51
|
Chaudhry MA, Mushtaq MN, Bukhari IA, Assiri AM. Ipomoea hederacea Jacq.: A plant with promising antihypertensive and cardio-protective effects. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113584. [PMID: 33189838 DOI: 10.1016/j.jep.2020.113584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/24/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seeds of Ipomoea hederacea Jacq. (family: Convolvulaceae) are traditionally used to treat high blood pressure and cardiac diseases. AIM OF THE STUDY Present study was conducted to validate the traditional claim and explore the possible mechanism(s) of antihypertensive effects of I. hederacea. MATERIALS AND METHODS Aqueous-ethanolic extract and activity based fractions of I. hederacea were evaluated using invasive blood pressure measuring technique, isolated tissue experiments, fructose induced hypertension/metabolic syndrome and biochemical analysis.Phytochemical analysis of active fraction was performed with aim to identify chemical composition of I. hederacea seeds. LC-MS analysis was also performed to identify the compounds proposed to be present in active fraction of I. hederacea seeds. RESULTS Crude extract/fractions of I. hederacea showed dose (0.01-100 mg/kg) dependent significant hypotensive effect in normotensive anesthetized rats, similar to verapamil (0.01-30 mg/kg). Pretreatment with hexamethonium and atropine mediated no significant changes in hypotensive effect of butanol fraction of I. hederacea (Ih.Bn) at 3 mg/kg dose. However, a significant decrease in the hypotensive effect of Ih.Bn 3 mg/kg (-34.82 ± 3.36%; p < 0.05) was observed in the presence of L-NAME (20 mg/kg). Similarly, Ih.Bn (3 mg/kg) showed no significant effect on angiotensin-II response. However, response of phenylephrine (45.60 ± 9.63%; p < 0.05) and dobutamine (18.25 ± 2.10%; p < 0.01) was significantly decreased in the presence of Ih.Bn 3 mg/kg. Ih.Bn also exhibited dose dependent (0.01-100 mg/kg) antihypertensive effect in fructose induced hypertensive rats, similar to verapamil (0.01-30 mg/kg). Concomitant treatment with Ih.Bn (3, 10 and 30 mg/kg) for six weeks showed a dose dependent profound protection with significant (p < 0.01) effect at 30 mg/kg against fructose induced basal mean arterial pressure (142.2 ± 4.62 mmHg). Ih.Bn did not significantly change response of PE, Ang-II and Epi was observed in invasive and ex vivo techniques. However, Ih.Bn significantly (p < 0.01; p < 0.001) prevented against decrease in vascular response of acetylcholine in anesthetized rats and in isolated aorta of rat. A significant dose dependent decrease in triglyceride and glucose level (p < 0.001), and increase in HDL level (p < 0.05) was observed in Ih.Bn treated groups. Results of LC-MS analysis of Ih.Bn showed the presence of 24 compounds that belong to different chemical classes, including carboxylic acid, flavonoids, oligopeptides and tripeptide that are known to have antihypertensive and vasorelaxant properties. CONCLUSIONS Results of present study indicate the presence of hypotensive/antihypertensive effect in crude extract/fractions of I. hederacea with most potent effect shown by butanol fraction (Ih.Bn), possibly mediated through α1 blocking, β blocking and iNOS/cGMP stimulating activity.
Collapse
Affiliation(s)
- Mueen Ahmad Chaudhry
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan; Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | - Ishfaq Ali Bukhari
- Department of Pharmacology, College of Medicine, King Saud University Riyadh, Saudi Arabia
| | - Asaad Mohamed Assiri
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
52
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
53
|
Baleeiro RDS, Guimarães AP, de Souza PM, Andrade RDS, Barbosa de Queiroz K, Coelho DB, de Oliveira EC, Becker LK. Sucrose-Sweetened Drinks Reduce the Physical Performance and Increase the Cardiovascular Risk in Physically Active Males. J Nutr Metab 2021; 2021:6683657. [PMID: 33763239 PMCID: PMC7964112 DOI: 10.1155/2021/6683657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The intake of sugar-sweetened beverages (SSBs) has increased rapidly, but the effects of this habit on health and physical performance are unknown. This study assessed the effect of excessive SSB intake on biochemical, physical performance, and biochemical and cardiovascular parameters of physically active males. METHODS Seventeen volunteers consumed a placebo drink (Pd; carbohydrate free) and an excessive SSB drink (eSSBd = Pd plus 300 g sucrose). In a blind randomized crossover study, the subjects were assigned to Pd or eSSBd groups for 15 days. After an interval of 7 days, subjects were reassigned to the other condition. RESULTS After eSSBd intake, there was an increase in weight (69.34 ± 13.71 vs. 70.62 ± 14.06), body mass index (24.49 ± 4.01 vs. 24.97 ± 4.13), waist circumference (75.33 ± 11.22 vs. 76.79 ± 11.51), VLDL (19.54 ± 9.50 vs. 25.52 ± 11.18), triglycerides (78.94 ± 23.79 vs. 114.77 ± 43.65), and peak systolic blood pressure (178.57 ± 26.56 vs. 200.71 ± 24.64). The cardiorespiratory response to exercise (VO2max) (48.15 ± 10.42 vs. 40.98 ± 11.20), peak heart rate (186.64 ± 8.00 vs. 179.64 ± 6.28), total exercise time (15.02 ± 1.57 vs. 14.00 ± 2.18), and mechanical work (15.83 ± 4.53 vs. 13.68 ± 5.67) decreased after eSSBd intake (all values expressed in initial mean ± DP vs. final). The rates of perceived exertion were higher (1.300 vs.1.661 slope and -0.7186 vs. -1.118 y-intercept) after eSSBd intake. CONCLUSION The present study shows that 15 days of eSSBd intake may negatively modulate biochemical parameters associated with cardiovascular risk. In addition, this overintake can impair the physical performance and cardiovascular responses to physical exercise.
Collapse
Affiliation(s)
- Raianne dos Santos Baleeiro
- Health and Nutrition, PPGSN, Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Aparecida Patricia Guimarães
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Perciliany Martins de Souza
- Research Center in Biological Sciences, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafael da Silva Andrade
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa de Queiroz
- Health and Nutrition, PPGSN, Food Department, Nutrition School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniel Barbosa Coelho
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Emerson Cruz de Oliveira
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lenice Kappes Becker
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
54
|
Hsu CN, Tain YL. Targeting the Renin-Angiotensin-Aldosterone System to Prevent Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22052298. [PMID: 33669059 PMCID: PMC7956566 DOI: 10.3390/ijms22052298] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is implicated in hypertension and kidney disease. The developing kidney can be programmed by various early-life insults by so-called renal programming, resulting in hypertension and kidney disease in adulthood. This theory is known as developmental origins of health and disease (DOHaD). Conversely, early RAAS-based interventions could reverse program processes to prevent a disease from occurring by so-called reprogramming. In the current review, we mainly summarize (1) the current knowledge on the RAAS implicated in renal programming; (2) current evidence supporting the connections between the aberrant RAAS and other mechanisms behind renal programming, such as oxidative stress, nitric oxide deficiency, epigenetic regulation, and gut microbiota dysbiosis; and (3) an overview of how RAAS-based reprogramming interventions may prevent hypertension and kidney disease of developmental origins. To accelerate the transition of RAAS-based interventions for prevention of hypertension and kidney disease, an extended comprehension of the RAAS implicated in renal programming is needed, as well as a greater focus on further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
55
|
Degu A, Abebe A, Engidawork E. Methanol (80%) leaf extract of Otostegia integrifolia Benth (Lamiaceae) lowers blood pressure in rats through interference with calcium conductance. BMC Complement Med Ther 2021; 21:49. [PMID: 33541332 PMCID: PMC7863373 DOI: 10.1186/s12906-021-03222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Otostegia integrifolia Benth. (Lamiaceae) leaves are used to treat hypertension in Ethiopian folk medicine. However, the claim has so far not been investigated scientifically. Thus, the objective of this study was to evaluate the antihypertensive activity of 80% methanol leaf extract of O. integrifolia in animal model of hypertension and possible underlying mechanisms in isolated rat aorta. METHODS Antihypertensive effect of various oral doses of the extract (250, 500 and 1000 mg/kg) was determined in fructose-induced hypertensive rats using the non-invasive tail-cuff method. Thoracic aortic strips of rats were isolated and suspended in organ bath, and the vasodepressor effect as well as the possible mechanism (s) of action were studied by means of isometric tension recording experiments ex vivo. Phytochemical analysis was also performed to suggest possible constituents related to the activity. RESULTS Blood pressure was significantly lowered in a dose-dependent manner following extract administration, suggesting that the extract possesses antihypertensive activity. The extract also caused a dose-dependent relaxation of aortic strip precontracted with KCl at a concentration of 6.25-125 μg/L, with a maximum relaxation (100%) achieved at a cumulative concentration of 318.75 μg/ml. The relaxation mechanism was found to be independent of muscarinic receptors, prostanoids, histamine receptors, ATP dependent K+ channels, sarcoplasmic reticulum stored Ca2+ and the endothelium system. The extract shifted the Ca2+ concentration-response curve to the right similar to that caused by nifedipine, suggesting that vasorelaxation could possibly be mediated via calcium channel blockade. The extract was found to contain phenolic compounds (164.3 mg/g, expressed as gallic acid equivalents) and flavonoids (125.7 mg/g, expressed as quercetin equivalents). CONCLUSION The findings revealed that the plant is endowed with antihypertensive activity, providing evidence for its traditional use. The effect maybe, at least in part, due to dilation of blood vessels through blockade of Ca+ 2 channels mediated by phenolic and flavonoid constituents.
Collapse
Affiliation(s)
- Abel Degu
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
56
|
Park HA. Fruit Intake to Prevent and Control Hypertension and Diabetes. Korean J Fam Med 2021; 42:9-16. [PMID: 33524250 PMCID: PMC7884895 DOI: 10.4082/kjfm.20.0225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023] Open
Abstract
Fruits are considered healthy because of their high antioxidant, vitamin, mineral, fiber, and phytochemical contents. However, their high sugar content is a concern for glucose, lipid, and uric acid metabolism. We reviewed related articles published in the last 10 years and summarized evidence that relates fruit intake to the prevention and control of hypertension and diabetes mellitus. Clinicians should familiarize themselves with appropriate fruit intake to counsel at-risk patients on hypertension and diabetes.
Collapse
Affiliation(s)
- Hyun Ah Park
- Department of Family Medicine, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Liu R, Mi B, Zhao Y, Li Q, Dang S, Yan H. Gender-specific association between carbohydrate consumption and blood pressure in Chinese adults. BMJ Nutr Prev Health 2021; 4:80-89. [PMID: 34308115 PMCID: PMC8258083 DOI: 10.1136/bmjnph-2020-000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Background The association between dietary carbohydrate consumption and blood pressure (BP) is controversial. The present study aimed to evaluate the possible gender-specific association of carbohydrate across the whole BP distribution. Method Cross-sectional survey including 2241 rural adults was conducted in northwestern China in 2010. BP was measured by trained medical personnel. Dietary information was collected by semiquantitative Food-Frequency Questionnaire. Multivariate quantile regression model was used to estimate the association between total carbohydrates consumption and systolic BP (SBP) and diastolic BP (DBP) at different quantiles. Gender-specific β coefficient and its 95% CI was calculated. Results The average carbohydrate intake was 267.4 (SD 112.0) g/day in males and 204.9 (SD 90.7) g/day in females, with only 10.6% of males and 6.5% females consumed at least 65% of total energy from carbohydrates. And more than 80% carbohydrates were derived from refined grains. In females, increased total carbohydrates intake was associated with adverse SBP and DBP. An additional 50 g carbohydrates per day was positively associated with SBP at low and high quantiles (10th-20th and 60th-80th) and with DBP almost across whole distribution (30th-90th), after adjusting for age, fortune index, family history of hypertension, body mass index, physical activity level, alcohol intake and smoke, energy, two nutrient principal components, protein and sodium intake. Both relatively low and high carbohydrate intake were associated with increased SBP, with minimum level observed at 130-150 g carbohydrate intake per day from restricted cubic splines. However, no significant associations were observed in males. Conclusions Higher total carbohydrates consumption might have an adverse impact on both SBP and DBP in Chinese females but not males. Additionally, the positive association varies across distribution of BP quantiles. Further research is warranted to validate these findings and clarify the causality.
Collapse
Affiliation(s)
- Ruru Liu
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Disinfection, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Baibing Mi
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yaling Zhao
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiang Li
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hong Yan
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
58
|
O’Brien P, Han G, Ganpathy P, Pitre S, Zhang Y, Ryan J, Sim PY, Harding SV, Gray R, Preedy VR, Sanders TAB, Corpe CP. Chronic Effects of a High Sucrose Diet on Murine Gastrointestinal Nutrient Sensor Gene and Protein Expression Levels and Lipid Metabolism. Int J Mol Sci 2020; 22:E137. [PMID: 33375525 PMCID: PMC7794826 DOI: 10.3390/ijms22010137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract (GIT) plays a key role in regulating nutrient metabolism and appetite responses. This study aimed to identify changes in the GIT that are important in the development of diet related obesity and diabetes. GIT samples were obtained from C57BL/6J male mice chronically fed a control diet or a high sucrose diet (HSD) and analysed for changes in gene, protein and metabolite levels. In HSD mice, GIT expression levels of fat oxidation genes were reduced, and increased de novo lipogenesis was evident in ileum. Gene expression levels of the putative sugar sensor, slc5a4a and slc5a4b, and fat sensor, cd36, were downregulated in the small intestines of HSD mice. In HSD mice, there was also evidence of bacterial overgrowth and a lipopolysaccharide activated inflammatory pathway involving inducible nitric oxide synthase (iNOS). In Caco-2 cells, sucrose significantly increased the expression levels of the nos2, iNOS and nitric oxide (NO) gas levels. In conclusion, sucrose fed induced obesity/diabetes is associated with changes in GI macronutrient sensing, appetite regulation and nutrient metabolism and intestinal microflora. These may be important drivers, and thus therapeutic targets, of diet-related metabolic disease.
Collapse
Affiliation(s)
- Patrick O’Brien
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Ge Han
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Priya Ganpathy
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Shweta Pitre
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Yi Zhang
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - John Ryan
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Pei Ying Sim
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Scott V. Harding
- Department of Biochemistry, Memorial University, Elizabeth Avenue, St. John’s, NL A1C5S7, Canada;
| | - Robert Gray
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Victor R. Preedy
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Thomas A. B. Sanders
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Christopher P. Corpe
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| |
Collapse
|
59
|
Ultraprocessed beverages and processed meats increase the incidence of hypertension in Mexican women. Br J Nutr 2020; 126:600-611. [PMID: 33148348 DOI: 10.1017/s0007114520004432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Higher intake of ultraprocessed foods (UPF), which have undergone multiple processes and have poor nutrient quality, is associated with higher incidence of non-communicable diseases. Yet, its association with hypertension has scarcely been studied, especially in low- and middle-income countries (LMIC). We aimed to estimate the associations between consumption of UPF (total, liquid and solid) and UPF subgroups and incident hypertension in a prospective cohort study. We used data from the Mexican Teachers' Cohort including 64 934 disease-free women aged ≥25 years at baseline. We assessed baseline usual dietary intake using a validated FFQ, and each item was categorised according to NOVA, a degree of food processing classification system. UPF and UPF subgroups were categorised according to the distribution of their contribution to total energy intake. Hypertension was self-reported. We estimated incidence rate ratios (IRR) and their 95 % CI. During a median follow-up of 2·2 years, we identified 3752 incident cases of hypertension. Mean contribution of UPF to total energy intake was 29·8 (SD 9·4) % energy (23·4 (SD 8·9) % solid, 6·4 (SD 4·8) % liquid). Comparing extreme categories showed that higher total and solid UPF consumptions were not associated with incident hypertension (IRR 0·96, 95 % CI 0·79, 1·16; IRR 0·91, 95 % CI 0·82, 1·01, respectively). However, liquid UPF and processed meats were associated with increased hypertension (IRR 1·32, 95 % CI 1·10, 1·65; IRR 1·17, 95 % CI 1·01, 1·36, respectively). Addressing intake of liquid UPF and processed meats may help in managing hypertension in LMIC.
Collapse
|
60
|
Pasaoglu OT, Bircan FS, Topal T, Turkozkan N. Positive Effects of Melatonin on Renal Nitric Oxide-Asymmetric Dimethylarginine Metabolism in Fructose-Fed Rats. Metab Syndr Relat Disord 2020; 19:120-126. [PMID: 33090894 DOI: 10.1089/met.2020.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: The incidence of metabolic syndrome is increasing worldwide and this is mainly attributed to high carbohydrate intake, especially of fructose, and sedentary lifestyles. Nitric oxide (NO), which is synthesized by nitric oxide synthase (NOS) enzymes, is a crucial molecule for endothelial and renal health. Asymmetric dimethylarginine (ADMA) is the most potent inhibitor of NOS and it is degraded by dimethylarginine dimethylaminohydrolase (DDAH). The aim of this study was to investigate the effects of melatonin on renal NO-ADMA metabolism using a metabolic syndrome model achieved by fructose administration. Methods: Thirty-two rats were randomly divided into four groups (n = 8): (1) control group, (2) fructose group, (3) melatonin group, and (4) fructose + melatonin group. Fructose (20%) was given in drinking water. Melatonin [20 mg/(kg·day)] was administered in 0.1% ethanol solution. After 8 weeks, kidney tissues were collected to measure tissue levels of nitrite/nitrate (NOx), ADMA, arginine, symmetric dimethylarginine, DDAH activity, and endothelial NOS (eNOS) and inducible NOS (iNOS) protein levels. Results: Fructose led to low arginine/ADMA ratios (AARs) (P < 0.008). Tissue NOx levels of the fructose + melatonin group were significantly higher than those of the fructose group (P < 0.008). ADMA and arginine were significantly higher in the fructose + melatonin group than the control group (P < 0.008). The DDAH activity of the fructose and fructose + melatonin groups was significantly higher than that of the control group (P < 0.008). eNOS protein levels showed no difference and iNOS protein was not detected in any of the groups. Conclusions: A diminished AAR indicates the toxicity of fructose in the kidneys. Melatonin has beneficial effects on the NO-ADMA pathway as it restores NOx levels and increases DDAH activity, possibly as a result of a compensatory mechanism to metabolize increased ADMA.
Collapse
Affiliation(s)
- Ozge Tugce Pasaoglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Filiz Sezen Bircan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Turgut Topal
- Department of Physiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Nurten Turkozkan
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
61
|
Lelis DDF, Andrade JMO, Almenara CCP, Broseguini-Filho GB, Mill JG, Baldo MP. High fructose intake and the route towards cardiometabolic diseases. Life Sci 2020; 259:118235. [DOI: 10.1016/j.lfs.2020.118235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
|
62
|
Fauste E, Rodrigo S, Aguirre R, Donis C, Rodríguez L, Álvarez-Millán JJ, Panadero MI, Otero P, Bocos C. Maternal Fructose Intake Increases Liver H 2 S Synthesis but Exarcebates its Fructose-Induced Decrease in Female Progeny. Mol Nutr Food Res 2020; 64:e2000628. [PMID: 32754997 DOI: 10.1002/mnfr.202000628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases (CVD). However, consumption of beverages containing fructose is allowed during gestation. Homocysteine (Hcy) is a well-known risk factor for CVD while hydrogen sulfide (H2 S), a product of its metabolism, has been proved to exert opposite effects to Hcy. METHODS AND RESULTS First, it is investigated whether maternal fructose intake produces subsequent changes in Hcy metabolism and H2 S synthesis of the progeny. Carbohydrates are supplied to pregnant rats in drinking water (10% wt/vol) throughout gestation. Adult female descendants from fructose-fed, control or glucose-fed mothers are studied. Females from fructose-fed mothers have elevated homocysteinemia, hepatic H2 S production, cystathionine γ-lyase (CSE) (the key enzyme in H2 S synthesis) expression and plasma H2 S, versus the other two groups. Second, it is studied how adult female progeny from control (C/F), fructose- (F/F), and glucose-fed (G/F) mothers responded to liquid fructose and compared them to the control group (C/C). Interestingly, hepatic CSE expression and H2 S synthesis are diminished by fructose intake, this effect being more pronounced in F/F females. CONCLUSION Maternal fructose intake produces a fetal programming that increases hepatic H2 S production and, in contrast, exacerbates its fructose-induced drop in female progeny.
Collapse
Affiliation(s)
- Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Rodrigo Aguirre
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Cristina Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Lourdes Rodríguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | | | - María I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| |
Collapse
|
63
|
Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152906. [PMID: 31064680 DOI: 10.1016/j.phymed.2019.152906] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Nature has gifted a variety of vital phytochemicals having potential therapeutic application against various ailments. Emblica officinalis (E. officinalis), an ancient plant, has long been used as a remedy for diabetes and cardiovascular complications, and presence of abundant amount of gallic acid could be accountable for its medicinal potential. PURPOSE The study was aimed to determine the in-vivo and in-vitro anti-diabetic potential of gallic acid and fruit juice of E. officinalis. Molecular mechanism of gallic acid as well as fruit juice of E. officinalis for anti-diabetic potential has also been revealed. EXPERIMENTAL STUDY DESIGN Anti-diabetic potential of E. officinalis and gallic acid was evaluated in 3T3-L1 preadipocytes and various animal models like db/db mice and fructose administered rats. PPAR-γ expression and glucose translocation were observed using western blot and PCR techniques. RESULTS Treatment of E. officinalis fruit juice and gallic acid facilitated their glucose homeostasis; improved insulin sensitivity; reduced obesity; abridged elevated blood pressure and declined cholesterol level, and also induced adipogenesis in 3T3-L1 adipocytes. Mechanistically, treatment increased expression of PPAR-γ through activation of C/EBPs and simultaneously increased Glut4 translocation in 3T3-L1 adipocytes. Moreover, gallic acid treatment increased insulin sensitivity through activation of Akt rather than AMPK signaling pathway while fruit juice of E. officinalis showed dual activation, Akt and AMPK as well. CONCLUSION These findings reveal the role of gallic acid in E. officinalis mediated antidiabetic potential, and delineate the upregulation of pAkt, PPAR-γ and Glut4 in gallic acid mediated antidiabetic activity, thus providing potential therapy for diabetes and related disorders.
Collapse
Affiliation(s)
- Bhavesh C Variya
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Anita K Bakrania
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
64
|
Wang CY, Chen YW, Tain YL, Chang SKC, Huang LT, Hsieh CW, Hou CY. Fast quantification of short-chain fatty acids in rat plasma by gas chromatography. J Food Sci 2020; 85:1932-1938. [PMID: 32449963 DOI: 10.1111/1750-3841.15172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites of the intestinal flora and play an important role in the interaction between the intestinal flora and host metabolism. Therefore, reliable methods are needed to accurately measure SCFAs concentrations. SCFAs are commonly analyzed by gas chromatography-mass spectrometry (GC-MS), which requires lengthy sample treatments and a long run time. This study aimed to develop a fast GC method with formic acid pretreatment for SCFAs quantification in the plasma of rat. Baseline chromatographic resolution was achieved for three SCFAs (acetic, propionic, and butyric) within an analysis time of 10.5 min. The method exhibited good recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and interday precision (<10%). We used our method to measure SCFAs levels in plasma samples from rats fed with a high fructose diet (HFD) to test the accuracy of the developed method. It was shown that SCFAs are indeed affected negatively by a HFD (60% fructose). This method was successfully employed to accurately determine SCFAs in the rat plasma with minimum sample preparation. Results showed potential damage of HFD, which produced lower SCFAs. PRACTICAL APPLICATION: Increasingly, microbiota and gut health research are being conducted by many food scientists to elucidate the relationships among the factors of food components, particularly the nondigestible carbohydrates, food processing conditions, and potential health impact. This research provides a useful, rapid, and accurate method that can save time in the analysis of short-chain fatty acids, which are commonly analyzed in gut health research.
Collapse
Affiliation(s)
- Chung-Yi Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 811, ROC
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkou, Taiwan, 333, ROC
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Mississippi, MS, 39567, USA.,Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi, MS, 39762, USA
| | - Li-Tung Huang
- Department of Medicine, Chang Gung University, Linkou, Taiwan, 333, ROC.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, Taiwan, 402, ROC.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, 404, ROC
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 811, ROC
| |
Collapse
|
65
|
Carotenoids Inhibit Fructose-Induced Inflammatory Response in Human Endothelial Cells and Monocytes. Mediators Inflamm 2020; 2020:5373562. [PMID: 32410856 PMCID: PMC7204090 DOI: 10.1155/2020/5373562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Objective This research is aimed at determining the vascular health characteristics of carotenoids by evaluating their effect on excessive inflammatory response in endothelial and monocyte cells, the main factors of atherosclerosis. Methods Human umbilical vein endothelial cells (HUVECs) or U937 monocytes were treated with escalating concentrations (0.1, 0.5, and 1 μM) of five most common carotenoids in human plasma, i.e., α-carotene, β-carotene, β-cryptoxanthin, lutein, and lycopene prior to stimulation with 2 mM fructose. We examined the monocyte adhesion to endothelial cells (ECs) and relevant endothelial adhesion molecules. Chemokine and proinflammatory cytokine production as well as intracellular oxidative stress were also assessed in fructose-stimulated ECs and monocytes. Results Carotenoids repressed monocyte adhesion to fructose-stimulated ECs dose dependently via decreasing primarily the expression of endothelial VCAM-1. In ECs and monocytes, three carotenoids, i.e., β-cryptoxanthin, lutein, and lycopene, suppressed the fructose-induced expression of chemokines MCP-1, M-CSF, and CXCL-10 and inflammatory cytokines TNF-α and IL-1β, with CXCL-10 being the most repressed inflammatory mediator. β-Cryptoxanthin, lutein, and lycopene dramatically downregulated the fructose-induced CXCL-10 expression in vascular cells. The reduction in the inflammatory response was associated with a slight but significant decrease of intracellular oxidative stress. Conclusions Our results show that carotenoids have a variety of anti-inflammatory and antiatherosclerosis activities, which can help prevent or reduce fructose-induced inflammatory vascular diseases.
Collapse
|
66
|
Yoon S, Lee E, Kim M, Kim I. Acute Exposure to Fructose Impairs Endothelium-Dependent Relaxation via Oxidative Stress in Isolated Rat Aortic Rings. J Vasc Res 2020; 57:213-222. [PMID: 32294645 DOI: 10.1159/000506684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Although both glucose and fructose are hexoses, their catabolism is quite different: the catabolism of fructose is initiated by ketohexokinase and is not regulated by negative feedback, which results in oxidative stress. OBJECTIVE We hypothesized that fructose impairs endothelium-dependent relaxation via oxidative stress in rat aortic rings. METHODS Sprague-Dawley rats were offered 20% fructose solution or tap water for 2 weeks, after which vascular reactivity was measured in isolated aortic rings. In a separate experiment, vascular reactivity was measured after acute exposure to ∼10 mM fructose in isolated aortic rings from untreated rats. RESULTS Although high-fructose intake statistically significantly increased blood pressure and body weight, it did not affect contraction and relaxation in aortic rings. The substitution of fructose for glucose in Krebs solution inhibited vascular relaxation in aortic rings, which was abolished by pretreatment with antioxidants. Decreasing the glucose concentration in Krebs solution inhibited vascular relaxation, whereas decreasing the fructose concentration in Krebs solution improved vascular relaxation in the aortic rings. Pretreatment with antioxidants improved the vascular relaxation in Krebs solution with fructose substituted for glucose. CONCLUSIONS These results indicate that fructose impairs endothelium-dependent relaxation via oxidative stress in isolated rat aortic rings.
Collapse
Affiliation(s)
- Sangwon Yoon
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Eunjo Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Mina Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - InKyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, .,Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea, .,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea,
| |
Collapse
|
67
|
Gut dysbiosis contributes to high fructose-induced salt-sensitive hypertension in Sprague-Dawley rats. Nutrition 2020; 75-76:110766. [PMID: 32305658 DOI: 10.1016/j.nut.2020.110766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Although it is known that high fructose intake causes salt-sensitive hypertension, the underlying mechanism remains unclear. The aim of this study was to determine whether chronic intake of high fructose coupled with salt (HFS) might alter the structure of the gut microbiota, which contributes to elevated blood pressure. METHODS For 8 wk, Sprague-Dawley rats were given 20% fructose in drinking water and 4% sodium chloride in their diet to induce hypertension. A non-absorbable antibiotic vancomycin was used to modify gut microbiota. The 16 S rRNA sequencing for fecal samples was assessed and blood pressure was recorded. Enzyme-linked immunosorbent assay and quantitative polymerase chain reaction were used to examine the renin-angiotensin system in serum, urine, and the kidney. RESULTS Compared with the control group, HFS feeding resulted in gut dysbiosis by altering the diversity and richness of gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Vancomycin reshaped dramatically the HFS-induced dysbiosis. And vancomycin (van) attenuated HFS-increased blood pressure (HFS: 121.3 ± 2.8 mm Hg; HFS-van: 111.1 ± 1.7 mm Hg) and heart rate (HFS: 360.5 ± 9.0 bpm; HFS-van: 318.7 ± 5.6 bpm) as well as the content of angiotensinogen, renin, and angiotensin II in the urine and the angiotensinogen mRNA level in renal cortical tissues. However, HFS-increased triacylglycerol, renin, and angiotensin II in serum were not decreased by vancomycin. CONCLUSION The present results demonstrated that gut dysbiosis develops after chronic fructose plus salt intake and contributes to the increase of blood pressure and the activation of the intrarenal renin-angiotensin system. Therefore, targeting gut microbiota provides a helpful therapy method to improve HFS-induced hypertension.
Collapse
|
68
|
Farmaki AE, Rayner NW, Kafyra M, Matchan A, Ntaoutidou K, Feritoglou P, Athanasiadis A, Gilly A, Mamakou V, Zengini E, Karaleftheri M, Zeggini E, Dedoussis G. A Dietary Pattern with High Sugar Content Is Associated with Cardiometabolic Risk Factors in the Pomak Population. Nutrients 2019; 11:E3043. [PMID: 31847144 PMCID: PMC6950453 DOI: 10.3390/nu11123043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
The present study describes the geographically isolated Pomak population and its particular dietary patterns in relationship to cardiovascular risk factors. We collected a population-based cohort in a cross-sectional study, with detailed anthropometric, biochemical, clinical, and lifestyle parameter information. Dietary patterns were derived through principal component analysis based on a validated food-frequency questionnaire, administered to 1702 adult inhabitants of the Pomak villages on the Rhodope mountain range in Greece. A total of 69.9% of the participants were female with a population mean age of 44.9 years; 67% of the population were overweight or obese with a significantly different prevalence for obesity between men and women (17.5% vs. 37.5%, respectively, p < 0.001). Smoking was more prevalent in men (45.8% vs. 2.2%, p < 0.001), as 97.3% of women had never smoked. Four dietary patterns emerged as characteristic of the population, and were termed "high in sugars", "quick choices", "balanced", and "homemade". Higher adherence to the "high in sugars" dietary pattern was associated with increased glucose levels (p < 0.001) and increased risk of hypertension (OR (95% CI) 2.61 (1.55, 4.39), p < 0.001) and nominally associated with high blood glucose levels (OR (95% CI) 1.85 (1.11, 3.08), p = 0.018), compared to lower adherence. Overall, we characterize the dietary patterns of the Pomak population and describe associations with cardiovascular risk factors.
Collapse
Affiliation(s)
- Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece or (M.K.); (K.N.); (P.F.)
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London WC1E 7HB, UK
| | - Nigel W Rayner
- Institute of Translational Genomics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; (N.W.R.); (A.G.); (E.Z.)
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LE, UK
- Wellcome Sanger Institute, The Morgan Building, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece or (M.K.); (K.N.); (P.F.)
| | - Angela Matchan
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK;
| | - Kyriaki Ntaoutidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece or (M.K.); (K.N.); (P.F.)
| | - Pournar Feritoglou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece or (M.K.); (K.N.); (P.F.)
| | | | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; (N.W.R.); (A.G.); (E.Z.)
- Wellcome Sanger Institute, The Morgan Building, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital of Athens, Chaidari, Athens 12461, Greece; (V.M.); (E.Z.)
- Medical School, National and Kapodistrian University of Athens, Goudi, Athens 11527, Greece
| | - Eleni Zengini
- Dromokaiteio Psychiatric Hospital of Athens, Chaidari, Athens 12461, Greece; (V.M.); (E.Z.)
- Department of Human Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; (N.W.R.); (A.G.); (E.Z.)
- Wellcome Sanger Institute, The Morgan Building, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece or (M.K.); (K.N.); (P.F.)
| |
Collapse
|
69
|
Eren OC, Ortiz A, Afsar B, Covic A, Kuwabara M, Lanaspa MA, Johnson RJ, Kanbay M. Multilayered Interplay Between Fructose and Salt in Development of Hypertension. Hypertension 2019; 73:265-272. [PMID: 30595116 DOI: 10.1161/hypertensionaha.118.12150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ozgur C Eren
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey (O.C.E., M. Kanbay)
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Spain (A.O.)
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey (B.A.)
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, and 'Grigore T. Popa' University of Medicine, Iasi, Romania (A.C.)
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan (M. Kuwabara)
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora (M.A.L., R.J.J.)
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora (M.A.L., R.J.J.)
| | - Mehmet Kanbay
- From the Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey (M. Kanbay).,Department of Medicine, Koç University School of Medicine, Istanbul, Turkey (O.C.E., M. Kanbay)
| |
Collapse
|
70
|
Zhang JX, Lin X, Xu J, Tang F. Hyperuricemia Inhibition Protects SD Rats Against Fructose-Induced Obesity Hypertension Via Modulation of Inflammation and Renin-Angiotensin System in Adipose Tissue. Exp Clin Endocrinol Diabetes 2019; 129:314-321. [PMID: 31683330 DOI: 10.1055/a-1023-6710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The present study was aimed to reveal the relationship between uric acid and fructose-induced obesity hypertension and its mechanisms. METHODS A rat model with obesity hypertension was induced by a high-fructose diet. In the experiment I, the rats were fed with fructose for 8 wks along with allopurinol or benzbromarone at the beginning. In the experiment II, the rats were fed with fructose for 8 wks firstly. And then, these rats were treated with allopurinol or benzbromarone for additional 6 wks. RESULTS Fructose-fed rats showed hyperuricemia, abdominal obesity hypertension and an activation in adipose renin-angiotensin system (RAS). Also, fructose-fed rats had higher levels of proinflammatory cytokines and more macrophages infiltrating in adipose tissue. In the experiment I, allopurinol and benzbromarone significantly reduced serum uric acid at 8 wk. Adipose RAS overactivation, adipose inflammatory responses and the development of obesity hypertension were all effectively prevented by hyperuricemia inhibition. In the experiment II, 6-wk treatment with allopurinol and benzbromarone significantly decreased serum uric acid, downregulated adipose RAS, abolished adipose inflammation and improved obesity hypertension. CONCLUSION In conclusion, urate-lowering therapy protects rats against fructose-induced obesity hypertension. The mechanisms appear to be via downregulated adipose RAS and reduced inflammation in adipose tissue.
Collapse
Affiliation(s)
- Jun Xia Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, China
| | - Xue Lin
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, China
| | - Jinxiu Xu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, China
| | - Feng Tang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, China
| |
Collapse
|
71
|
Chen HH, Chu CH, Wen SW, Lai CC, Cheng PW, Tseng CJ. Excessive Fructose Intake Impairs Baroreflex Sensitivity and Led to Elevated Blood Pressure in Rats. Nutrients 2019; 11:nu11112581. [PMID: 31731536 PMCID: PMC6893539 DOI: 10.3390/nu11112581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension development with an increased intake of added sugar, especially excessive fructose intake, was shown in the National Health and Nutrition Examination Survey (NHANES) data. However, the mechanism underlying blood pressure (BP) elevation with increased fructose intake is still unclear. First, the present study showed that in rats fed 10% fructose for one week, BP and fructose/glucose levels increased in the central and peripheral nervous system. Furthermore, increased fructose intake resulted in an upregulation of fructose concentration in the cerebrospinal fluid. Second, consumption of excess fructose increased serum triglycerides. However, the inhibition of triglyceride production did not mitigate sympathetic nerve hyperactivity, but contributed to an insignificant decrease in BP. Finally, increased fructose intake reduced nitric oxide (NO) levels in the nucleus tractus solitarii (NTS) and reduced baroreflex sensitivity within a week. Collectively, the data suggested that fructose intake reduced NO levels in the NTS and caused baroreflex dysfunction, which further stimulated sympathetic nerve activity and induced the development of high BP.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, (H.-H.C.)
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 821, Taiwan
| | - Chih-Hsun Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan,
- Department of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| | - Shu-Wei Wen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, (H.-H.C.)
| | - Chi-Cheng Lai
- Cardiology, Kaohsiung Municipal United Hospital, Kaohsiung 804, Taiwan,
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, (H.-H.C.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, (H.-H.C.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
72
|
KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. Int J Mol Sci 2019; 20:ijms20194930. [PMID: 31590384 PMCID: PMC6801783 DOI: 10.3390/ijms20194930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023] Open
Abstract
Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/- mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions.
Collapse
|
73
|
Intake of starch and sugars and total and cause-specific mortality in a Japanese community: the Takayama Study. Br J Nutr 2019; 122:820-828. [DOI: 10.1017/s0007114519001661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractStudies on the intake of different types of carbohydrates and long-term mortality are sparse. We examined the association of starch, total and each type of sugar and free sugars with the risk of total and cause-specific mortality in a cohort of the general population in Japan. Study subjects were 29 079 residents from the Takayama Study, Japan, who responded to a self-administered questionnaire in 1992. Diet was assessed by a validated FFQ at the baseline. Mortality was ascertained during 16 years of follow-up. We noted 2901 deaths (974 cancer related and 775 cardiovascular related) in men and 2438 death (646 cancer related and 903 cardiovascular related) in women. In men, intake of starch was inversely associated with total mortality after controlling for covariates (hazard ratio (HR) for the highest quartile v. lowest quartile: 0·71; 95 % CI 0·60, 0·84; Ptrend < 0·001). Intakes of total sugars, glucose, fructose, sucrose, maltose and free and naturally occurring sugars were significantly positively associated with total mortality in men (HR for the highest v. lowest quartile of total sugar: 1·27; 95 % CI 1·12, 1·45; Ptrend < 0·0001). Similar relations were observed for cardiovascular mortality and non-cancer, non-cardiovascular mortality in men. In women, there was no significant association between any type of carbohydrates and mortality except that intake of free sugars was significantly positively associated with total and non-cancer, non-cardiovascular mortality. Data suggest that the high intake of starch reduces mortality, whereas the high intake of sugars, including glucose, fructose and sucrose, increases mortality in Japanese men.
Collapse
|
74
|
Hsu CN, Chang-Chien GP, Lin S, Hou CY, Tain YL. Targeting on Gut Microbial Metabolite Trimethylamine-N-Oxide and Short-Chain Fatty Acid to Prevent Maternal High-Fructose-Diet-Induced Developmental Programming of Hypertension in Adult Male Offspring. Mol Nutr Food Res 2019; 63:e1900073. [PMID: 31295767 DOI: 10.1002/mnfr.201900073] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/28/2019] [Indexed: 12/28/2022]
Abstract
SCOPE Alterations of gut metabolites, such as SCFAs and trimethylamine (TMA), and microbial composition are associated with the development of hypertension. Whether maternal 3,3-dimethyl-1-butanol (DMB, an inhibitor for TMA formation) treatment or the predominant SCFA acetate supplementation can prevent programed hypertension induced by a high-fructose diet (HFD) exposure during pregnancy and lactation in adult male offspring is examined. METHODS AND RESULTS Male offspring are divided into four groups: ND, normal diet; HFD, 60% HFD; ACE, HFD plus 200 mmol L-1 magnesium acetate in drinking water; and DMB: HFD plus 1% DMB in drinking water. Maternal HFD induces programed hypertension in adult male offspring, which is prevented by maternal acetate supplementation or DMB treatment. HFD-induced hypertension is relevant to increased plasma levels of TMA and acetate, and alterations of gut microbial composition. The protective effects of acetate supplementation are associated with decreased plasma TMA level and TMA-to-trimethylamine-N-oxide (TMAO) ratio, and increased renal expression of SCFA receptors. Maternal DMB treatment reduces plasma TMA, TMAO, acetate, and propionate levels. CONCLUSION Early intervention targeting on gut-microbiota-derived metabolites TMAO and SCFAs to reprogram hypertension may have significant impact to reduce the burden of hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833, Taiwan.,Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung, 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833, Taiwan.,Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung, 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, 833, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, 833, Taiwan
| |
Collapse
|
75
|
Effects of a novel isoflavonoid from the stem bark of Alstonia scholaris against fructose-induced experimental cataract. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:374-382. [PMID: 31227424 DOI: 10.1016/j.joim.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The present study investigated the anticataract activity of a novel isoflavonoid, isolated from stem bark of Alstonia scholaris, against fructose-induced experimental cataract. METHODS The bioactivity of fractions extracted from A. scholaris, an isolated isoflavonoid (ASII) was screened using in vitro (goat lens) and in vivo (albino rats) experimental cataract models. For the in vivo evaluation, albino rats (12-15 weeks old) were divided into five groups (n = 6). Group I (normal) received 0.3% carboxymethyl cellulose solution (10 mL/[kg·d], p.o.). Group II (control) received 10% (w/v) fructose solution in their drinking water. Groups III-V received ASII at three different doses, 0.1, 1.0 and 10 mg/(kg·d), concurrently with 10% (w/v) fructose solution. Treatment was given daily for 8 consecutive weeks. During the protocol, systolic blood pressure, diastolic blood pressure, blood glucose level and lenticular opacity were monitored at 2-week intervals. Pathophysiological markers (catalase, superoxide dismutase, glutathione peroxidase, reduced glutathione and malondialdehyde) in eye lenses were examined at the end of the 8-week treatment period. RESULTS The results of in vitro study showed that A. scholaris extract and the active fraction (A3) reduced the lenticular opacity as compared to toxic control group. The in vivo study showed that 8-week administration of ASII (0.1, 1.0 and 10 mg/[kg·d], p.o.) led to significant reduction in blood pressure and blood glucose level and retarded the initiation and evolution of cataractogenesis, compared to the fructose-induced cataract model control. Additionally, ASII treatment led to significant improvement in lens antioxidants (catalase, superoxide dismutase, glutathione peroxidase and reduced glutathione) and decreased lens malondialdehyde, compared to the control group (group II). CONCLUSION Results revealed that administration of ASII played a crucial role in the reduction of cataract formation in diabetic and hypertensive models.
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW This review discusses recent evidence on the association of dietary carbohydrates (quantity, quality, and timing of intake) with hypertension (HTN) risk and out-of-clinic blood pressure (BP) measures. RECENT FINDINGS Studies on carbohydrate quantity are inconclusive, but low carbohydrate diets may be associated with lower BP. Plant-based carbohydrate-containing foods such as fruits, vegetables, and whole grains may lower HTN risk and 24-h BP. Excessive sugar intakes from sugar-sweetened beverages are associated with higher BP levels and HTN risk, with evidence of a dose-response relationship. Preliminary data suggest that timing of carbohydrate intake may influence HTN risk and 24-h BP. The role of carbohydrate nutrition in HTN's etiology warrants further investigation. Additional studies are needed to investigate the influence of dietary carbohydrates on HTN risk and the circadian pattern of BP, evaluate potential sex and racial/ethnic differences in these associations, and elucidate underlying mechanisms.
Collapse
|
77
|
Abdelhedi O, Khemakhem H, Nasri R, Jridi M, Mora L, Ben Amor I, Jamoussi K, Toldrá F, Gargouri J, Nasri M. Assessment of Cholesterol, Glycemia Control and Short- and Long-Term Antihypertensive Effects of Smooth Hound Viscera Peptides in High-Salt and Fructose Diet-Fed Wistar Rats. Mar Drugs 2019; 17:E194. [PMID: 30934709 PMCID: PMC6520678 DOI: 10.3390/md17040194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, the antihypertensive activity of Purafect®-smooth hound viscera protein hydrolysate (VPH) and its peptide fraction with molecular weight (MW) below 1 kDa (VPH-I) was investigated. In addition, the lipase inhibitory activity, as well the anticoagulant potential, in vitro, were assessed. The antihypertensive effects of VPH and VPH-I were studied during 24 h (short-term effect) and 30 days (long-term effect) using high-salt (18% NaCl) and -fructose (10%) diet (HSFD)-induced hypertension. Data showed that, 4 h post-administration of VPH and VPH-I (200 mg/kg BW), the systolic blood pressure of rats was reduced by about 6 and 9 mmHg, respectively. These effects were similar to that obtained with Captopril (~9 mmHg at t = 4 h). On the other hand, exposing the rats to daily to HSFD, coupled to the administration of viscera peptides, was found to attenuate hypertension. In addition, the proteins' treatments were able to correct lipid and glycemic disorders, by reducing the total cholesterol and triglyceride contents and resorting to the plasma glucose level, compared to the HSFD group. Overall, the present findings demonstrated the preventive effect of VPH-peptides from hypertension complications, as a result of their biological properties.
Collapse
Affiliation(s)
- Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Hana Khemakhem
- Laboratory of Biochemistry, CHU HediChaker, University of Sfax, Sfax 3000, Tunisia.
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia.
| | - Leticia Mora
- Instituto de Agroquímica y Tecnologíade Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Ikram Ben Amor
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5, Sfax 3003, Tunisia.
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU HediChaker, University of Sfax, Sfax 3000, Tunisia.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnologíade Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Jalel Gargouri
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5, Sfax 3003, Tunisia.
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| |
Collapse
|
78
|
Lee WC, Wu KLH, Leu S, Tain YL. Translational insights on developmental origins of metabolic syndrome: Focus on fructose consumption. Biomed J 2019; 41:96-101. [PMID: 29866605 PMCID: PMC6138777 DOI: 10.1016/j.bj.2018.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent complex trait despite recent advances in pathophysiology and pharmacological treatment. MetS can begin in early life by so-called the developmental origins of health and disease (DOHaD). The DOHaD concept offers a novel approach to prevent MetS through reprogramming. High fructose (HF) intake has been associated with increased risk of MetS. HF diet becomes one of the most commonly used animal model to induce MetS. This review discusses the maternal HF diet induced programming process and reprogramming strategy to prevent MetS of developmental origin, with an emphasis on: (1) an overview of metabolic effects of fructose consumption on MetS; (2) insight from maternal HF animal models on MetS-related phenotypes; (3) impact of HF consumption induces organ-specific transcriptome changes; and (4) application of reprogramming strategy to prevent maternal HF consumption-induced MetS. Research into the preventions and treatments of MetS that begin early in life will have a lifelong impact and profound savings in disease burden and financial costs.
Collapse
Affiliation(s)
- Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
79
|
Nier A, Brandt A, Rajcic D, Bruns T, Bergheim I. Short-Term Isocaloric Intake of a Fructose- but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol Nutr Food Res 2019; 63:e1800868. [PMID: 30570214 PMCID: PMC6590154 DOI: 10.1002/mnfr.201800868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Dietary pattern and impairments of intestinal barrier function are discussed to be critical in the development of metabolic impairments. Here, it is determined if an isocaloric exchange of complex carbohydrates with monosaccharides affects markers of intestinal permeability and metabolic health in healthy subjects. METHODS AND RESULTS After a dietary standardization for 4 days, all 12 subjects aged 21-33 years receive an isocaloric fructose- and glucose-enriched diet for 3 days separated by a wash-out phase. Anthropometry, blood pressure, markers of intestinal permeability and metabolic as well as inflammatory parameters are determined in blood samples or isolated peripheral blood mononuclear cells collected at baseline, after standardizations and the monosaccharide interventions, respectively. While anthropometric and inflammatory parameters are not changed, the intake of an isocaloric fructose- but not glucose-enriched diet is associated with a significant increase of bacterial endotoxin plasma levels and alanine aminotransferase activity in serum, while total plasma nitrate/nitrite concentrations are significantly decreased. In peripheral blood mononuclear cells, Toll like receptors 4, 2, and MYD88 mRNA expressions are significantly induced after the fructose-rich but not the glucose-rich diet. CONCLUSION In metabolically healthy subjects, even a short-term intake of a fructose-rich diet can elevate bacterial endotoxin levels and change markers of liver health and vascular endothelial function.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Annette Brandt
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Dragana Rajcic
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
| | - Tony Bruns
- Department of Internal Medicine IVUniversity Hospital Jena07743JenaGermany
| | - Ina Bergheim
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| |
Collapse
|
80
|
Andrade N, Andrade S, Silva C, Rodrigues I, Guardão L, Guimarães JT, Keating E, Martel F. Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. Eur J Nutr 2019; 59:151-165. [PMID: 30631887 DOI: 10.1007/s00394-019-01895-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Metabolic syndrome (MS) is a major public health issue worldwide and fructose consumption has been associated with MS development. Recently, we showed that the dietary polyphenol chrysin is an effective inhibitor of fructose uptake by human intestinal epithelial cells. Therefore, our aim was to investigate if chrysin interferes with the development of MS induced by fructose in an animal model. METHODS Adult male Sprague-Dawley rats (220-310 g) were randomly divided into four groups: (A) tap water (control), (B) tap water and a daily dose of chrysin (100 mg/kg) by oral administration (chrysin) (C) 10% fructose in tap water (fructose), and (D) 10% fructose in tap water and a daily dose of chrysin (100 mg/kg) by oral administration (fructose + chrysin). All groups were fed ad libitum with standard laboratory chow diet and dietary manipulation lasted 18 weeks. RESULTS Fructose-feeding for 18 weeks induced an increase in serum triacylglycerols, insulin and angiotensin II levels and in hepatic fibrosis and these changes did not occur in fructose + chrysin rats. Moreover, the increase in both systolic and diastolic blood pressure which was found in fructose-fed animals from week 14th onwards was not observed in fructose + chrysin animals. In contrast, the increase in energy consumption, liver/body, heart/body and right kidney/body weight ratios, serum proteins, serum leptin and liver triacylglycerols observed in fructose-fed rats was not affected by chrysin. CONCLUSIONS Chrysin was able to protect against some of the MS features induced by fructose-feeding.
Collapse
Affiliation(s)
- Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Sara Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Claúdia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
| | - Luísa Guardão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
| | - João T Guimarães
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Department of Clinical Pathology, São João Hospital Centre, Porto, Portugal
- Institute of Public Health, University of Porto, Porto, Portugal
| | - Elisa Keating
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- CINTESIS, Center for Research in Health Technologies and Information Systems, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal.
| |
Collapse
|
81
|
Sugar-sweetened beverages intake is associated with blood pressure and sympathetic nervous system activation in children. Clin Nutr ESPEN 2018; 28:232-235. [DOI: 10.1016/j.clnesp.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
|
82
|
Yokota R, Ronchi FA, Fernandes FB, Jara ZP, Rosa RM, Leite APDO, Fiorino P, Farah V, do Nascimento NRF, Fonteles MC, Casarini DE. Intra-Renal Angiotensin Levels Are Increased in High-Fructose Fed Rats in the Extracorporeal Renal Perfusion Model. Front Physiol 2018; 9:1433. [PMID: 30364140 PMCID: PMC6191567 DOI: 10.3389/fphys.2018.01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
Overconsumption of fructose leads to metabolic syndrome as a result of hypertension, insulin resistance, and hyperlipidemia. In this study, the renal function of animals submitted to high fructose intake was analyzed from weaning to adulthood using in vivo and ex vivo methods, being compared with a normal control group. We investigated in ex vivo model of the role of the renin Angiotensin system (RAS) in the kidney. The use of perfused kidney from animals submitted to 8-week fructose treatment showed that high fructose intake caused metabolic and cardiovascular alterations that were consistent with other studies. Moreover, the isolated perfused kidneys obtained from rats under high fructose diet showed a 33% increase in renal perfusion pressure throughout the experimental period due to increased renal vascular resistance and a progressive fall in the glomerular filtration rate, which reached a maximum of 64% decrease. Analysis of RAS peptides in the high fructose group showed a threefold increase in the renal concentrations of angiotensin I (Ang I) and a twofold increase in angiotensin II (Ang II) levels, whereas no change in angiotensin 1-7 (Ang 1-7) was observed when compared with the control animals. We did not detect changes in angiotensin converting enzyme (ACE) activity in renal tissues, but there is a tendency to decrease. These observations suggest that there are alternative ways of producing Ang II in this model. Chymase the enzyme responsible for Ang II formation direct from Ang I was increased in renal tissues in the fructose group, confirming the alternative pathway for the formation of this peptide. Neprilysin (NEP) the Ang 1-7 forming showed a significant decrease in activity in the fructose vs. control group, and a tendency of reduction in ACE2 activity. Thus, these results suggest that the Ang 1-7 vasodilator peptide formation is impaired in this model contributing with the increase of blood pressure. In summary, rats fed high fructose affect renal RAS, which may contribute to several deleterious effects of fructose on the kidneys and consequently an increase in blood pressure.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Zaira Palomino Jara
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo Mattar Rosa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Patricia Fiorino
- Laboratory of Renal, Cardiovascular, and Metabolic Physiopharmacology, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Vera Farah
- Laboratory of Renal, Cardiovascular, and Metabolic Physiopharmacology, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | | | - Manassés C Fonteles
- Laboratory of Renal, Cardiovascular, and Metabolic Physiopharmacology, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil.,Superior Institute of Biomedical Sciences, Ceará State University, Fortaleza, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
83
|
Rakmanee S, Kulthinee S, Wyss JM, Roysommuti S. Taurine Supplementation Reduces Renal Nerve Activity in Male Rats in which Renal Nerve Activity was Increased by a High Sugar Diet. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:27-37. [PMID: 28849441 DOI: 10.1007/978-94-024-1079-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study tests the hypothesis that taurine supplementation reduces sugar-induced increases in renal sympathetic nerve activity related to renin release in adult male rats. After weaning, male rats were fed normal rat chow and drank water containing 5% glucose (CG) or water alone (CW) throughout the experiment. At 6-7 weeks of age, each group was supplemented with or without 3% taurine in drinking water until the end of experiment. At 7-8 weeks of age, blood chemistry and renal nerve activity were measured in anesthetized rats. Body weights slightly and significantly increased in CG compared to CW groups but were not significantly affected by taurine supplementation. Plasma electrolytes except bicarbonate, plasma creatinine, and blood urea nitrogen were not significantly different among the four groups. Mean arterial pressure significantly increased in both taurine treated groups compared to CW, while heart rates were not significantly different among the four groups. Further, all groups displayed similar renal nerve firing frequencies at rest and renal nerve responses to sodium nitroprusside and phenylephrine infusion. However, compared to CW group, CG significantly increased the power density of renin release-related frequency component, decreased that of sodium excretion-related frequency component, and decreased that of renal blood flow-related frequency component. Taurine supplementation completely abolished the effect of high sugar intake on renal sympathetic activity patterns. These data indicate that in adult male rats, high sugar intake alters the pattern but not firing frequency of sympathetic nerve activity to control renal function, and this effect can be improved by taurine supplementation.
Collapse
Affiliation(s)
- Sasipa Rakmanee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supaporn Kulthinee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Community Public Health, Faculty of Science and Technology, Rajabhat Mahasarakham University, Mahasarakarm, 44000, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
84
|
Dos Santos F, Moraes-Silva IC, Moreira ED, Irigoyen MC. The role of the baroreflex and parasympathetic nervous system in fructose-induced cardiac and metabolic alterations. Sci Rep 2018; 8:10970. [PMID: 30030527 PMCID: PMC6054615 DOI: 10.1038/s41598-018-29336-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
It is well-established that baroreflex sensitivity is essential for blood pressure control, and also plays a key role in the modulation of disease-induced metabolic alterations. In order to investigate the role of the baroreflex in the cardiometabolic and inflammatory derangements promoted by fructose overload, Wistar rats underwent sinoaortic denervation (SAD) or sham surgery and were studied 90 days after receiving tap water (Den and Ctrl) or a 10% fructose solution (Fruc and Den-Fruc). All experimental groups showed marked and similar degree of baroreflex impairment compared to Ctrl. As expected, fructose overload effectively induced metabolic syndrome; however, when it was associated with SAD, several alterations were attenuated. While Fruc rats displayed increased sympathetic modulation and tone and reduced vagal modulation compared to Ctrl animals, Den-Fruc rats showed greater vagal tone and modulation when compared to the Fruc group. Moreover, the Den-Fruc group showed augmented expression of β1 adrenergic receptors and TNF/IL-10 ratio and reduction of β2 in the left ventricle. The increase in vagal function was correlated with improved insulin sensitivity (r2 = 0.76), and decreased abdominal fat (r2 = -0.78) and β2 receptors (r2 = -0.85). Our results showed that: (1) chronic fructose overload induced severe baroreflex impairment, i.e. in a similar magnitude to that observed in SAD rats, which is accompanied by cardiometabolic dysfunctions; (2) the compensatory enhancement in parasympathetic function in SAD rats submitted to fructose intake may point out the possibility of use of approaches that improve vagal function as therapeutic target to attenuate fructose-induced cardiometabolic dysfunctions.
Collapse
Affiliation(s)
- Fernando Dos Santos
- Heart Institute (InCor), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil.
| | - Ivana C Moraes-Silva
- Heart Institute (InCor), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Edson D Moreira
- Heart Institute (InCor), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Maria-Claudia Irigoyen
- Heart Institute (InCor), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
85
|
Ramos-Romero S, Hereu M, Atienza L, Casas J, Jáuregui O, Amézqueta S, Dasilva G, Medina I, Nogués MR, Romeu M, Torres JL. Mechanistically different effects of fat and sugar on insulin resistance, hypertension, and gut microbiota in rats. Am J Physiol Endocrinol Metab 2018; 314:E552-E563. [PMID: 29351480 DOI: 10.1152/ajpendo.00323.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance (IR) and impaired glucose tolerance (IGT) are the first manifestations of diet-induced metabolic alterations leading to Type 2 diabetes, while hypertension is the deadliest risk factor of cardiovascular disease. The roles of dietary fat and fructose in the development of IR, IGT, and hypertension are controversial. We tested the long-term effects of an excess of fat or sucrose (fructose/glucose) on healthy male Wistar-Kyoto (WKY) rats. Fat affects IR and IGT earlier than fructose through low-grade systemic inflammation evidenced by liver inflammatory infiltration, increased levels of plasma IL-6, PGE2, and reduced levels of protective short-chain fatty acids without triggering hypertension. Increased populations of gut Enterobacteriales and Escherichia coli may contribute to systemic inflammation through the generation of lipopolysaccharides. Unlike fat, fructose induces increased levels of diacylglycerols (lipid mediators of IR) in the liver, urine F2-isoprostanes (markers of systemic oxidative stress), and uric acid, and triggers hypertension. Elevated populations of Enterobacteriales and E. coli were only detected in rats given an excess of fructose at the end of the study. Dietary fat and fructose trigger IR and IGT in clearly differentiated ways in WKY rats: early low-grade inflammation and late direct lipid toxicity, respectively; gut microbiota plays a role mainly in fat-induced IR, and hypertension is independent of inflammation-mediated IR. The results provide evidence that suggests that the combination of fat and sugar is potentially more harmful than fat or sugar alone when taken in excess.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) , Barcelona , Spain
- Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - Mercè Hereu
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) , Barcelona , Spain
| | - Lidia Atienza
- Department of Pathology, Puerta del Mar University Hospital , Cádiz , Spain
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, IQAC-CSIC, Barcelona , Spain
| | - Olga Jáuregui
- Scientific and Technological Centers of the University of Barcelona , Barcelona , Spain
| | - Susana Amézqueta
- Faculty of Chemistry, University of Barcelona , Barcelona , Spain
| | | | | | - Maria Rosa Nogués
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Romeu
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Lluís Torres
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) , Barcelona , Spain
| |
Collapse
|
86
|
Abdelrahman AM, Al Suleimani YM, Ashique M, Manoj P, Ali BH. Effect of infliximab and tocilizumab on fructose-induced hyperinsulinemia and hypertension in rats. Biomed Pharmacother 2018; 105:182-186. [PMID: 29857297 DOI: 10.1016/j.biopha.2018.05.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/04/2023] Open
Abstract
Fructose administration can induce hypertension, insulin resistance and hypertriglyceridemia. Here, we investigated the possible protective effect of infliximab (IFX), a tumor necrosis factor alpha (TNF-α) inhibitor, or tocilizumab (TOC), an interleukin-6 (IL6) inhibitor, on fructose-induced increase in blood pressure, insulin resistance and hyperlipidemia in rats. The animals were fed a 60% fructose diet in the absence or presence of IFX (5 mg/kg, i.p., once weekly) or TOC (8 mg/kg, i.p., once every two weeks). Fructose significantly increased blood pressure, heart rate and homeostatic model assessment of insulin resistance (HOMA-IR). Fructose also significantly raised the concentrations of fasting plasma insulin, triglycerides, total cholesterol, uric acid, tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdhyde (MDA) and nitric oxide. Fructose also significantly decreased plasma superoxide dismutase (SOD) and catalase activities. In addition, fructose significantly increased aortic endothelin and nitric oxide concentrations. Both IFX and TOC attenuated the fructose-induced increase in blood pressure, insulin resistance, and the concentrations of uric acid, MDA and IL-6. TOC significantly reduced fructose-induced increase in triglycerides and cholesterol. In addition, IFX increased plasma SOD and catalase activities. Our results showed that both IFX and TOC were partially successful in reversing fructose - induced changes.
Collapse
Affiliation(s)
- Aly M Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Yousuf M Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Ashique
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
87
|
Shaligram S, Sangüesa G, Akther F, Alegret M, Laguna JC, Rahimian R. Differential effects of high consumption of fructose or glucose on mesenteric arterial function in female rats. J Nutr Biochem 2018; 57:136-144. [PMID: 29727795 DOI: 10.1016/j.jnutbio.2018.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/16/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022]
Abstract
We have recently shown that type of supplemented simple sugar, not merely calorie intake, determines adverse effects on metabolism and aortic endothelial function in female rats. The aim of the current study was to investigate and compare the effects of high consumption of glucose or fructose on mesenteric arterial reactivity and systolic blood pressure (SBP). Sprague-Dawley female rats were supplemented with 20% w/v glucose or fructose in drinking water for 8 weeks. Here, we show that both sugars alter insulin signaling in mesenteric arteries (MA), assessed by a reduction in phosphorylated Akt, and increase in SBP. Furthermore, ingestion of glucose or fructose enhances inducible nitric oxide synthase (iNOS) expression and contractile responses to endothelin and phenylephrine in MA of rats. The endothelium-dependent vasodilation to acetylcholine and bradykinin as well as the relaxation responses to the nitric oxide donor sodium nitroprusside are impaired in MA of fructose- but not glucose-supplemented rats. In contrast, only glucose supplementation increases the expression of phosphorylated endothelial NOS (eNOS) in MA of rats. In conclusion, this study reveals that supplementation with fructose or glucose in liquid form enhances vasocontractile responses and increases iNOS expression in MA, effects which are accompanied by increased SBP in those groups. On the other hand, the preserved vasodilatory responses in MA from glucose-supplemented rats could be attributed to the enhanced level of phosphorylated eNOS expression in this group.
Collapse
Affiliation(s)
- Sonali Shaligram
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Gemma Sangüesa
- Department of Pharmacology Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona
| | - Farjana Akther
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Marta Alegret
- Department of Pharmacology Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona; IBUB (Institute of Biomedicine, University of Barcelona); CIBERobn (Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición)
| | - Juan C Laguna
- Department of Pharmacology Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona; IBUB (Institute of Biomedicine, University of Barcelona); CIBERobn (Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición)
| | - Roshanak Rahimian
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
88
|
Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels. Clin Sci (Lond) 2018; 132:461-474. [DOI: 10.1042/cs20171408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Abdominal obesity and/or a high intake of fructose may cause hypertension. K+ channels, Na/K-ATPase, and voltage-gated Ca2+ channels are crucial determinants of resistance artery tone and thus the control of blood pressure. Limited information is available on the role of K+ transporters in long-term diet-induced hypertension in rats. We hypothesized that a 28-week diet rich in fat, fructose, or both, will lead to changes in K+ transporter expression and function, which is associated with increased blood pressure and decreased arterial function. Male Sprague–Dawley (SD) rats received a diet containing normal chow (Control), high-fat chow (High Fat), high-fructose in drinking water (High Fructose), or a combination of high-fat and high-fructose diet (High Fat/Fruc) for 28 weeks from the age of 4 weeks. Measurements included body weight (BW), systolic blood pressure (SBP), mRNA expression of vascular K+ transporters, and vessel myography in small mesenteric arteries (SMAs). BW was increased in the High Fat and High Fat/Fruc groups, and SBP was increased in the High Fat/Fruc group. mRNA expression of small conductance calcium-activated K+ channel (SKCa), intermediate conductance calcium-activated K+ (IKCa), and Kir2.1 inward rectifier K+ channels were reduced in the High Fat/Fruc group. Reduced endothelium-derived hyperpolarization (EDH)-type relaxation to acetylcholine (ACh) was seen in the High Fat and High Fat/Fruc groups. Ba2+-sensitive dilatation to extracellular K+ was impaired in all the experimental diet groups. In conclusion, reduced expression and function of SKCa, IKCa, and Kir2.1 channels are associated with elevated blood pressure in rats fed a long-term High Fat/Fruc. Rats fed a 28-week High Fat/Fruc provide a relevant model of diet-induced hypertension.
Collapse
|
89
|
Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018; 2018:7515767. [PMID: 30154843 PMCID: PMC6092995 DOI: 10.1155/2018/7515767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increased consumption of energy-dense foods such as fructose-rich syrups represents one of the significant, growing concerns related to the alarming trend of overweight, obesity, and metabolic disorders worldwide. Metabolic pathways affected by fructose involve genes related to lipogenesis/lipolysis, beta-oxidation, mitochondrial biogenesis, gluconeogenesis, oxidative phosphorylation pathways, or altering of circadian production of insulin and leptin. Moreover, fructose can be a risk factor during pregnancy elevating the risk of preterm delivery, hypertension, and metabolic impairment of the mother and fetus. Melatonin is a chronobiotic and homeostatic hormone that can modulate the harmful effects of fructose via clock gene expression and metabolic pathways, modulating the expression of PPARγ, SREBF-1 (SREBP-1), hormone-sensitive lipase, C/EBP-α genes, NRF-1, PGC1α, and uncoupling protein-1. Moreover, this hormone has the capacity in the rat of reverting the harmful effects of fructose, increasing the body weight and weight ratio of the liver, and increasing the body weight and restoring the glycemia from mothers exposed to fructose. The aim of this review is to show the potential crosstalk between fructose and melatonin and their potential role during pregnancy.
Collapse
Affiliation(s)
| | - Claudia Caro-Díaz
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gerardo Cabello-Guzmán
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
90
|
Khan SB, Choudhary R, Vishwakarma PK, Singh A, Shree J, Bodakhe SH. Protective effect of alpha-lipoic acid on progression of cataract formation in fructose-induced experimental cataract. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
91
|
Panchal SK, Carnahan S, Brown L. Coconut Products Improve Signs of Diet-Induced Metabolic Syndrome in Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:418-424. [PMID: 29079969 DOI: 10.1007/s11130-017-0643-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing prevalence of obesity and metabolic syndrome warrants identification of potential therapeutic options for intervention. This study tested commercially available Virgin Coconut Oil and Coconut Nourish, as coconuts are rich sources of lauric and myristic acids. Male Wistar rats were fed either corn starch diet (C); high-carbohydrate, high-fat diet (H); high-carbohydrate, high-virgin coconut oil diet (HV); or high-carbohydrate, high-coconut Nourish diet (HN) for 16 weeks. Metabolic, liver, and cardiovascular health parameters were measured during and at the end of the study. Virgin coconut oil lowered body weight (C 386±8g, H 516±13g, HV 459±10g), blood glucose concentrations (C 4.2±0.1 mmol/L, H 5.4±0.2 mmol/L, HV 4.6±0.2 mmol/L), systolic blood pressure (C 127±5mmHg, H 149±4mmHg, HV 133±3mmHg,) and diastolic stiffness (C 25.0±1.7, H 31.4±1.2, HV 25.2±2.3,) with improved structure and function of the heart and liver. Coconut Nourish increased total body lean mass (C 255±10g, H 270±16g, HN 303±15g) and lowered plasma total cholesterol concentrations (C 1.6±0.2 mmol/L, H 1.7±0.1 mmol/L, HN 1.0±0.0 mmol/L), systolic blood pressure (C 127±5mmHg, H 149±4mmHg, HN 130±3mmHg) and diastolic stiffness (C 25.0±1.7, H 31.4±1.2, HN 26.5±1.0), improved structure and function of the heart and liver but increased plasma concentrations of triglycerides (C 0.3±0.1 mmol/L, H 1.1±0.4 mmol/L, HN 1.8±0.2 mmol/L) and non-esterified fatty acids (C 1.2±0.3 mmol/L, H 3.3±0.8 mmol/L, HN 5.6±0.4 mmol/L). Thus, the fiber and protein in coconut Nourish and the medium-chain saturated fatty acids in virgin coconut oil may improve cardiovascular and liver complications in obesity.
Collapse
Affiliation(s)
- Sunil K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia.
| | - Sharyn Carnahan
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia
- School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, Australia
| | - Lindsay Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia
- School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, Australia
| |
Collapse
|
92
|
Uson-Lopez RA, Kataoka S, Mukai Y, Sato S, Kurasaki M. Melinjo (Gnetum gnemon) Seed Extract Consumption during Lactation Improved Vasodilation and Attenuated the Development of Hypertension in Female Offspring of Fructose-Fed Pregnant Rats. Birth Defects Res 2017; 110:27-34. [PMID: 28925591 DOI: 10.1002/bdr2.1109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Fructose intake has been correlated with increased prevalence of metabolic disorders including hypertension. In pregnant rats, fructose intake has been reported to have adverse effects on the health of its offspring. This study investigated the effects of gestational maternal fructose consumption and if supplementation with melinjo seed extracts to the maternal diet during lactation could benefit the offspring in later life. METHODS Pregnant rats were randomly divided into three groups: untreated (CC), fructose-treated (FC), and fructose and melinjo-treated (FM). FC and FM groups received 100 g/L of D(-)-fructose solution by means of the drinking water during gestation while CC received normal drinking water. During lactation, CC and FC groups were given standard commercial laboratory diet, while the FM group was given commercial laboratory diet with 0.1% melinjo seed extracts. After weaning, the offspring were given normal drinking water and standard commercial diet until week 17. The blood pressure of the offspring was monitored until the 16th week. During week 17, the offspring were killed, and the kidneys were collected and analyzed. RESULTS The level of renal phosphorylated AMP-activated protein kinase (pAMPK) in FM of 17-week female offspring was significantly higher compared with FC and CC groups. Maternal fructose intake down-regulated the renal endothelial isoform of nitric oxide synthetase expression in FC and maternal melinjo seed extract consumption maintained renal endothelial isoform of nitric oxide synthetase expression in FM of 17-week female offspring. In addition, maternal melinjo seed extract intake during lactation lowered the systolic blood pressure in FM of 17-week female offspring. CONCLUSION Female offspring were more vulnerable to the effects of placental fructose and melinjo seed extracts, suggesting sex-specific sensitivities. In summary, our data show that melinjo seed extract consumption during lactation improved vasodilation and attenuated the development of hypertension in the 17-week female offspring of fructose-fed pregnant rats. Birth Defects Research 110:27-34, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachael A Uson-Lopez
- Course of Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Saori Kataoka
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, Japan
| | - Shin Sato
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Masaaki Kurasaki
- Course of Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
93
|
Longitudinal Associations of High-Fructose Diet with Cardiovascular Events and Potential Risk Factors: Tehran Lipid and Glucose Study. Nutrients 2017; 9:nu9080872. [PMID: 28825653 PMCID: PMC5579665 DOI: 10.3390/nu9080872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The relationship between fructose and cardiovascular disease (CVD) remains controversial. In this study, we aimed to assess possible association of dietary intakes of fructose with the risk of CVD events in a prospective population-based study. Participants without CVD (n = 2369) were recruited from the Tehran Lipid and Glucose Study and followed a mean of 6.7 years. Dietary data were collected using a validated 168 item semi-quantitative food frequency questionnaire. Dietary total fructose (TF) intake was calculated by sum of natural fructose (NF) in fruits and vegetables and added fructose (AF) in commercial foods. Multivariate Cox proportional hazard regression models, adjusted for potential confounders, were used to estimate the risk of CVD across tertiles of dietary fructose. Linear regression models were used to indicate association of fructose intakes with changes of CVD risk factors over the study period. The mean age of participants (43.5% men) was 38.1 ± 13.3 years at baseline. During an average of 6.7 ± 1.4 years of follow-up, 79 participants experienced CVD outcomes. The mean daily intake of TF was 6.4 ± 3.7% of total energy (3.6 ± 2.0 from AF and 2.7 ± 1.8 from NF). Higher consumption of TF (≥7.4% vs. <4.5% of total energy) was accompanied with an increased risk of CVD (HR = 1.81, 95% CI = 1.04–3.15); higher energy intake from AF was also related to incidence of CVD (HR = 1.80, 95% CI = 1.04–3.12), whereas NF was not associated with the risk of CVD outcomes. Both AF and TF were also related to changes of systolic and diastolic blood pressures, waist circumference, serum insulin and creatinine levels, as well as HDL-C. Our data provides further evidence regarding undesirable effects of fructose intake in relation to risk of CVD events.
Collapse
|
94
|
Ge Q, Wang Z, Wu Y, Huo Q, Qian Z, Tian Z, Ren W, Zhang X, Han J. High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 2017; 61. [PMID: 28654221 PMCID: PMC5656827 DOI: 10.1002/mnfr.201700134] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022]
Abstract
Scope A high salt (HS) diet is detrimental to cognitive function, in addition to having a role in cardiovascular disorders. However, the method by which an HS diet impairs cognitive functions such as learning and memory remains open. Methods and results In this study, we found that mice on a 7 week HS diet demonstrated disturbed short‐term memory in an object‐place recognition task, and both 4 week and 7 week HS treatments impaired long‐term memory, as evidenced in a fear conditioning test. Mechanistically, the HS diet inhibited memory‐related long‐term potentiation (LTP) in the hippocampus, while also increasing the levels of reactive oxygen species (ROS) in hippocampal cells and downregulating the expression of synapsin I, synaptophysin, and brain‐derived neurotrophic factor in specific encephalic region. Conclusion This suggests that oxidative stress or synaptic protein/neurotrophin deregulation was involved in the HS diet‐induced memory impairment. Thus, the present study provides novel insights into the mechanisms of memory impairment caused by excessive dietary salt, and underlined the importance of controlling to salt absorb quantity.
Collapse
Affiliation(s)
- Qian Ge
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuwei Wu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qing Huo
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoqiang Qian
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xia Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
95
|
Sousa GJ, Oliveira PWC, Nogueira BV, Melo AF, Faria TDO, Meira EF, Mill JG, Bissoli NS, Baldo MP. Fructose intake exacerbates the contractile response elicited by norepinephrine in mesenteric vascular bed of rats via increased endothelial prostanoids. J Nutr Biochem 2017; 48:21-28. [PMID: 28654829 DOI: 10.1016/j.jnutbio.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/31/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
Abstract
Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy. Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected.
Collapse
Affiliation(s)
- Glauciene J Sousa
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Breno V Nogueira
- Department of Morphology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Antônio F Melo
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Eduardo Frizera Meira
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil; Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, Brazil
| | - José G Mill
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Nazaré S Bissoli
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Marcelo P Baldo
- Department of Pathophysiology, Montes Claros State University, Montes Claros, Brazil.
| |
Collapse
|
96
|
Pterostilbene ameliorates insulin sensitivity, glycemic control and oxidative stress in fructose-fed diabetic rats. Life Sci 2017. [PMID: 28629731 DOI: 10.1016/j.lfs.2017.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS The present investigation was designed to explore the effectiveness of pterostilbene (PT) on insulin resistance, metabolic syndrome and oxidative stress in fructose-fed insulin resistant rats. MAIN METHODS Age-matched, male Sprague-Dawley rats (330±30g body weight) were allocated into five groups (n=10). Control (C) group received 65% cornstarch, and the diabetic (D) group received 65% fructose for eight weeks. The third group (D+PT20) received 65% fructose and PT 20mg/kg/day for eight weeks. The fourth group (D+PT40) received 65% fructose and PT 40mg/kg/day for eight weeks. The fifth group (D+M) received 65% fructose and metformin (M) 100mg/kg/day for eight weeks. PT was dissolved in 10% β-cyclodextrin and given orally to rats. Several biochemical parameters were determined to assess the PT efficacy against insulin resistance, metabolic complications, and hepatic oxidative stress. KEY FINDINGS Significantly high HOMA-IR (p<0.001) values in D group compared to C group indicate the presence of insulin resistance. Significantly high levels of TBARS (p<0.001) and decreased levels of SOD (p<0.001) and GSH (p<0.001) in hepatic tissues of D group indicate oxidative stress associated with insulin resistance. Pterostilbene treatment to fructose-fed diabetic rats significantly decreased HOMA-IR (p<0.001) values. Furthermore, PT treatment significantly decreased hepatic TBARS (p<0.001) and increased SOD (p<0.001) and GSH (p<0.001) levels in fructose-fed diabetic rats. SIGNIFICANCE Current study reveals that PT is successful in ameliorating glycemic control, insulin sensitivity while diminishing metabolic disturbances and hepatic oxidative stress in a fructose-induced T2DM rat model.
Collapse
|
97
|
Pathogenesis of Cardiovascular and Metabolic Diseases: Are Fructose-Containing Sugars More Involved Than Other Dietary Calories? Curr Hypertens Rep 2017; 18:44. [PMID: 27125390 PMCID: PMC4850171 DOI: 10.1007/s11906-016-0652-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is increasing concern that sugar consumption may be linked to the development of metabolic and cardiovascular diseases. There is indeed strong evidence that consumption of energy-dense sugary beverages and foods is associated with increased energy intake and body weight gain over time. It is further proposed that the fructose component of sugars may exert specific deleterious effects due to its propension to stimulate hepatic glucose production and de novo lipogenesis. Excess fructose and energy intake may be associated with visceral obesity, intrahepatic fat accumulation, and high fasting and postprandial blood triglyceride concentrations. Additional effects of fructose on blood uric acid and sympathetic nervous system activity have also been reported, but their link with metabolic and cardiovascular diseases remains hypothetical. There is growing evidence that fructose at physiologically consumed doses may exert important effects on kidney function. Whether this is related to the development of high blood pressure and cardiovascular diseases remains to be further assessed.
Collapse
|
98
|
Ikechi R, Fischer BD, DeSipio J, Phadtare S. Irritable Bowel Syndrome: Clinical Manifestations, Dietary Influences, and Management. Healthcare (Basel) 2017; 5:21. [PMID: 28445436 PMCID: PMC5492024 DOI: 10.3390/healthcare5020021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/25/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by symptoms of chronic abdominal pain and altered bowel habits in the absence of an overtly identifiable cause. It is the most commonly diagnosed functional gastrointestinal disorder, accounting for about one third of gastroenterology visits. It generally presents as a complex of symptoms, including psychological dysfunction. Hypersensitivity to certain foods, especially foods that contain high amounts of fructose, plays a role in the pathophysiology of IBS. Elevated consumption of high-fructose corn syrup (HFCS) has been discussed in this aspect. The treatment options for IBS are challenging and varied. In addition to dietary restrictions for HFCS-induced IBS, such as low-FODMAP (Fermentable Oligosaccharides, Disaccharide, Monosaccharides, and Polyols) diets, existing drug therapies are administered based on the predominant symptoms and IBS-subtype. Patients with IBS are likely to suffer from issues, such as anxiety, depression, and post-traumatic-stress disorder. Biopsychosocial factors particularly socioeconomic status, sex, and race should, thus, be considered for diagnostic evaluation of patients with IBS.
Collapse
Affiliation(s)
- Ronald Ikechi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Bradford D Fischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Joshua DeSipio
- Department of Medicine, Gastroenterology/Liver Diseases Division, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
99
|
Cicero AFG, Rosticci M, Fogacci F, Grandi E, D'Addato S, Borghi C. High serum uric acid is associated to poorly controlled blood pressure and higher arterial stiffness in hypertensive subjects. Eur J Intern Med 2017; 37:38-42. [PMID: 27498274 DOI: 10.1016/j.ejim.2016.07.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 07/17/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Serum uric acid (SUA) has been associated to incident hypertension and increased risk of cardiovascular diseases. MATERIALS AND METHODS Among the 2191 subjects enrolled during the last population survey of the Brisighella Heart Study, we identified 146 new cases of arterial hypertension and 394 treated but uncontrolled hypertensive patients with different levels of SUA. Their hemodynamic characteristics have been compared with those of age- and sex-matched normotensive (N. 324) and controlled hypertensive (N. 470) subjects. Then, by logistic regression analysis, we evaluated which factors were associated with a worse BP control under pharmacological treatment. RESULTS SUA levels were significantly higher in untreated hypertensive and uncontrolled hypertensive patients when compared to normotensives and controlled hypertensive patients. Pulse wave velocity (PWV) was significantly higher (p<0.001) in undiagnosed and uncontrolled hypertensive patients, while controlled hypertensive patients had PWV values comparable to normotensive controls. A similar trend has been observed for the augmentation index (AI). A worse BP control was associated with SUA levels (OR 1277, 95% CI 1134-1600 per mg/dL), AI (OR 1066, 95%CI 1041-1092 per unit), and PWV (OR 1201, 95% CI 1089-1423, per m/s), but not with age, body mass index, nor estimated glomerular filtration rate. CONCLUSION Based on our data, SUA seems to be associated with an inadequate BP control in subjects treated with antihypertensive drugs, and subjects with both uncontrolled BP and relatively high SUA levels have also an increased arterial stiffness that (per se) could be a cause of worse BP control under treatment.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy.
| | - Martina Rosticci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Federica Fogacci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Elisa Grandi
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Sergio D'Addato
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
100
|
Tain YL, Chan JYH, Hsu CN. Maternal Fructose Intake Affects Transcriptome Changes and Programmed Hypertension in Offspring in Later Life. Nutrients 2016; 8:nu8120757. [PMID: 27897982 PMCID: PMC5188412 DOI: 10.3390/nu8120757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022] Open
Abstract
Hypertension originates from early-life insults by so-called “developmental origins of health and disease” (DOHaD). Studies performed in the previous few decades indicate that fructose consumption is associated with an increase in hypertension rate. It is emerging field that tends to unfold the nutrient–gene interactions of maternal high-fructose (HF) intake on the offspring which links renal programming to programmed hypertension. Reprogramming interventions counteract disturbed nutrient–gene interactions induced by maternal HF intake and exert protective effects against developmentally programmed hypertension. Here, we review the key themes on the effect of maternal HF consumption on renal transcriptome changes and programmed hypertension. We have particularly focused on the following areas: metabolic effects of fructose on hypertension and kidney disease; effects of maternal HF consumption on hypertension development in adult offspring; effects of maternal HF consumption on renal transcriptome changes; and application of reprogramming interventions to prevent maternal HF consumption-induced programmed hypertension in animal models. Provision of personalized nutrition is still a faraway goal. Therefore, there is an urgent need to understand early-life nutrient–gene interactions and to develop effective reprogramming strategies for treating hypertension and other HF consumption-related diseases.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|