51
|
Nawaz F, Cicala C, Van Ryk D, Block KE, Jelicic K, McNally JP, Ogundare O, Pascuccio M, Patel N, Wei D, Fauci AS, Arthos J. The genotype of early-transmitting HIV gp120s promotes α (4) β(7)-reactivity, revealing α (4) β(7) +/CD4+ T cells as key targets in mucosal transmission. PLoS Pathog 2011; 7:e1001301. [PMID: 21383973 PMCID: PMC3044691 DOI: 10.1371/journal.ppat.1001301] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/19/2011] [Indexed: 12/24/2022] Open
Abstract
Mucosal transmission of HIV is inefficient. The virus must breach physical barriers before it infects mucosal CD4+ T cells. Low-level viral replication occurs initially in mucosal CD4+ T cells, but within days high-level replication occurs in Peyer's patches, the gut lamina propria and mesenteric lymph nodes. Understanding the early events in HIV transmission may provide valuable information relevant to the development of an HIV vaccine. The viral quasispecies in a donor contracts through a genetic bottleneck in the recipient, such that, in low-risk settings, infection is frequently established by a single founder virus. Early-transmitting viruses in subtypes A and C mucosal transmission tend to encode gp120s with reduced numbers of N-linked glycosylation sites at specific positions throughout the V1-V4 domains, relative to typical chronically replicating isolates in the donor quasispecies. The transmission advantage gained by the absence of these N-linked glycosylation sites is unknown. Using primary α4β7+/CD4+ T cells and a flow-cytometry based steady-state binding assay we show that the removal of transmission-associated N-linked glycosylation sites results in large increases in the specific reactivity of gp120 for integrin- α4β7. High-affinity for integrin α4β7, although not found in many gp120s, was observed in early-transmitting gp120s that we analyzed. Increased α4β7 affinity is mediated by sequences encoded in gp120 V1/V2. α4β7-reactivity was also influenced by N-linked glycosylation sites located in C3/V4. These results suggest that the genetic bottleneck that occurs after transmission may frequently involve a relative requirement for the productive infection of α4β7+/CD4+ T cells. Early-transmitting gp120s were further distinguished by their dependence on avidity-effects to interact with CD4, suggesting that these gp120s bear unusual structural features not present in many well-characterized gp120s derived from chronically replicating viruses. Understanding the structural features that characterize early-transmitting gp120s may aid in the design of an effective gp120-based subunit vaccine. In the first days following sexual transmission, HIV replication occurs initially at relatively low levels in mucosal tissues because of a paucity of CD4+ T cell targets for the virus to infect. After a period of days, virus accesses specific gut tissues that are enriched in activated CD4+ T cells, where near-exponential replication ensues. The period of time before HIV accesses gut tissues represents a window of opportunity where a microbicide, pre-exposure and/or post-exposure antiretroviral prophylaxis or a vaccine-induced immune response could block infection. We previously reported that the HIV envelope protein gp120 binds to integrin α4β7 on the surface of CD4+ T cells. α4β7 mediates the homing of CD4+ T cells into the gut tissues where HIV can replicate exponentially. Here we report that the genotypic features that distinguish viruses isolated within the first month after infection, termed early-transmitting isolates, promote increased steady-state reactivity with α4β7. This property likely provides these viruses with enhanced transmission-fitness. These results suggest that the infection of α4β7+/CD4+ T cells can play an important role early in HIV transmission. These findings have potentially important implications in the design of interventions to block the mucosal transmission of HIV.
Collapse
Affiliation(s)
- Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- New York University School of Medicine Sackler Institute of Graduate Biomedical Sciences, New York, New York, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katharine E. Block
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katija Jelicic
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan P. McNally
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olajumoke Ogundare
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Massimiliano Pascuccio
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nikita Patel
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
52
|
Haynes BF, Moody MA, Liao HX, Verkoczy L, Tomaras GD. B cell responses to HIV-1 infection and vaccination: pathways to preventing infection. Trends Mol Med 2011; 17:108-16. [PMID: 21112250 PMCID: PMC3053087 DOI: 10.1016/j.molmed.2010.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 12/22/2022]
Abstract
The B cell arm of the immune response becomes activated soon after HIV-1 transmission, yet the initial antibody response does not control HIV-1 replication, and it takes months for neutralizing antibodies to develop against the autologous virus. Antibodies that can be broadly protective are made only in a minority of subjects and take years to develop--too late to affect the course of disease. New studies of the earliest stages of HIV-1 infection, new techniques to probe the human B cell repertoire, the modest degree of efficacy in a vaccine trial and new studies of human monoclonal antibodies that represent the types of immune responses an HIV-1 vaccine should induce are collectively illuminating paths that a successful HIV-1 vaccine might take.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute and the Duke Center for AIDS Research, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
53
|
Cicala C, Arthos J, Fauci AS. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med 2011; 9 Suppl 1:S2. [PMID: 21284901 PMCID: PMC3105502 DOI: 10.1186/1479-5876-9-s1-s2] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses) predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses). The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells, α4β7 is closely associated with CD4 and CCR5. Furthermore, α4β7 is ~3 times the size of CD4 on the cell surface, that makes it a prominent receptor for an efficient virus capture. gp120-α4β7 interactions mediate the activation of the adhesion-associated integrin LFA-1. LFA-1 facilitates the formation of virological synapses and cell-to-cell spread of HIV-1. gp120 binding to α4β7 is mediated by a tripeptide located in the V1/V2 domain of gp120. Of note, the V1/V2 domain of gp120 has been linked to variations in transmission fitness among viral isolates raising the intriguing possibility that gp120-α4β7 interactions may be linked to transmission fitness. Although many details remain unresolved, we hypothesize that gp120-α4β7 interactions play an important role in the very early events following sexual transmission of HIV and may have important implication in the design of vaccine strategies for the prevention of acquisition of HIV infection
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
54
|
McElrath MJ, Haynes BF. Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 2010; 33:542-54. [PMID: 21029964 PMCID: PMC3031162 DOI: 10.1016/j.immuni.2010.09.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Indexed: 12/27/2022]
Abstract
Recent findings have brought optimism that development of a successful human immunodeficiency virus type-1 (HIV-1) vaccine lies within reach. Studies of early events in HIV-1 infection have revealed when and where HIV-1 is potentially vulnerable to vaccine-targeted immune responses. With technical advances in human antibody production, clues about how antibodies recognize HIV-1 envelope proteins have uncovered new targets for immunogen design. A recent vaccine regimen has shown modest efficacy against HIV-1 acquisition. However, inducing long-term T and B cell memory and coping with HIV-1 diversity remain high priorities. Mediators of innate immunity may play pivotal roles in blocking infection and shaping immunity; vaccine strategies to capture these activities are under investigation. Challenges remain in integrating basic, preclinical and clinical research to improve predictions of types of immunity associated with vaccine efficacy, to apply these insights to immunogen design, and to accelerate evaluation of vaccine efficacy in persons at-risk for infection.
Collapse
Affiliation(s)
- M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., D3-100, Seattle, WA 98109, USA.
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW Improvements in sequencing approaches and robust mathematical modeling have dramatically increased information on viral genetics during acute infection with HIV and simian immunodeficiency virus, providing unprecedented insight into viral transmission and viral/immune interactions. RECENT FINDINGS Overall viral genetic diversity is reduced significantly during mucosal transmission. Remarkably, in the vast majority of sexual transmissions, this diversity is reduced to a single viral variant that establishes the initial productive clinical infection. By identifying and enumerating transmitted/founder viruses, researchers can begin to define the characteristics that are necessary and sufficient for successful viral replication within a new host. SUMMARY Acute HIV infection is a critical window of opportunity for vaccine and therapeutic intervention. New sequencing technologies and mathematical modeling of transmission and early evolution have provided a clearer understanding of the number of founder viruses that establish infection, the rapid generation of diversity in these viruses and the subsequent evasion of host immunity. The information gained by identifying transmitted viruses, monitoring the initial host responses to these viruses and then identifying mechanisms of viral escape could provide better strategies for vaccine development, preexposure prophylaxis, microbicides, or other therapeutic interventions.
Collapse
Affiliation(s)
- Brandon F Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| |
Collapse
|