflammasome plays an important role in the regulation of NP inflammation. This study focused on the regulation of acid‐sensitive ion channels (ASICs) in relation to inflammation and the effect of NLRP3 on pyroptosis levels in NP cells under acidic conditions. Design For the in vitro experiments, human NP cells were exposed to 6 mM lactate solution; different groups were either treated with NLRP3 inhibitor or transfected with siRNA against NLRP3, siRNA against ASC or a mix of these, and mRNA and protein expression levels were then assessed. For the in vivo experiment, varying concentrations of lactate were injected into rat intervertebral discs and examined via magnetic resonance imaging (MRI) and histological staining. Results Extracellular lactate promoted NLRP3 inflammasome activation and degeneration of the NP extracellular matrix; furthermore, it increased the levels of inflammation and pyroptosis in the NP. Lactate‐induced NLRP3 inflammasome activation was blocked by ASIC inhibitors and NLRP3 siRNA. Conclusions Extracellular lactate regulates levels of intercellular reactive oxygen species (ROS) through ASIC1 and ASIC3. ROS activate the NF‐κB signalling pathway, thus promoting NLRP3 inflammasome activation and IL‐1β release, both of which promote NP degeneration.
Collapse
Affiliation(s)
- Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Abhirup Das
- SpineLabs, St George & Sutherland Clinical School, The University of New South Wales, Sydney, NSW, Australia.,Spine Service, Department of Orthopaedic Surgery, St George Hospital Campus, Sydney, NSW, Australia
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
61
|
Sun B, Lian M, Han Y, Mo X, Jiang W, Qiao Z, Dai K. A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus reconstruction. Bioact Mater 2020; 6:179-190. [PMID: 32913927 PMCID: PMC7451922 DOI: 10.1016/j.bioactmat.2020.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 01/28/2023] Open
Abstract
Regeneration of Intervertebral disc (IVD) is a scientific challenge because of the complex structure and composition of tissue, as well as the difficulty in achieving bionic function. Here, an anatomically correct IVD scaffold composed of biomaterials, cells, and growth factors were fabricated via three-dimensional (3D) bioprinting technology. Connective tissue growth factor (CTGF) and transforming growth factor-β3 (TGF-β3) were loaded onto polydopamine nanoparticles, which were mixed with bone marrow mesenchymal stem cells (BMSCs) for regenerating and simulating the structure and function of the nucleus pulposus and annular fibrosus. In vitro experiments confirmed that CTGF and TGF-β3 could be released from the IVD scaffold in a spatially controlled manner, and induced the corresponding BMSCs to differentiate into nucleus pulposus like cells and annulus fibrosus like cells. Next, the fabricated IVD scaffold was implanted into the dorsum subcutaneous of nude mice. The reconstructed IVD exhibited a zone-specific matrix that displayed the corresponding histological and immunological phenotypes: primarily type II collagen and glycosaminoglycan in the core zone, and type I collagen in the surrounding zone. The testing results demonstrated that it exhibited good biomechanical function of the reconstructed IVD. The results presented herein reveal the clinical application potential of the dual growth factors-releasing IVD scaffold fabricated via 3D bioprinting. However, the evaluation in large mammal animal models needs to be further studied.
Collapse
Affiliation(s)
- Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meifei Lian
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhiguang Qiao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
62
|
Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus. Int J Mol Sci 2020; 21:ijms21144889. [PMID: 32664453 PMCID: PMC7402314 DOI: 10.3390/ijms21144889] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed.
Collapse
|
63
|
Yin X, Motorwala A, Vesvoranan O, Levene HB, Gu W, Huang CY. Effects of Glucose Deprivation on ATP and Proteoglycan Production of Intervertebral Disc Cells under Hypoxia. Sci Rep 2020; 10:8899. [PMID: 32483367 PMCID: PMC7264337 DOI: 10.1038/s41598-020-65691-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
As the most common cause of low back pain, the cascade of intervertebral disc (IVD) degeneration is initiated by the disappearance of notochordal cells and progressive loss of proteoglycan (PG). Limited nutrient supply in the avascular disc environment restricts the production of ATP which is an essential energy source for cell survival and function such as PG biosynthesis. The objective of this study was to examine ATP level and PG production of porcine IVD cells under prolonged exposure to hypoxia with physiological glucose concentrations. The results showed notochordal NP and AF cells responded differently to changes of oxygen and glucose. Metabolic activities (including PG production) of IVD cells are restricted under the in-vivo nutrient conditions while NP notochordal cells are likely to be more vulnerable to reduced nutrition supply. Moreover, provision of energy, together or not with genetic regulation, may govern PG production in the IVD under restricted nutrient supply. Therefore, maintaining essential levels of nutrients may reduce the loss of notochordal cells and PG in the IVD. This study provides a new insight into the metabolism of IVD cells under nutrient deprivation and the information for developing treatment strategies for disc degeneration.
Collapse
Affiliation(s)
- Xue Yin
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Aarif Motorwala
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Oraya Vesvoranan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Howard B Levene
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Weiyong Gu
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.,Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
64
|
Abstract
STUDY DESIGN This article comprises a review of the literature. OBJECTIVE The purpose of this study was to elucidate the different types of structural failures exhibited in intervertebral discs (IVDs), summarize their potential causes with respect to mechanical loading conditions and the consequences on cell homeostasis and biomechanics. SUMMARY OF BACKGROUND DATA Many studies have been performed to gain insight into how discogenic back pain progresses in humans both in vitro and in vivo as well as in animal disc models. However, there is a major need to summarize the common factors which initiate the structural failures observed in IVDs and the typical biomechanical changes. This work could help in developing mechanisms aiming to restore the biochemical and biomechanical balance of IVDs. METHODS The different types of structural failures encountered in IVDs were reviewed from published literature. The types of mechanical loading causing these injuries and their physiological and biomechanical consequences were then summarized and linked to ongoing research in this area. RESULTS The most prominent structural failures associated with IVDs are annulus tears, disc prolapse, endplate damage, disc narrowing, radial bulging, and osteophyte formation in the vertebrae. IVDs were found to be vulnerable to compression, flexion, axial rotation, and complex loading mechanisms through single impact, cyclical, and continuous loading. However, chronic loadings had a more damaging impact on the spine. Significant consequences include imbalance of metabolic enzymes and growth factors, alteration in stress profiles of IVDs and a decrease in mechanical stiffness resulting in impaired biomechanics of the spine. CONCLUSION The mode of loading has an important impact on the severity and nature of failures seen in IVDs and the resulting consequences to biomechanics. However, further research is necessary to better understand to the mechanisms that link injury to degeneration and regeneration of IVD tissues. LEVEL OF EVIDENCE 3.
Collapse
|
65
|
Tedjo W, Chen T. An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:20-35. [PMID: 31751250 DOI: 10.1109/tbcas.2019.2953579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R2 = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R2 = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.
Collapse
|
66
|
Effects of Highly Oxygenated Water in a Hyperuricemia Rat Model. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:1323270. [PMID: 32076494 PMCID: PMC7013358 DOI: 10.1155/2020/1323270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Recent years have seen a rapidly rising number of oxygenated water brands that claim to impart health benefits and increase athletic performance by improving oxygen availability in the body. Drinks with higher dissolved oxygen concentrations have in recent times gained popularity as potential ergogenic aids, despite the lack of evidence regarding their efficacy. The aim of this study was to characterize oxygenated water and assess the improvement in uric acid metabolism while identifying performance enhancements in animals administered oxygenated water. Oxygenated water was characterized by hydrogen and oxygen nuclear magnetic resonance (NMR) spectroscopy. Hyperuricemia in rats was induced by treatment with oxonic acid potassium salt, and the animals were given oxygenated drinking water before, during, or after oxonic acid treatment. Serum uric acid was measured to confirm the effects on uric acid metabolism. Following oxygenation, the full width at half maximum (FWHM) was reduced to 11.56 Hz and 64.16 Hz in the hydrogen and oxygen NMR spectra, respectively. Oxygenated water molecule clusters were reduced in size due to the reduction in FWHM. Oxygen concentration did not vary significantly with increased temperature. However, standing time played a critical role in the amount of oxygen dissolved in the water. The rat studies indicated that oxygenated water reduced serum uric acid levels and their rate of increase and enhanced uric acid metabolism. A significant improvement in uric acid metabolism and rate of increase in serum uric acid concentration was observed in hyperuricemic rats administered oxygenated water compared to that in rats administered regular water. High oxygen concentrations enhanced the rate of oxygen absorption, leading to increased glycolysis and mitochondrial protein synthesis. Therefore, oxygenated water is a potential adjuvant therapy or health food for treatment of hyperuricemia.
Collapse
|
67
|
Zhao X, Shen P, Li H, Yang Y, Guo J, Chen S, Ma Y, Sheng J, Shen S, Liu G, Fang X. Carbonic Anhydrase 12 Protects Endplate Cartilage From Degeneration Regulated by IGF-1/PI3K/CREB Signaling Pathway. Front Cell Dev Biol 2020; 8:595969. [PMID: 33178705 PMCID: PMC7596245 DOI: 10.3389/fcell.2020.595969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Lumbar intervertebral disc degeneration (IVDD) is the most common cause of low back pain (LBP). Among all the factors leading to IVDD, lumbar cartilage endplate (LCE) degeneration is considered a key factor. In the present study, we investigate the effect and regulation of carbonic anhydrase 12 (CA12) in LCE, which catalyzes hydration of CO2 and participates in a variety of biological processes, including acid-base balance and calcification. Our results show that CA12, downregulated in degenerated LCE, could maintain anabolism and prevent calcification in the endplate. Furthermore, CA12 is regulated by the IGF-1/IGF-1R/PI3K/CREB signaling pathway. When we overexpressed CA12 in LCE, the decreased anabolism induced by inflammatory cytokine could be rescued. In contrast, reducing CA12 expression, either with siRNA, PI3Kinhibitor, or CREB inhibitor, could downregulate anabolism and cause apoptosis and then calcification in LCE. The protective effects of IGF-1 are even diminished with low-expressed CA12. Similar results are also obtained in an ex vivo model. Consequently, our results reveal a novel pathway, IGF-1/IGF-1R/PI3K/CREB/CA12, that takes a protective role in LCE degeneration by maintaining anabolism and preventing calcification and apoptosis. This study proposes a novel molecular target, CA12, to delay LCE degeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haidong Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Department of Spine Surgery, First People’s Hospital Affiliated to the Huzhou University Medical College, Huzhou, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiandong Guo
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiamin Sheng
- The Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Shuying Shen,
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Gang Liu,
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiangqian Fang,
| |
Collapse
|
68
|
Stem Cells for the Treatment of Intervertebral Disk Degeneration. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nat Commun 2019; 10:4824. [PMID: 31645567 PMCID: PMC6811641 DOI: 10.1038/s41467-019-12777-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/26/2019] [Indexed: 01/17/2023] Open
Abstract
Industrial applications of anchorage-dependent cells require large-scale cell culture with multifunctional monitoring of culture conditions and control of cell behaviour. Here, we introduce a large-scale, integrated, and smart cell-culture platform (LISCCP) that facilitates digital mass culture of anchorage-dependent cells. LISCCP is devised through large-scale integration of ultrathin sensors and stimulator arrays in multiple layers. LISCCP provides real-time, 3D, and multimodal monitoring and localized control of the cultured cells, which thereby allows minimizing operation labour and maximizing cell culture performance. Wireless integration of multiple LISCCPs across multiple incubators further amplifies the culture scale and enables digital monitoring and local control of numerous culture layers, making the large-scale culture more efficient. Thus, LISCCP can transform conventional labour-intensive and high-cost cell cultures into efficient digital mass cell cultures. This platform could be useful for industrial applications of cell cultures such as in vitro toxicity testing of drugs and cosmetics and clinical scale production of cells for cell therapy. Large scale culture of adherent cells would benefit from a platform for continuous monitoring and control of cell growth and culture conditions. Here the authors develop an integrated, smart cell culture platform where cells are grown on multiple layers of thin sensors that can be wirelessly integrated across several incubators.
Collapse
|
70
|
Wu Y, Cisewski SE, Coombs MC, Brown MH, Wei F, She X, Kern MJ, Gonzalez YM, Gallo LM, Colombo V, Iwasaki LR, Nickel JC, Yao H. Effect of Sustained Joint Loading on TMJ Disc Nutrient Environment. J Dent Res 2019; 98:888-895. [PMID: 31126205 DOI: 10.1177/0022034519851044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The temporomandibular joint (TMJ) disc nutrient environment profoundly affects cell energy metabolism, proliferation, and biosynthesis. Due to technical challenges of in vivo measurements, the human TMJ disc extracellular nutrient environment under load, which depends on metabolic rates, solute diffusion, and disc morphometry, remains unknown. Therefore, the study objective was to predict the TMJ disc nutrient environment under loading conditions using combined experimental and computational modeling approaches. Specifically, glucose consumption and lactate production rates of porcine TMJ discs were measured under varying tissue culture conditions (n = 40 discs), and mechanical strain-dependent glucose and lactate diffusivities were measured using a custom diffusion chamber (n = 6 discs). TMJ anatomy and loading area were obtained from magnetic resonance imaging of healthy human volunteers (n = 11, male, 30 ± 9 y). Using experimentally determined nutrient metabolic rates, solute diffusivities, TMJ anatomy, and loading areas, subject-specific finite element (FE) models were developed to predict the 3-dimensional nutrient profiles in unloaded and loaded TMJ discs (unloaded, 0% strain, 20% strain). From the FE models, glucose, lactate, and oxygen concentration ranges for unloaded healthy human TMJ discs were 0.6 to 4.0 mM, 0.9 to 5.0 mM, and 0% to 6%, respectively, with steep gradients in the anterior and posterior bands. Sustained mechanical loading significantly reduced nutrient levels (P < 0.001), with a critical zone in which cells may die representing approximately 13.5% of the total disc volume. In conclusion, this study experimentally determined TMJ disc metabolic rates, solute diffusivities, and disc morphometry, and through subject-specific FE modeling, revealed critical interactions between mechanical loading and nutrient supply and metabolism for the in vivo human TMJ disc. The results suggest that TMJ disc homeostasis may be vulnerable to pathological loading (e.g., clenching, bruxism), which impedes nutrient supply. Given difficulties associated with direct in vivo measurements, this study provides a new approach to systematically investigate homeostatic and degenerative mechanisms associated with the TMJ disc.
Collapse
Affiliation(s)
- Y Wu
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,2 Department of Orthopaedics and Physical Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - S E Cisewski
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - M C Coombs
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - M H Brown
- 3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - F Wei
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - X She
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - M J Kern
- 3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - Y M Gonzalez
- 4 Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - L M Gallo
- 5 Clinic of Masticatory Disorders, University of Zurich, School of Dental Medicine, Zurich, Switzerland
| | - V Colombo
- 5 Clinic of Masticatory Disorders, University of Zurich, School of Dental Medicine, Zurich, Switzerland
| | - L R Iwasaki
- 6 Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - J C Nickel
- 6 Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - H Yao
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,2 Department of Orthopaedics and Physical Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA.,3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| |
Collapse
|
71
|
Jaworski LM, Kleinhans KL, Jackson AR. Effects of Oxygen Concentration and Culture Time on Porcine Nucleus Pulposus Cell Metabolism: An in vitro Study. Front Bioeng Biotechnol 2019; 7:64. [PMID: 31001527 PMCID: PMC6454860 DOI: 10.3389/fbioe.2019.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/07/2023] Open
Abstract
Low back pain is a common ailment that affects millions of individuals each year and is linked to degeneration of the intervertebral discs in the spine. Intervertebral disc degeneration is known to result from an imbalance in anabolic and catabolic activity by disc cells. Due to the avascular nature of the intervertebral disc, oxygen deficiency may occur in the central nucleus pulposus (NP). The resulting hypoxia affects matrix regulation and energy metabolism of disc cells, although the mechanisms are not fully understood. This study investigates in vitro glucose consumption and gene expression by NP cells over time under varying oxygen tensions. Notochordal porcine NP cells were cultured in agarose discs at 21, 5, or 1% oxygen tension for 1, 5, or 10 days. The expression of 10 key matrix genes, as well as Brachyury (T), by NP cells was analyzed using RT-PCR. Glucose consumption was measured using a two-point method. Results show that culture time and oxygen tension significantly affect glucose consumption rates by porcine NP cells. There were also significant changes in T expression based on oxygen level and culture time. The 1% oxygen tension had a significantly higher T expression on day 10 than the other two groups, which may indicate a better maintenance of the notochordal phenotype. MMP 1 and 13 expression increased over time for all groups, while only the 5% group showed an increase over time for MMP 3. TIMP expression followed the direction of MMPs but to a lesser magnitude. Five percent and twenty-one percent oxygen tensions led to decreases in anabolic gene expression while 1% led to increases. Oxygen concentration and culture time significantly impacted glucose consumption rate and the gene expression of matrix regulatory genes with hypoxic conditions most accurately maintaining the proper NP phenotype. This information is valuable not only for understanding disc pathophysiology, but also for harnessing the potential of notochordal NP cells in therapeutic applications.
Collapse
Affiliation(s)
- Lukas M Jaworski
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Kelsey L Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alicia R Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
72
|
Mizuno S, Kashiwa K, Kang JD. Molecular and histological characteristics of bovine caudal nucleus pulposus by combined changes in hydrostatic and osmotic pressures in vitro. J Orthop Res 2019; 37:466-476. [PMID: 30480329 PMCID: PMC6590145 DOI: 10.1002/jor.24188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration is ubiquitous among aging patients, and altered matrix homeostasis is one of the key features of this condition. Physicochemical stresses have a significant impact on matrix homeostasis as they lead to progressive degeneration and may be associated with spinal pain and dysfunction. Thus, it is important to understand the cellular and matrix characteristics of nucleus pulposus in response to these stresses, which include hydrostatic and osmotic pressures during alternate loading conditions. We hypothesized that a combination of changes in hydrostatic pressure and in osmotic pressure that mimic normal, daily spinal stress would stimulate anabolic function, whereas a non-realistic combination of those stresses would stimulate catabolic function in nucleus pulposus cells. We examined the effects of these combined stresses, represented by 12 systematic conditions, on the metabolic activities of enzymatically isolated bovine caudal nucleus pulposus in vitro. We measured the gene expression of extracellular matrix (ECM) molecules and proliferating cell nuclear antigen (PCNA) and evaluated the quality of the matrix and the capability of cell proliferation immunohistologically. Combined cyclic hydrostatic pressure at 0.5 MPa, 0.5 Hz, and high osmotic pressure at 450 mOsm upregulated the aggrecan core protein and collagen type-II gene expression significantly (p < 0.05), and showed trends of upregulation of chondroitin sulfate N-acetylgalactosaminyltransferase 1, matrix metalloproteinase-13, and PCNA. ECM, however, contained empty spaces at a high osmotic pressure with and without hydrostatic pressure. Since ECM has highly specialized physicochemical properties, homeostasis should involve not only phenotypic cellular behavior but also turnover of ECM. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:466-476, 2019.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| | - Kaori Kashiwa
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| | - James D. Kang
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| |
Collapse
|
73
|
Rider SM, Mizuno S, Kang JD. Molecular Mechanisms of Intervertebral Disc Degeneration. Spine Surg Relat Res 2019; 3:1-11. [PMID: 31435545 PMCID: PMC6690117 DOI: 10.22603/ssrr.2017-0095] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration is a well-known cause of disability, the result of which includes neck and back pain with associated mobility limitations. The purpose of this article is to provide an overview of the known molecular mechanisms through which intervertebral disc degeneration occurs as a result of complex interactions of exogenous and endogenous stressors. This review will focus on some of the identified molecular changes leading to the deterioration of the extracellular matrix of both the annulus fibrosus and nucleus pulposus. In addition, we will provide a summation of our current knowledge supporting the role of associated DNA and intracellular damage, cellular senescence's catabolic effects, oxidative stress, and the cell's inappropriate response to damage in contributing to intervertebral disc degeneration. Our current understanding of the molecular mechanisms through which intervertebral disc degeneration occurs provides us with abundant insight into how physical and chemical changes exacerbate the degenerative process of the entire spine. Furthermore, we will describe some of the related molecular targets and therapies that may contribute to intervertebral repair and regeneration.
Collapse
Affiliation(s)
- Sean M Rider
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuichi Mizuno
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James D Kang
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
74
|
Somasundaram SG, Muresanu C, Schield P, Makhmutovа A, Bovina EV, Fisenko VP, Hasanov NF, Aliev G. A Novel Non-invasive Effective Method for Potential Treatment of Degenerative Disc Disease: A Hypothesis. Cent Nerv Syst Agents Med Chem 2019; 19:8-14. [PMID: 30332977 DOI: 10.2174/1871524918666181017152053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
The pathophysiology of the intervertebral discs plays a significant role in the people's life quality. There is not adequate research done in the pathogenesis and treatment of intervertebral disc degeneration. Alternately, self-educated physiology offers a novel and noninvasive method to reverse the degenerated discs. In this single case study, report attempts have been made to highlight the effect of the self-educative physiology, on magnetic resonance imaging investigations, of progressive healing, on the degenerated intervertebral discs. Based on this novel method, an effort has been made to review literature on the degeneration of intervertebral discs and available mode of treatments and then to propose a hypothesis for the biochemical mechanisms of healing. The idea is that transforming growth factor-β1 from seminal plasma secretions may contribute to releasing the osteogenic protein- 1 which induces nucleus pulposus and annulus fibrosus cells in intervertebral discs for repairs. In addition, the patient's medical history is presented with background information.
Collapse
Affiliation(s)
- Siva G Somasundaram
- Departments of Biology & Health Education, Salem University, 223 West Main Street, Salem, WV 26426, United States
- NAFA LLC, 64 Carolina Ave, Salem, WV 26426, United States
| | - Cristian Muresanu
- Romanian Television, TVR Cluj, 160 Donath Street, Cluj-Napoca, CJ 400293, Romania
| | - Pamela Schield
- School of Education & Athletics, Salem University, Salem, WV 26426, United States
| | - Alfiya Makhmutovа
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Elena V Bovina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, Bld. 2, Moscow, 119991, Russian Federation
| | - Nusrat F Hasanov
- Neurology Division, Central Sharur District Hospital, Nakhichevan Autonomous Republic, Azerbaijan
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, Bld. 2, Moscow, 119991, Russian Federation
- "GALLY" International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, United States
- School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA 30097, United States
| |
Collapse
|
75
|
Fu J, Yu W, Jiang D. Acidic pH promotes nucleus pulposus cell senescence through activating the p38 MAPK pathway. Biosci Rep 2018; 38:BSR20181451. [PMID: 30291218 PMCID: PMC6239263 DOI: 10.1042/bsr20181451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nucleus pulposus (NP) cell senescence is an important cellular feature within the degenerative disc. It is known that a very acidic niche exists in the degenerative disc, which participates in regulating disc cell viability and matrix metabolism. OBJECTIVE The present study was aimed to investigate the role and potential signaling transduction pathway of an acidic pH in regulating NP cell senescence. METHODS Rat NP cells were cultured in an acidic pH of 7.2 close to that in a healthy disc (Control group) or in an acidic pH of 6.2 close to that in a severe degenerative disc (Experiment group) for 10 days. Additionally, the experimental NP cells were incubated along with the inhibitor SB203580 to analyze the role of p38 MAPK pathway in this process. RESULTS Compared with the control NP cells, experimental NP cells showed a suppressed cell proliferation potency, an increased G0/G1 phase fraction whereas a decreased S-phase fraction and a declined telomerase activity, an up-regulated expression of senescence-related molecules (p16 and p53), and a down-regulated expression of matrix-related moleucles (aggrecan and collagen II). Further analysis showed that inhibition of the p38 MAPK pathway partly reversed effects of acidic pH of 6.2 on the experimental NP cells. CONCLUSION The very acidic niche identified in a severe degenerative disc promotes NP cell senescence through regulating the p38 MAPK pathway. The present study provides a new mechanism that drives NP cell senescence during disc degeneration.
Collapse
Affiliation(s)
- Jiabin Fu
- Department of Orthopedics, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Inner Mongolia Baogang Hospital, Baotou, Neimenggu 014010, China
| | - Wei Yu
- Department of Orthopedics, Inner Mongolia Baogang Hospital, Baotou, Neimenggu 014010, China
| | - Dianming Jiang
- Department of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
76
|
Migliorini F, Rath B, Tingart M, Baroncini A, Quack V, Eschweiler J. Autogenic mesenchymal stem cells for intervertebral disc regeneration. INTERNATIONAL ORTHOPAEDICS 2018; 43:1027-1036. [PMID: 30415465 DOI: 10.1007/s00264-018-4218-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE A systematic review of the literature was conducted to clarify the outcomes of autologous mesenchymal stem cells (MSC) injections for the regeneration of the intervertebral disc (IVD). METHODS The following databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar bibliographic databases. Articles including previous or planned surgical interventions were excluded. Only articles reporting percutaneous autologous MSC injection to regenerate IVD in humans were included. We referred to the Coleman Methodology Score for the methodological quality assessment. The statistical analysis was performed using Review Manager Software 5.3. RESULTS After the databases search and cross-references of the bibliographies, seven studies were included in the present work. The funnel plot detected low risk of publication bias. The Coleman Methodology Score reported a good result, scoring 61.07 points. A total of 98 patients were enrolled, with 122 treated levels. All the patients underwent conservative therapies prior to injection. A remarkable improvement in the quality of life were reported after the treatment. The average Oswestry Disability Index (ODI) improved from "severe disability" to "minimal disability" at one year follow-up. The visual analogue scale (VAS) showed an improvement of ca. 30% at one year follow-up. Only one case of herniated nucleus pulposus was reported. No other adverse events at the aspiration or injection site were observed. CONCLUSIONS This systematic review of the literature proved MSC injection to be a safe and feasible option for intervertebral disc regeneration in the early-degeneration stage patients. Irrespective of the source of the MSCs, an overall clinical and radiological improvement of the patients has been evidenced, as indeed a very low complication rate during the follow-up.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Björn Rath
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alice Baroncini
- Department of Spine Surgery, Eifelklinik St. Brigida, Kammerbruchstraße 8, 52152, Simmerath, Germany
| | - Valentin Quack
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
77
|
Huang KY, Hsu YH, Chen WY, Tsai HL, Yan JJ, Wang JD, Liu WL, Lin RM. The roles of IL-19 and IL-20 in the inflammation of degenerative lumbar spondylolisthesis. JOURNAL OF INFLAMMATION-LONDON 2018; 15:19. [PMID: 30250404 PMCID: PMC6145204 DOI: 10.1186/s12950-018-0195-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
Background Degenerative lumbar spondylolisthesis (DLS) is a major cause of spinal canal stenosis and is often related to lower back pain. IL-20 is emerging as a potent angiogenic, chemotactic, and proinflammatory cytokine related to several chronic inflammatory bone disorders likes intervertebral disc herniation, rheumatoid arthritis (RA), osteoporosis, and bone fracture. IL-19 also acts as a proinflammatory cytokine in RA. The aim of the present study was to investigate whether IL-19 and IL-20 are involved in DLS and compare three different tissues including disc, facet joint, and ligamentum flavum of patients with DLS to verify which tissue is affected more by inflammation. Methods Disc, facet joint and ligamentum flavum from 13 patients with DLS was retrieved, and the expression pattern of IL-19, IL-20, IL-20R1, IL-20R2, TNF-α, IL-1β, and MCP-1 was evaluated using immunohistochemical staining with specific antibodies. The disc cells were isolated and incubated with IL-19 and IL-20 under CoCl2-mimicked hypoxic conditions to analyze the proinflammatory cytokine expression pattern using real-time quantitative PCR with specific primers. Results IL-19 and IL-20 were positively stained and accompanied by abundant expression of TNF-α, IL-1β, and MCP-1 in facet joints of DLS patients. IL-19 and IL-20's receptors (IL-20R1 and IL-20R2) were expressed on chondrocytes and fibrocytes/fibroblasts in facet joint and ligamentum flavum tissues from patients with DLS. There was a significant correlation between the expression of IL-20 and IL-1β in facet joint. In vitro assay, IL-19 and IL-20 upregulated the expression of IL-1β, IL-6, TNF-α, IL-8, VEGF, and MCP-1 in primary cultured DLS disc cells under CoCl2-mimicked hypoxic conditions. Conclusions IL-19, IL-20, and their receptors as well as proinflammatory cytokines (TNF-α, IL-1β, and MCP-1) were expressed more in facet joints than the other tissues in patients with DLS; therefore, the etiology of inflammation might be more facet-centric. IL-19 and IL-20 induced proinflammatory cytokine expression in disc cells and might play a role in the pathogenesis of DLS.
Collapse
Affiliation(s)
- Kuo-Yuan Huang
- 1Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,2Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- 2Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- 4Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung, Memorial Hospital, Kaohsiung, Taiwan
| | - Hui-Ling Tsai
- 1Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Jou Yan
- 5Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Der Wang
- 6Department of Public of Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Lung Liu
- 1Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ruey-Mo Lin
- 7Department of Orthopedics, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| |
Collapse
|
78
|
Amelot A, Mazel C. The Intervertebral Disc: Physiology and Pathology of a Brittle Joint. World Neurosurg 2018; 120:265-273. [PMID: 30218798 DOI: 10.1016/j.wneu.2018.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Intervertebral disc (ID) degeneration represents the number one cause for outpatient clinic visits worldwide. Mechanisms are discussed but not yet clearly established. Consequently, back pain management is commonly limited to symptomatic treatment therapies. OBJECTIVES The aim of this review is to evaluate major progress and to unravel the biology and pathology of ID discogenic pain. METHODS The design of this study is a systematic review. A literature search was conducted using Medline, EMBASE, and Google Scholar databases, with no time constraints to locate relevant literature. Significant articles (literature reviews, therapeutic essays, clinical-human-research studies, animal research, and laboratory research) on the intervertebral disc were identified and reviewed. The exclusion criteria were the following: case reports and clinical studies with <10 patients. RESULTS Through a dense review of the literature, the ID is deciphered and described as a fragile anatomic entity. For this systematic review, 132 studies were identified and 79 were retained. The main deterioration and alteration mechanisms that lead to the programmed death of the ID are summarized. In addition, the large variety of biological therapies that override surgical treatment are determined. CONCLUSIONS The degeneration mechanisms of the ID are well defined and decrypted. Although therapies have progressed, none has been effective. The regeneration of the ID remains highly challenging because of the complexity of its natural composition, microstructure, and mechanical properties.
Collapse
Affiliation(s)
- Aymeric Amelot
- Department of Neurosurgery, La Pitié Salpétrière Hospital, Paris, France; Sorbonne-University, UPMC, University Paris, Paris, France.
| | - Christian Mazel
- Department of Orthopedic Surgery, L'Institut Mutualiste Montsouris, Paris, France
| |
Collapse
|
79
|
Thorpe AA, Bach FC, Tryfonidou MA, Le Maitre CL, Mwale F, Diwan AD, Ito K. Leaping the hurdles in developing regenerative treatments for the intervertebral disc from preclinical to clinical. JOR Spine 2018; 1:e1027. [PMID: 31463447 PMCID: PMC6686834 DOI: 10.1002/jsp2.1027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic back and neck pain is a prevalent disability, often caused by degeneration of the intervertebral disc. Because current treatments for this condition are less than satisfactory, a great deal of effort is being applied to develop new solutions, including regenerative strategies. However, the path from initial promising idea to clinical use is fraught with many hurdles to overcome. Many of the keys to success are not necessarily linked to science or innovation. Successful translation to clinic will also rely on planning and awareness of the hurdles. It will be essential to plan your entire path to clinic from the outset and to do this with a multidisciplinary team. Take advice early on regulatory aspects and focus on generating the proof required to satisfy regulatory approval. Scientific demonstration and societal benefits are important, but translation cannot occur without involving commercial parties, which are instrumental to support expensive clinical trials. This will only be possible when intellectual property can be protected sufficiently to support a business model. In this manner, commercial, societal, medical, and scientific partners can work together to ultimately improve patient health. Based on literature surveys and experiences of the co-authors, this opinion paper presents this pathway, highlights the most prominent issues and hopefully will aid in your own translational endeavors.
Collapse
Affiliation(s)
- Abbey A. Thorpe
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | | | - Fackson Mwale
- Department of SurgeryMcGill UniversityMontrealCanada
| | - Ashish D. Diwan
- Spine Service, Department of Orthopaedic SurgerySt. George & Sutherland Clinical School, University of New South WalesSydneyAustralia
| | - Keita Ito
- Orthopaedic Biomechanics Division, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Department of OrthopedicsUniversity Medical Centre UtrechtUtrechtthe Netherlands
| |
Collapse
|
80
|
Schubert AK, Smink JJ, Pumberger M, Putzier M, Sittinger M, Ringe J. Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells. J Orthop Surg Res 2018; 13:209. [PMID: 30134986 PMCID: PMC6106880 DOI: 10.1186/s13018-018-0914-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
Abstract
Background The lifetime prevalence of degenerative disc disease is dramatically high. Numerous investigations on disc degeneration have been performed on cells from annulus fibrosus (AF) and nucleus pulposus (NP) of the intervertebral disc (IVD) in cell culture experiments utilising a broad variety of basal culture media. Although the basal media differ in nutrient formulation, it is not known whether the choice of the basal media itself has an impact on the cell’s behaviour in vitro. In this study, we evaluated the most common media used for monolayer expansion of AF and NP cells to set standards for disc cell culture. Methods Human AF and NP cells were isolated from cervical discs. Cells were expanded in monolayer until passage P2 using six different common culture media containing alpha-Minimal Essential Medium (alpha-MEM), Dulbecco’s Modified Eagle’s Medium (DMEM) or Ham’s F-12 medium (Ham’s F-12) as single medium or in a mixture of two media (alpha/F-12, DMEM/alpha, DMEM/F-12). Cell morphology, cell growth, glycosaminoglycan production and quantitative gene expression of cartilage- and IVD-related markers aggrecan, collagen type II, forkhead box F1 and keratin 18 were analysed. Statistical analysis was performed with two-way ANOVA testing and Bonferroni compensation. Results AF and NP cells were expandable in all tested media. Both cell types showed similar cell morphology and characteristics of dedifferentiation known for cultured disc cells independently from the media. However, proceeding culture in Ham’s F-12 impeded cell growth of both AF and NP cells. Furthermore, the keratin 18 gene expression profile of NP cells was changed in alpha-MEM and Ham’s F-12. Conclusion The impact of the different media itself on disc cell’s behaviour in vitro was low. However, AF and NP cells were only robust, when DMEM was used as single medium or in a mixture (DMEM/alpha, DMEM/F-12). Therefore, we recommend using these media as standard medium for disc cell culture. Our findings are valuable for the harmonisation of preclinical study results and thereby push the development of cell therapies for clinical treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany. .,CO.DON AG, Teltow, Germany.
| | | | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Putzier
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| |
Collapse
|
81
|
CERROLAZA M, NIETO F, GONZÁLEZ Y. COMPUTATION OF THE DYNAMIC COMPRESSION EFFECTS IN SPINE DISCS USING INTEGRAL METHODS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519417501032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The computational modeling using integral methods of dynamic loading and its effects on the nutrients transport in spine discs is addressed in this work. The numerical simulation and analysis was carried out using the Boundary Element Method (BEM) and a 3D model (axisymmetric) of the disc. The boundary model was discretized using linear interpolated elements and a multi-region approach. Concentration and production of three nutrients as lactate, oxygen and glucose were obtained. The maximum lactate concentration was observed very close to the interface between the nucleus and the inner annulus. A relatively simple model discretized with 130 boundary elements yielded very similar results to these coming from more complex FEM-based models. The numerical efforts in the domain and boundary discretizations were optimized using the BEM. Our results are in good agreement with those obtained using with finite element-based models. As expected, the dynamic loading increased the oxygen–glucose consumption and the lactate production, thus leading to a poor oxygen–glucose concentration at the nucleus of the disc. All of that is a favorable environment for a disc degeneration mechanism to be developed.
Collapse
Affiliation(s)
- M. CERROLAZA
- International Center of Numerical Methods in Engineering, Polytechnic University of Catalonia, c/Gran Capitá s/n, 08034, Barcelona, Spain
| | - F. NIETO
- National Institute of Bioengineering, Central University of Venezuela, Caracas, Venezuela
| | - Y. GONZÁLEZ
- National Institute of Bioengineering, Central University of Venezuela, Caracas, Venezuela
- Faculty of Industrial Engineering, University of Guayaquil, Ecuador
| |
Collapse
|
82
|
Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration-Harnessing advances in tissue engineering. JOR Spine 2018; 1:e1029. [PMID: 30895276 PMCID: PMC6400108 DOI: 10.1002/jsp2.1029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Low back pain represents the highest burden of musculoskeletal diseases worldwide and intervertebral disc degeneration is frequently associated with this painful condition. Even though it remains challenging to clearly recognize generators of discogenic pain, tissue regeneration has been accepted as an effective treatment option with significant potential. Tissue engineering and regenerative medicine offer a plethora of exploratory pathways for functional repair or prevention of tissue breakdown. However, the intervertebral disc has extraordinary biological and mechanical demands that must be met to assure sustained success. This concise perspective review highlights the role of the disc microenvironment, mechanical and clinical design considerations, function vs mimicry in biomaterial‐based and cell engineering strategies, and potential constraints for clinical translation of regenerative therapies for the intervertebral disc.
Collapse
Affiliation(s)
- Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin Dublin Ireland.,School of Engineering, Trinity College Dublin The University of Dublin Dublin Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin Dublin Ireland
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine University of Manchester Manchester UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway Ireland
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA
| | | |
Collapse
|
83
|
Abstract
Mechanical loading of the intervertebral disc (IVD) initiates cell-mediated remodeling events that contribute to disc degeneration. Cells of the IVD, nucleus pulposus (NP) and anulus fibrosus (AF), will exhibit various responses to different mechanical stimuli which appear to be highly dependent on loading type, magnitude, duration, and anatomic zone of cell origin. Cells of the NP, the innermost region of the disc, exhibit an anabolic response to low-moderate magnitudes of static compression, osmotic pressure, or hydrostatic pressure, while higher magnitudes promote a catabolic response marked by increased protease expression and activity. Cells of the outer AF are responsive to physical forces in a manner that depends on frequency and magnitude, as are cells of the NP, though they experience different forces, deformations, pressure, and osmotic pressure in vivo. Much remains to be understood of the mechanotransduction pathways that regulate IVD cell responses to loading, including responses to specific stimuli and also differences among cell types. There is evidence that cytoskeletal remodeling and receptor-mediated signaling are important mechanotransduction events that can regulate downstream effects like gene expression and posttranslational biosynthesis, all of which may influence phenotype and bioactivity. These and other mechanotransduction events will be regulated by known and to-be-discovered cell-matrix and cell-cell interactions, and depend on composition of extracellular matrix ligands for cell interaction, matrix stiffness, and the phenotype of the cells themselves. Here, we present a review of the current knowledge of the role of mechanical stimuli and the impact upon the cellular response to loading and changes that occur with aging and degeneration of the IVD.
Collapse
Affiliation(s)
- Bailey V Fearing
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, Texas
| | - Lori A Setton
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nadeen O Chahine
- Department of Orthopedic Surgery & Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
84
|
Bardonova LA, Sheikh O, Malova IO, Sorokovikov VA, Byvaltsev VA. ENERGY SUPPLY AND DEMAND IN THE INTERVERTEBRAL DISC. COLUNA/COLUMNA 2018. [DOI: 10.1590/s1808-185120181703193837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The intervertebral disc (IVD) is one of the parts of the body most commonly affected by disease, and it is only recently that we have come closer to understanding the reasons for its degeneration, in which nutrient supply plays a crucial role. In this literature review, we discuss the basic principles and characteristics of energy supply and demand to the IVD. Specifically, we review how different metabolites influence IVD cell activity, the effects of mechanical loading on IVD cell metabolism, and differences in energy metabolism of the annulus fibrous and nucleus pulposus cell phenotypes. Determining the factors that influence nutrient supply and demand in the IVD will enhance our understanding of the IVD pathology, and help to elucidate new therapeutic targets for IVD degeneration treatment.
Collapse
|
85
|
De Geer CM. Intervertebral Disk Nutrients and Transport Mechanisms in Relation to Disk Degeneration: A Narrative Literature Review. J Chiropr Med 2018; 17:97-105. [PMID: 30166966 DOI: 10.1016/j.jcm.2017.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The purpose of this paper was to review the literature regarding the mechanisms leading to degeneration in intervertebral disks and to discuss contributing mechanical and biological factors. Methods The inclusion criteria for the literature review were research studies conducted in the last 3 decades with free full-text available in English. Review articles and articles pertaining to temporomandibular joints and joints of the body other than the intervertebral disk were excluded. The following databases were searched: PubMed, EBSCOhost, and Google Scholar through September 9, 2016. Results A total of 57 articles were used in this review. Intervertebral disk cells require glucose for sustainability and oxygen to synthesize matrix components. Nutrients enter the disk via 2 vascular supply routes: capillary beds of end plates and the peripheral annulus fibrosus. Solute size, shape and charge, compression, and metabolic demand all influence the efficiency of nutrient transport, and alterations of any of these factors may have effects on nutrient transport and, potentially, disk degeneration. Conclusions Progressive nutrient transport disruptions may actively contribute in advancing the phases of degenerative disk disease. Such disruptions include dysfunctional loading and spinal position, lack of motion, high frequency loading, disk injury, aging, smoking, an acidic environment, and a lack of nutrient bioavailability.
Collapse
|
86
|
Kouroumalis A, Mavrogonatou E, Savvidou OD, Papagelopoulos PJ, Pratsinis H, Kletsas D. Major traits of the senescent phenotype of nucleus pulposus intervertebral disc cells persist under the specific microenvironmental conditions of the tissue. Mech Ageing Dev 2018; 177:118-127. [PMID: 29778758 DOI: 10.1016/j.mad.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023]
Abstract
Intervertebral discs (IVDs) are the joints of the spine, mainly consisting of extracellular matrix (ECM) with a low number of cells embedded therein. Low cellularity stems from nutrient deprivation due to the lack of blood supply, as well as from the hypoxic and hyperosmotic conditions prevailing in the tissue. Intervertebral disc degeneration (IDD) has been firmly connected with low back pain, a major age-related disease, whereas degenerated discs have been characterized by increased proteolytic activity and accumulation of senescent cells. While the catabolic phenotype of senescent IVD cells has been documented, whether this phenotype is preserved under the harsh conditions met in the IVD milieu has never been investigated. Here we showed that a combination of low glucose, hypoxia, high osmolality and absence of serum is anti-proliferative for young disc cells. In addition, we demonstrated for the first time that classical senescence markers, namely p16INK4a, p21WAF1 and ICAM-1, remain up-regulated in senescent cells under these conditions. Finally, up-regulation of the main senescence-associated ECM degrading enzymes, i.e. MMP-1, -2 and -3 was maintained in this strict environment. Conservation of IVD cells' senescent phenotype under the actual conditions these cells are confronted with in vivo further supports their possible implication in IDD.
Collapse
Affiliation(s)
- Anastasios Kouroumalis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Olga D Savvidou
- The First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Medical School, ATTIKON University Hospital, Athens, Greece
| | - Panayiotis J Papagelopoulos
- The First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Medical School, ATTIKON University Hospital, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
87
|
Thompson K, Moore S, Tang S, Wiet M, Purmessur D. The chondrodystrophic dog: A clinically relevant intermediate-sized animal model for the study of intervertebral disc-associated spinal pain. JOR Spine 2018; 1:e1011. [PMID: 29984354 PMCID: PMC6018624 DOI: 10.1002/jsp2.1011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) is the leading cause of disability worldwide, with an estimated 80% of the American population suffering from a painful back condition at some point during their lives. The most common cause of LBP is intervertebral disc (IVD) degeneration (IVDD), a condition that can be difficult to treat, either surgically or medically, with current available therapies. Thus, understanding the pathological mechanisms of IVDD and developing novel treatments are critical for improving outcome and quality of life in people living with LBP. While experimental animal models provide valuable mechanistic insight, each model has limitations that complicate translation to the clinical setting. This review focuses on the chondrodystrophic canine clinical model of IVDD as a promising model to assess IVD-associated spinal pain and translational therapeutic strategies for LBP. The canine IVD, while smaller in size than human, goat, ovine, and bovine IVDs, is larger than most other small animal IVDD models and undergoes maturational changes similar to those of the human IVD. Furthermore, both dogs and humans develop painful IVDD as a spontaneous process, resulting in similar characteristic pathologies and clinical signs. Future exploration of the canine model as a model of IVD-associated spinal pain and biological treatments using the canine clinical model will further demonstrate its translational capabilities with the added ethical benefit of treating an existing veterinary patient population with IVDD.
Collapse
Affiliation(s)
- Kelly Thompson
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Sarah Moore
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Shirley Tang
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Matthew Wiet
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Devina Purmessur
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
- Department of Orthopedics, College of MedicineThe Ohio State UniversityColumbusOhio
| |
Collapse
|
88
|
Hodson NW, Patel S, Richardson SM, Hoyland JA, Gilbert HTJ. Degenerate intervertebral disc-like pH induces a catabolic mechanoresponse in human nucleus pulposus cells. JOR Spine 2018; 1:e1004. [PMID: 31463436 PMCID: PMC6711490 DOI: 10.1002/jsp2.1004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 11/07/2022] Open
Abstract
Mechanical stimulation is known to influence intervertebral disc (IVD) cell behavior and function, but the effect on disc cells is routinely considered in isolation from other microenvironmental factors. Acidic pH has been shown to be a prominent and detrimental microenvironmental factor present in degenerate IVDs, but its influence on the human disc cell mechanoresponse has never been studied. We investigated the response of agarose-encapsulated human nucleus pulposus (NP) cells to 0.004 MPa, 1.0 Hz and 1 hour of compression (Flexcell FX4000 Compression System) under pH conditions representative of nondegenerate (pH 7.1) and degenerate (pH 6.5) IVDs. Cell viability, extracellular matrix production, and expression of anabolic/anti-catabolic and catabolic genes were assessed. We report that preculture of NP cells in agarose gels was required in order for cells to be mechanoresponsive, and this correlated with increased type VI collagen, α5β1 integrin, and fibronectin expression. Furthermore, the matrix homeostatic response observed at pH 7.1 (representative of nondegenerate IVDs; increased aggrecan [AGC], tissue inhibitor of metalloproteinases-1 [TIMP1], matrix metalloproteinase-3 [MMP3], a disintegrin and metalloproteinase with thrombospondin motif-5 [ADAMTS5] gene expression) was RGD-integrin dependent, whereas only MMP3 remained mechanoresponsive at pH 6.5, and this was independent of RGD-integrins. Our findings suggest differential mechanotransduction pathways operating for specific genes, with RGD-integrin dependent AGC expression, but not RGD-independent MMP3 expression, inhibited at pH representative of degenerate IVDs (pH 6.5), which could contribute to the catabolic phenotype observed during IVD degeneration. CLINICAL SIGNIFICANCE Characterizing the influence of the mechanical and chemical intervertebral disc microenvironment on disc cells, particularly in disc degeneration, could help develop future therapeutic strategies for the treatment of discogenic back pain.
Collapse
Affiliation(s)
- Nathan W. Hodson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Sonal Patel
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
| | - Hamish T. J. Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Wellcome Trust Centre for Cell‐Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
89
|
Silagi ES, Schoepflin ZR, Seifert EL, Merceron C, Schipani E, Shapiro IM, Risbud MV. Bicarbonate Recycling by HIF-1-Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells. J Bone Miner Res 2018; 33:338-355. [PMID: 28940640 PMCID: PMC5947995 DOI: 10.1002/jbmr.3293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/18/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration is a ubiquitous condition closely linked to chronic low-back pain. The health of the avascular nucleus pulposus (NP) plays a crucial role in the development of this pathology. We tested the hypothesis that a network comprising HIF-1α, carbonic anhydrase (CA) 9 and 12 isoforms, and sodium-coupled bicarbonate cotransporters (NBCs) buffer intracellular pH through coordinated bicarbonate recycling. Contrary to the current understanding of NP cell metabolism, analysis of metabolic-flux data from Seahorse XF analyzer showed that CO2 hydration contributes a significant source of extracellular proton production in NP cells, with a smaller input from glycolysis. Because enzymatic hydration of CO2 is catalyzed by plasma membrane-associated CAs we measured their expression and function in NP tissue. NP cells robustly expressed isoforms CA9/12, which were hypoxia-inducible. In addition to increased mRNA stability under hypoxia, we observed binding of HIF-1α to select hypoxia-responsive elements on CA9/12 promoters using genomic chromatin immunoprecipitation. Importantly, in vitro loss of function studies and analysis of discs from NP-specific HIF-1α null mice confirmed the dependency of CA9/12 expression on HIF-1α. As expected, inhibition of CA activity decreased extracellular acidification rate independent of changes in HIF activity or lactate/H+ efflux. Surprisingly, CA inhibition resulted in a concomitant decrease in intracellular pH that was mirrored by inhibition of sodium-bicarbonate importers. These results suggested that extracellular bicarbonate generated by CA9/12 is recycled to buffer cytosolic pH fluctuations. Importantly, long-term intracellular acidification from CA inhibition lead to compromised cell viability, suggesting that plasma-membrane proton extrusion pathways alone are not sufficient to maintain homeostatic pH in NP cells. Taken together, our studies show for the first time that bicarbonate buffering through the HIF-1α-CA axis is critical for NP cell survival in the hypoxic niche of the intervertebral disc. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth S. Silagi
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Zachary R. Schoepflin
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Erin L. Seifert
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Christophe Merceron
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Medicine, Division of Endocrinology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Irving M. Shapiro
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Makarand V. Risbud
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
90
|
Abstract
STUDY DESIGN In vitro measurements of the oxygen consumption rates (OCR) of human intervertebral disc (IVD) cells. OBJECTIVE The aim of this study was to determine the differences in the OCR of nondegenerate and degenerate human annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP) cells at different glucose concentrations. SUMMARY OF BACKGROUND DATA The avascular nature of the IVD creates a delicate balance between rate of nutrient transport through the matrix and rate of disc cell consumption necessary to maintain tissue health. Previous studies have shown a dependence of OCR for animal (e.g., bovine and porcine) IVD cells on oxygen level and glucose concentration. However, the OCR of nondegenerate human IVD cells compared to degenerate human IVD cells at different glucose concentrations has not been investigated. METHODS IVD cells were isolated from the AF, NP, and CEP regions of human cadaver spines and surgical samples. The changes in oxygen concentration were recorded when cells were sealed in a metabolic chamber. The OCR of cells was determined by curve fitting using the Michaelis-Menton equation. RESULTS Under identical cell culture conditions, the OCR of degenerate human IVD cells was three to five times greater than that of nondegenerate human IVD cells. The degenerate IVD cells cultured in low-glucose medium (1 mmol/L) exhibited the highest OCR compared to degenerate cells cultured at higher glucose levels (i.e., 5 mmol/L, 25 mmol/L), whereas no significant differences in OCR were found among the nondegenerate IVD cells for all glucose levels. CONCLUSION Considering the significantly higher OCR and unique response to glucose of degenerate human IVD cells, the degeneration of the IVD is associated with a cell phenotypic change related to OCR. The OCR of IVD cells reported in this study will be valuable for understanding human IVD cellular behavior and tissue nutrition in response to disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
91
|
Cheema U, Hadjipanayi E, Tamimi N, Alp B, Mudera V, Brown RA. Identification of Key Factors in Deep O2 Cell Perfusion for Vascular Tissue Engineering. Int J Artif Organs 2018; 32:318-28. [DOI: 10.1177/039139880903200602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessel engineering requires an understanding of the parameters governing the survival of resident vascular smooth muscle cells. We have developed an in vitro, collagen-based 3D model of vascular media to examine the correlation of cell density, O2 requirements, and viability. Dense collagen sheets (100 μxm) seeded with porcine pulmonary artery smooth muscle cells (PASMCs) at low or high (11.6 or 23.2x106 cells/mL) densities were spiraled around a mandrel to create tubular constructs and cultured for up to 6 days in vitro, under both static and dynamic perfusion conditions. Real-time in situ monitoring showed that within 24 hours core O2 tension dropped from 140 mmHg to 20 mmHg and 80 mmHg for high and low cell density static cultures, respectively, with no significant cell death associated with the lowest O2 tension. A significant reduction in core O2 tension to 60 mmHg was achieved by increasing the O2 diffusion distance of low cell density constructs by 33% (p<0.05). After 6 days of static, high cell density culture, viability significantly decreased in the core (55%), with little effect at the surface (75%), whereas dynamic perfusion in a re-circulating bioreactor (1 ml/min) significantly improved core viability (70%, p<0.05), largely eliminating the problem. This study has identified key parameters dictating vascular smooth muscle cell behavior in 3D engineered tissue culture.
Collapse
Affiliation(s)
- Umber Cheema
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Ektoras Hadjipanayi
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Noor Tamimi
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Burcak Alp
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Vivek Mudera
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Robert A. Brown
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| |
Collapse
|
92
|
Zhang C, Wang F, Xie Z, Chen L, Sinkemani A, Yu H, Wang K, Mao L, Wu X. Dysregulation of YAP by the Hippo pathway is involved in intervertebral disc degeneration, cell contact inhibition, and cell senescence. Oncotarget 2017; 9:2175-2192. [PMID: 29416763 PMCID: PMC5788631 DOI: 10.18632/oncotarget.23299] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
The Hippo pathway plays important roles in wound healing, tissue repair and regeneration, and in the treatment of degenerative diseases, by regulating cell proliferation and apoptosis in mammals. Intervertebral disc degeneration (IDD) is one of the major causes of low back pain, a widespread issue associated with a heavy economic burden. However, the mechanism underlying how the Hippo pathway regulates IDD is not well understood. Here, we demonstrate that the Hippo pathway is involved in natural IDD. Activation and dephosphorylation of yes-associated protein (YAP) were observed in younger rat discs, and decreased gradually with age. Surprisingly, Hippo pathway suppression was accompanied by overexpression of YAP, caused by acute disc injury, suggesting a limited ability for self-repair in IDD. We also demonstrated that YAP is inhibited by cell-to-cell contact via the Hippo pathway in vitro. Phosphorylation by large tumor suppressor kinases 1/2 (LATS1/2) led to cytoplasmic translocation and inactivation of YAP. YAP dephosphorylation was mainly localized in the nucleus and regulated by the Hippo pathway, whereas YAP dephosphorylation occurred in the cytoplasm and was associated with nucleus pulposus cell (NPC) senescence. Moreover, NPCs were transfected with shYAP and it accelerates the premature senescence of cells by interfered Hippo pathway through YAP. Therefore, our results indicate that the Hippo pathway plays an important role in maintaining the homeostasis of intervertebral discs and controlling NPC proliferation.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhiyang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haomin Yu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kun Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
93
|
Wright GJ, Coombs MC, Wu Y, Damon BJ, Bacro TH, Kern MJ, Chen X, Yao H. Electrical Conductivity Method to Determine Sexual Dimorphisms in Human Temporomandibular Disc Fixed Charge Density. Ann Biomed Eng 2017; 46:310-317. [PMID: 29181723 DOI: 10.1007/s10439-017-1963-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
To investigate potential mechanisms associated with the increased prevalence of temporomandibular joint (TMJ) disorders among women, the study objective was to determine sex-dependent and region-dependent differences in fixed charge density (FCD) using an electrical conductivity method. Seventeen TMJ discs were harvested from nine males (77 ± 4 years) and eight females (86 ± 4 years). Specimens were prepared from the anterior band, posterior band, intermediate zone, medial disc and lateral disc. FCD was determined using an electrical conductivity method, assessing differences among disc regions and between sexes. Statistical modeling showed significant effects for donor sex (p = 0.002), with cross-region FCD for male discs 0.051 ± 0.018 milliequivalent moles per gram (mEq/g) wet tissue and 0.043 ± 0.020 mEq/g wet tissue for female discs. FCD was significantly higher for male discs compared to female discs in the posterior band, with FCD 0.063 ± 0.015 mEq/g wet tissue for male discs and 0.032 ± 0.020 mEq/g wet tissue for female discs (p = 0.050). These results indicate FCD contributes approximately 20% towards TMJ disc compressive modulus, through osmotic swelling pressure regulation. Additionally, FCD regulates critical extracellular ionic/osmotic and nutrient environments. Sexual dimorphisms in TMJ disc FCD, and resulting differences in extracellular ionic/osmotic and nutrient environments, could result in altered mechano-electro-chemical environments between males and females and requires further study.
Collapse
Affiliation(s)
- Gregory J Wright
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA
| | - Matthew C Coombs
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA.,Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Yongren Wu
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA
| | - Brooke J Damon
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA.,Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Thierry H Bacro
- Center for Anatomical Studies and Education, MUSC, Charleston, SC, USA
| | - Michael J Kern
- Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Xiaojing Chen
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA. .,Xiangya School of Stomatology, Central South University, 72 Xiangya Rd, Changsha, China.
| | - Hai Yao
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA. .,Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA.
| |
Collapse
|
94
|
Ageing affects chondroitin sulfates and their synthetic enzymes in the intervertebral disc. Signal Transduct Target Ther 2017; 2:17049. [PMID: 29263929 PMCID: PMC5661628 DOI: 10.1038/sigtrans.2017.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
The depletion of chondroitin sulfates (CSs) within the intervertebral disc (IVD) during degenerative disc disease (DDD) results in a decrease in tissue hydration, a loss of fluid movement, cell apoptosis, a loss of nerve growth inhibition and ultimately, the loss of disc function. To date, little is known with regards to the structure and content of chondroitin sulfates (CSs) during IVD ageing. The behavior of glycosaminoglycans (GAGs), specifically CSs, as well as xylosyltransferase I (XT-I) and glucuronyltransferase I (GT-I), two key enzymes involved in CS synthesis as a primer of glycosaminoglycan (GAG) chain elongation and GAG synthesis in the nucleus pulposus (NP), respectively, were evaluated in a bovine ageing IVD model. Here, we showed significant changes in the composition of GAGs during the disc ageing process (6-month-old, 2-year-old and 8-year-old IVDs representing the immature to mature skeleton). The CS quantity and composition of annulus fibrosus (AF) and NP were determined. The expression of both XT-I and GT-I was detected using immunohistochemistry. A significant decrease in GAGs was observed during the ageing process. CSs are affected at both the structural and quantitative levels with important changes in sulfation observed upon maturity, which correlated with a decrease in the expression of both XT-I and GT-I. A progressive switch of the sulfation profile was noted in both NP and AF tissues from 6 months to 8 years. These changes give an appreciation of the potential impact of CSs on the disc biology and the development of therapeutic approaches for disc regeneration and repair.
Collapse
|
95
|
Quantifying Baseline Fixed Charge Density in Healthy Human Cartilage Endplate: A Two-point Electrical Conductivity Method. Spine (Phila Pa 1976) 2017; 42:E1002-E1009. [PMID: 28699925 PMCID: PMC5509527 DOI: 10.1097/brs.0000000000002061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Regional measurements of fixed charge densities (FCDs) of healthy human cartilage endplate (CEP) using a two-point electrical conductivity approach. OBJECTIVE The aim of this study was to determine the FCDs at four different regions (central, lateral, anterior, and posterior) of human CEP, and correlate the FCDs with tissue biochemical composition. SUMMARY OF BACKGROUND DATA The CEP, a thin layer of hyaline cartilage on the cranial and caudal surfaces of the intervertebral disc, plays an irreplaceable role in maintaining the unique physiological mechano-electrochemical environment inside the disc. FCD, arising from the carboxyl and sulfate groups of the glycosaminoglycans (GAG) in the extracellular matrix of the disc, is a key regulator of the disc ionic and osmotic environment through physicochemical and electrokinetic effects. Although FCDs in the annulus fibrosus (AF) and nucleus pulposus (NP) have been reported, quantitative baseline FCD in healthy human CEP has not been reported. METHODS CEP specimens were regionally isolated from human lumbar spines. FCD and ion diffusivity were concurrently investigated using a two-point electrical conductivity method. Biochemical assays were used to quantify regional GAG and water content. RESULTS FCD in healthy human CEP was region-dependent, with FCD lowest in the lateral region (P = 0.044). Cross-region FCD was 30% to 60% smaller than FCD in NP, but similar to the AF and articular cartilage (AC). CEP FCD (average: 0.12 ± 0.03 mEq/g wet tissue) was correlated with GAG content (average: 31.24 ± 5.06 μg/mg wet tissue) (P = 0.005). In addition, the cross-region ion diffusivity in healthy CEP (2.97 ± 1.00 × 10 cm/s) was much smaller than the AF and NP. CONCLUSION Healthy human CEP acts as a biomechanical interface, distributing loads between the bony vertebral body and soft disc tissues and as a gateway impeding rapid solute diffusion through the disc. LEVEL OF EVIDENCE N/A.
Collapse
|
96
|
Enhancement of Energy Production of the Intervertebral Disc by the Implantation of Polyurethane Mass Transfer Devices. Ann Biomed Eng 2017; 45:2098-2108. [PMID: 28612187 DOI: 10.1007/s10439-017-1867-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
Insufficient nutrient supply has been suggested to be one of the etiologies for intervertebral disc (IVD) degeneration. We are investigating nutrient transport into the IVD as a potential treatment strategy for disc degeneration. Most cellular activities in the IVD (e.g., cell proliferation and extracellular matrix production) are mainly driven by adenosine-5'-triphosphate (ATP) which is the main energy currency. The objective of this study was to investigate the effect of increased mass transfer on ATP production in the IVD by the implantation of polyurethane (PU) mass transfer devices. In this study, the porcine functional spine units were used and divided into intact, device and surgical groups. For the device and surgical groups, two puncture holes were created bilaterally at the dorsal side of the annulus fibrosus (AF) region and the PU mass transfer devices were only implanted into the holes in the device group. Surgical groups were observed for the effects of placing the holes through the AF only. After 7 days of culture, the surgical group exhibited a significant reduction in the compressive stiffness and disc height compared to the intact and device groups, whereas no significant differences were found in compressive stiffness, disc height and cell viability between the intact and device groups. ATP, lactate and the proteoglycan contents in the device group were significantly higher than the intact group. These results indicated that the implantation of the PU mass transfer device can promote the nutrient transport and enhance energy production without compromising mechanical and cellular functions in the disc. These results also suggested that compromise to the AF has a negative impact on the IVD and must be addressed when treatment strategies are considered. The results of this study will help guide the development of potential strategies for disc degeneration.
Collapse
|
97
|
Liu J, Tao H, Wang H, Dong F, Zhang R, Li J, Ge P, Song P, Zhang H, Xu P, Liu X, Shen C. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration. Stem Cells Dev 2017; 26:901-911. [PMID: 28298159 DOI: 10.1089/scd.2016.0314] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An acidic environment is vital for the maintenance of cellular activities but can be affected tremendously during intervertebral disc degeneration (IVDD). The effect of changes in the acidity of the environment on human nucleus pulposus mesenchymal stem cells (NP-MSCs) is, however, unknown. Thus, this study aimed to observe the biological effects of acidic conditions mimicking a degenerated intervertebral disc on NP-MSCs in vitro. NP-MSCs were isolated from patients with lumbar disc herniation and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were cultured at acidic pH levels (pH 6.2, pH 6.5, pH 6.8, pH 7.1, and pH 7.4) with/without amiloride, an acid-sensing ion channel (ASIC) blocker. The proliferation and apoptosis of NP-MSCs and the expression of stem cell-related genes (Oct4, Nanog, Jagged, Notch1), ASICs, and functional genes (Aggrecan, SOX-9, Collagen-I, and Collagen-II) in NP-MSCs were evaluated. Our work showed that cells obtained from human degenerated NP met the criteria of International Society for Cellular Therapy. Therefore, cells obtained from a degenerated nucleus pulposus were definitively identified as NP-MSCs. Our results also indicated that acidic conditions could significantly inhibit cell proliferation and increase cell apoptosis. Gene expression results demonstrated that acidic conditions could decrease the expression of stem cell-related genes and inhibit extracellular matrix synthesis, whereas it could increase the expression of ASICs. Our study further verified that the above-mentioned biological activities of NP-MSCs could be significantly improved by amiloride. Therefore, the results of the study indicated that the biological behavior of NP-MSCs could be inhibited by acidic conditions during IVDD, and amiloride may meliorate IVDD by improving the activities of NP-MSCs.
Collapse
Affiliation(s)
- Jianjun Liu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hui Tao
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hanbang Wang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Fulong Dong
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Renjie Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Jie Li
- 2 Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Ge
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peiwen Song
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Huaqing Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Xu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Xiaoying Liu
- 3 Biology Department, School of Life Science, Anhui Medical University , Hefei, People's Republic of China
| | - Cailiang Shen
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| |
Collapse
|
98
|
Vedicherla S, Buckley CT. In vitro extracellular matrix accumulation of nasal and articular chondrocytes for intervertebral disc repair. Tissue Cell 2017; 49:503-513. [PMID: 28515001 DOI: 10.1016/j.tice.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Chondrocyte based regenerative therapies for intervertebral disc repair such as Autologous Disc Cell Transplantation (ADCT, CODON) and allogeneic juvenile chondrocyte implantation (NuQu®, ISTO Technologies) have demonstrated good outcomes in clinical trials. However concerns remain with the supply demand reconciliation and issues surrounding immunoreactivity which exist for allogeneic-type technologies. The use of stem cells is challenging due to high growth factor requirements, regulatory barriers and differentiation towards a stable phenotype. Therefore, there is a need to identify alternative non-disc cell sources for the development and clinical translation of next generation therapies for IVD regeneration. In this study, we compared Nasal Chondrocytes (NC) as a non-disc alternative chondrocyte source with Articular Chondrocytes (AC) in terms of cell yield, morphology, proliferation kinetics and ability to produce key extracellular matrix components under 5% and 20% oxygen conditions, with and without exogenous TGF-β supplementation. Results indicated that NC maintained proliferative capacity with high amounts of sGAG and lower collagen accumulation in the absence of TGF-β supplementation under 5% oxygen conditions. Importantly, osteogenesis and calcification was inhibited for NC when cultured in IVD-like microenvironmental conditions. The present study provides a rationale for the exploration of nasal chondrocytes as a promising, potent and clinically feasible autologous cell source for putative IVD repair strategies.
Collapse
Affiliation(s)
- S Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland
| | - C T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Ireland.
| |
Collapse
|
99
|
Ye Y, Zhang C, Zhu K, Xu G, Han Z, Le Y. [Effect of Melittin on collagen type II expression of rat endplate chondrocytes induced by interleukin 1β]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:345-350. [PMID: 29806266 DOI: 10.7507/1002-1892.201609062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To observe the effect of Melittin on collagen type II (Col-II) expression of rat endplate chondrocytes (EPCs) induced by interleukin 1β (IL-1β). Methods Primary EPCs from the lumbar vertebra of 4-week-old Sprague Dawley rats were cultured in vitro and identified by morphological observation, toluidine blue staining and Col-II immunofluorescence staining. Then, MTT assay was used to determine the optimal concentration of IL-1 and Melittin. Next, EPCs at passage 3 were randomly divided into 4 groups: no treatment was done in group A as control group; the optimal concentration of IL-1β, Melittin, and both IL-1β and Melittin were used in groups B, C, and D respectively. The expression of Col-II was detected by Western blot after 48 hours intervention. Results Under inverted microscope, the first generation EPCs were polygonal; cell proliferation decreased after fifth generation, and cell morphology changed into fusiform. The acidic mucosubstance in the cytoplasm (such as Aggrecan) was stained dark blue by toluidine blue. After marking Col-II by immunofluorescence, the positive expression of cytoskeleton (green fluorescence) could be observed. MTT assay showed that IL-1β and Melittin could inhibit the EPCs in a dose-dependent manner after intervention of 24 and 48 hours, and the optimal concentrations of IL-1β and Melittin intervention were 10 ng/mL and 1.0 μg/mL respectively. Compared with group A, the expression of Col-II was significantly reduced in group B, and was significantly increased in group C by Western blot assay, but there was no significant difference between group D and group A. The Col-II expression levels of groups A, B, C, and D were 0.991±0.024, 0.474±0.127, 1.913±0.350, and 1.159±0.297 respectively, showing significant difference between the other groups ( P<0.05) except between group A and group D ( P>0.05). Conclusion Melittin has a protective effect on endplate cartilage, and the research results provide experimental basis for the prevention and treatment of spinal degenerative disease.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233030, P.R.China
| | - Changchun Zhang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233030,
| | - Kun Zhu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233030, P.R.China
| | - Gang Xu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233030, P.R.China
| | - Zhongbing Han
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233030, P.R.China
| | - Yi Le
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233030, P.R.China
| |
Collapse
|
100
|
Vedicherla S, Buckley CT. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. J Orthop Res 2017; 35:8-22. [PMID: 27104885 DOI: 10.1002/jor.23268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
Lower back pain from degenerative disc disease represents a global health burden, and presents a prominent opportunity for regenerative therapeutics. While current regenerative therapies such as autologous disc chondrocyte transplantation (ADCT), allogeneic juvenile chondrocyte implantation (NuQu®), and immunoselected allogeneic adipose derived precursor cells (Mesoblast) show exciting clinical potential, limitations remain. The heterogeneity of preclinical approaches and the paucity of clinical guidance have limited translational outcomes in disc repair, lagging almost a decade behind cartilage repair. Advances in cartilage repair have evolved to single step approaches with improved orthopedic repair and regeneration. Elements from cartilage regeneration endeavors could be adopted and applied to harness translatable approaches and deliver a clinically and economically feasible regenerative surgery for back pain. In this article, we trace the developments behind the translational success of cartilage repair, examine elements to consider in achieving disc regeneration, and the need for surgical redesign. We further discuss clinical parameters, objectives, and coordination required to deliver improved regenerative surgery. Cell source, processing, and delivery modalities are key issues to be addressed in considering surgical redesign. Advances in biomanufacturing, tissue cryobanking, and point of care cell processing technology may enable intraoperative solutions for single step procedures. To maximize translational success a triad partnership between clinicians, industry, and researchers will be critical in providing instructive clinical guidelines for design as well as practical and economic considerations. This will allow a consensus in research ventures and add regenerative surgery into the algorithm in managing and treating a debilitating condition such as back pain. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:8-22, 2017.
Collapse
Affiliation(s)
- Srujana Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,School of Medicine, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|