51
|
Elsabagh M, Ishikake M, Sakamoto Y, Haruno A, Miura M, Fujieda T, Obitsu T, Sugino T. Postruminal supply of amino acids enhances ghrelin secretion and lipid metabolism in feed-deprived sheep. Anim Sci J 2018; 89:1663-1672. [DOI: 10.1111/asj.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/24/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Mabrouk Elsabagh
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
- Department of Nutrition and Clinical Nutrition; Faculty of Veterinary Medicine; Kafrelsheikh University; Kafr El-Sheikh Egypt
| | - Motomi Ishikake
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | | | | | | | | | - Taketo Obitsu
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Toshihisa Sugino
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
52
|
Association of leisure time physical activity and NMR-detected circulating amino acids in peripubertal girls: A 7.5-year longitudinal study. Sci Rep 2017; 7:14026. [PMID: 29070851 PMCID: PMC5656647 DOI: 10.1038/s41598-017-14116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
This study investigated the longitudinal associations of physical activity and circulating amino acids concentration in peripubertal girls. Three hundred ninety-six Finnish girls participated in the longitudinal study from childhood (mean age 11.2 years) to early adulthood (mean age 18.2 years). Circulating amino acids were assessed by nuclear magnetic resonance spectroscopy. LTPA was assessed by self-administered questionnaire. We found that isoleucine, leucine and tyrosine levels were significantly higher in individuals with lower LTPA than their peers at age 11 (p < 0.05 for all), independent of BMI. In addition, isoleucine and leucine levels increased significantly (~15%) from childhood to early adulthood among the individuals with consistently low LTPA (p < 0.05 for both), while among the individuals with consistently high LTPA the level of these amino acids remained virtually unchanged. In conclusion, high level of physical activity is associated lower serum isoleucine and leucine in peripubertal girls, independent of BMI, which may serve as a mechanistic link between high level of physical activity in childhood and its health benefits later in life. Further studies in peripubertal boys are needed to assess whether associations between physical activity and circulating amino acids in children adolescents are sex-specific.
Collapse
|
53
|
Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol 2017; 8:10. [PMID: 28127425 PMCID: PMC5260006 DOI: 10.1186/s40104-016-0139-z] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
Collapse
Affiliation(s)
- Shihai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China.,College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 People's Republic of China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science & Technology University, No. 9 Donghua Road, Fengyang, 233100 Anhui Province People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-ResistanceNutrition,Ministry of Education, Sichuan AgriculturalUniversity, Ya'an, Sichuan China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| |
Collapse
|
54
|
Lin YL, Tai SY, Chen JW, Chou CH, Fu SG, Chen YC. Ameliorative effects of pepsin-digested chicken liver hydrolysates on development of alcoholic fatty livers in mice. Food Funct 2017; 8:1763-1774. [DOI: 10.1039/c7fo00123a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With developments in economics and increasing work loads, alcohol abuse becomes more and more severe, leading to occurrences of alcoholic liver disease (ALD).
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology
- National Taiwan University
- Taipei City 106
- Taiwan
| | - Szu-Yun Tai
- Department of Animal Science and Technology
- National Taiwan University
- Taipei City 106
- Taiwan
| | - Jr-Wei Chen
- Department of Animal Science and Technology
- National Taiwan University
- Taipei City 106
- Taiwan
- Poultry Industry Section
| | - Chung-Hsi Chou
- School of Veterinary Medicine
- National Taiwan University
- Taipei City 106
- Taiwan
- Zoonoses Research Center
| | - Shih-Guei Fu
- Department of Applied Life Science and Health
- Chia Nan University of Pharmacy & Science
- Tainan 717
- Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology
- National Taiwan University
- Taipei City 106
- Taiwan
- Zoonoses Research Center
| |
Collapse
|
55
|
Kujala UM, Peltonen M, Laine MK, Kaprio J, Heinonen OJ, Sundvall J, Eriksson JG, Jula A, Sarna S, Kainulainen H. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men. Front Med (Lausanne) 2016; 3:57. [PMID: 27933294 PMCID: PMC5122573 DOI: 10.3389/fmed.2016.00057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023] Open
Abstract
Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA) catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information, we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid cycle, intramyocellular lipid storage, and oxidation, thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed whether data from aged Finnish men are in line with our mechanistic hypothesis linking BCAA catabolism and metabolic disturbances. Methods Older Finnish men enriched with individuals having been athletes in young adulthood (n = 593; mean age 72.6 ± 5.9 years) responded to questionnaires, participated in a clinical examination including assessment of body composition with bioimpedance and gave fasting blood samples for various analytes as well as participated in a 2-h 75 g oral glucose tolerance test. Metabolomics measurements from serum included BCAAs (isoleucine, leucine, and valine). Results Out of the 593 participants, 59 had previously known type 2 diabetes, further 67 had screen-detected type 2 diabetes, 127 impaired glucose tolerance, and 125 impaired fasting glucose, while 214 had normal glucose regulation and one had missing glucose tolerance information. There were group differences in all of the BCAA concentrations (p ≤ 0.005 for all BCAAs), such that those with normal glucose tolerance had the lowest and those with diabetes mellitus had the highest BCAA concentrations. All BCAA levels correlated positively with body fat percentage (r = 0.29–0.34, p < 0.0001 for all). Expected associations with high BCAA concentrations and unfavorable metabolic profile indicators from metabolomics analysis were found. Except for glucose concentrations, the associations were stronger with isoleucine and leucine than with valine. Conclusion/interpretation The findings provided further support for our hypothesis by strengthening the idea that the efficiency of BCAA catabolism may be mechanistically involved in the regulation of fat oxidation, thus affecting the levels of metabolic disease risk factors.
Collapse
Affiliation(s)
- Urho M Kujala
- Department of Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| | - Markku Peltonen
- Diabetes Prevention Unit, Department of Chronic Disease Prevention, Division of Welfare and Health Promotion, National Institute for Health and Welfare , Helsinki , Finland
| | - Merja K Laine
- Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Vantaa Health Center, Vantaa, Finland
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland; Department of Health, National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Olli J Heinonen
- Department of Health and Physical Activity, Paavo Nurmi Centre, University of Turku , Turku , Finland
| | - Jouko Sundvall
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare , Helsinki , Finland
| | - Johan G Eriksson
- Diabetes Prevention Unit, Department of Chronic Disease Prevention, Division of Welfare and Health Promotion, National Institute for Health and Welfare, Helsinki, Finland; Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Antti Jula
- Population Research Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare , Turku , Finland
| | - Seppo Sarna
- Department of Public Health, University of Helsinki , Helsinki , Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
56
|
Dineshram R, Quan Q, Sharma R, Chandramouli K, Yalamanchili HK, Chu I, Thiyagarajan V. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 2016; 15:4120-34. [PMID: 26507238 DOI: 10.1002/pmic.201500198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).
Collapse
Affiliation(s)
- R Dineshram
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Q Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Rakesh Sharma
- Department of Biochemistry, L.K.S Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kondethimmanahalli Chandramouli
- Biological, Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Ivan Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
57
|
D'Antona G, Tedesco L, Ruocco C, Corsetti G, Ragni M, Fossati A, Saba E, Fenaroli F, Montinaro M, Carruba MO, Valerio A, Nisoli E. A Peculiar Formula of Essential Amino Acids Prevents Rosuvastatin Myopathy in Mice. Antioxid Redox Signal 2016; 25:595-608. [PMID: 27245589 PMCID: PMC5065032 DOI: 10.1089/ars.2015.6582] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Myopathy, characterized by mitochondrial oxidative stress, occurs in ∼10% of statin-treated patients, and a major risk exists with potent statins such as rosuvastatin (Rvs). We sought to determine whether a peculiar branched-chain amino acid-enriched mixture (BCAAem), found to improve mitochondrial function and reduce oxidative stress in muscle of middle-aged mice, was able to prevent Rvs myopathy. RESULTS Dietary supplementation of BCAAem was able to prevent the structural and functional alterations of muscle induced by Rvs in young mice. Rvs-increased plasma 3-methylhistidine (a marker of muscular protein degradation) was prevented by BCAAem. This was obtained without changes of Rvs ability to reduce cholesterol and triglyceride levels in blood. Rather, BCAAem promotes de novo protein synthesis and reduces proteolysis in cultured myotubes. Morphological alterations of C2C12 cells induced by statin were counteracted by amino acids, as were the Rvs-increased atrogin-1 mRNA and protein levels. Moreover, BCAAem maintained mitochondrial mass and density and citrate synthase activity in skeletal muscle of Rvs-treated mice beside oxygen consumption and ATP levels in C2C12 cells exposed to statin. Notably, BCAAem assisted Rvs to reduce oxidative stress and to increase the anti-reactive oxygen species (ROS) defense system in skeletal muscle. Innovation and Conclusions: The complex interplay between proteostasis and antioxidant properties may underlie the mechanism by which a specific amino acid formula preserves mitochondrial efficiency and muscle health in Rvs-treated mice. Strategies aimed at promoting protein balance and controlling mitochondrial ROS level may be used as therapeutics for the treatment of muscular diseases involving mitochondrial dysfunction, such as statin myopathy. Antioxid. Redox Signal. 25, 595-608.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- 1 Department of Public Health, Experimental and Forensic Medicine, Pavia University , Pavia, Italy
| | - Laura Tedesco
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Chiara Ruocco
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Giovanni Corsetti
- 3 Department of Clinical and Experimental Sciences, Brescia University , Brescia, Italy
| | - Maurizio Ragni
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Andrea Fossati
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Elisa Saba
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Francesca Fenaroli
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Mery Montinaro
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Michele O Carruba
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Alessandra Valerio
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Enzo Nisoli
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| |
Collapse
|
58
|
Patin F, Baranek T, Vourc'h P, Nadal-Desbarats L, Goossens JF, Marouillat S, Dessein AF, Descat A, Hounoum BM, Bruno C, Watier H, Si-Tahar M, Leman S, Lecron JC, Andres CR, Corcia P, Blasco H. Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism. Neurotherapeutics 2016; 13:905-917. [PMID: 27444617 PMCID: PMC5081117 DOI: 10.1007/s13311-016-0461-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic impairment and neuroinflammation. Playing an important role in the regulation of both phenomena, interleukin (IL)-6, a major cytokine of the inflammatory response has been proposed as a target for management of ALS. Although a pilot clinical trial provided promising results in humans, another recent preclinical study showed that knocking out the IL-6 gene in mice carrying ALS did not improve clinical outcome. In this study, we aimed to determine the relevance of the IL-6 pathway blockade in a mouse model of ALS by using a pharmacological antagonist of IL-6, a murine surrogate of tocilizumab, namely MR16-1. We analyzed the immunological and metabolic effects of IL-6 blockade by cytokine measurement, blood cell immunophenotyping, targeted metabolomics, and transcriptomics. A deleterious clinical effect of MR16-1 was revealed, with a speeding up of weight loss (p = 0.0041) and decreasing body weight (p < 0.05). A significant increase in regulatory T-cell count (p = 0.0268) and a decrease in C-X-C ligand-1 concentrations in plasma (p = 0.0479) were observed. Metabolomic and transcriptomic analyses revealed that MR16-1 mainly affected branched-chain amino acid, lipid, arginine, and proline metabolism. IL-6 blockade negatively affected body weight, despite a moderated anti-inflammatory effect. Metabolic effects of IL-6 were mild compared with metabolic disturbances observed in ALS, but a modification of lipid metabolism by therapy was identified. These results indicate that IL-6 blockade did not improve clinical outcome of a mutant superoxide dismutase 1 mouse model of ALS.
Collapse
Affiliation(s)
- Franck Patin
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France.
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France.
| | - Thomas Baranek
- INSERM, UMR 1100 "Centre d'étude des Pathologies Respiratoires, Université François Rabelais, Tours, France
| | - Patrick Vourc'h
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
- PPF "Analyse des systèmes biologiques", Université François Rabelais de Tours, Tours, France
| | - Lydie Nadal-Desbarats
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- PPF "Analyse des systèmes biologiques", Université François Rabelais de Tours, Tours, France
| | - Jean-François Goossens
- Centre Universitaire de Mesures et d'Analyses (CUMA), Université de Lille 2, Lille, France
| | - Sylviane Marouillat
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
| | | | - Amandine Descat
- Centre Universitaire de Mesures et d'Analyses (CUMA), Université de Lille 2, Lille, France
| | | | - Clément Bruno
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Hervé Watier
- CHRU de Tours, Laboratoire d'Immunologie, Tours, France
| | - Mustafa Si-Tahar
- INSERM, UMR 1100 "Centre d'étude des Pathologies Respiratoires, Université François Rabelais, Tours, France
| | - Samuel Leman
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
| | - Jean-Claude Lecron
- CHU de Poitiers, Laboratoire d'Immunologie, Poitiers, France
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UPRES EA4331, Pôle Biologie Santé, Université de Poitiers, Poitiers, France
| | - Christian R Andres
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Fédération des CRCSLA Tours-Limoges (LITORALS), Tours, France
| | - Hélène Blasco
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| |
Collapse
|
59
|
Xiao Q, Moore SC, Keadle SK, Xiang YB, Zheng W, Peters TM, Leitzmann MF, Ji BT, Sampson JN, Shu XO, Matthews CE. Objectively measured physical activity and plasma metabolomics in the Shanghai Physical Activity Study. Int J Epidemiol 2016; 45:1433-1444. [PMID: 27073263 PMCID: PMC5100606 DOI: 10.1093/ije/dyw033] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Physical activity is associated with a variety of health benefits, but the biological mechanisms that explain these associations remain unclear. Metabolomics is a powerful tool to comprehensively evaluate global metabolic signature associated with physical activity and helps to pinpoint the pathways that mediate the health effects of physical activity. There has been limited research on metabolomics and habitual physical activity, and no metabolomics study has examined sedentary behaviour and physical activity of different intensities. METHODS In a group of Chinese adults (N = 277), we used an untargeted approach to examine 328 plasma metabolites in relation to accelerometer-measured physical activity, including overall volume of physical activity (physical activity energy expenditure (PAEE) and duration of physically active time) and sedentary time, and measures related to different intensities of physical activity (moderate-to-vigorous activity (MVPA), light activity, average physical activity intensity). RESULTS We identified 11 metabolites that were associated with total activity, with a false discovery rate of 0.2 or lower. Notably, we observed generally lower levels of amino acids in the valine, leucine and isoleucine metabolism pathway and of carbohydrates in sugar metabolism among participants with higher activity levels. Moreover, we found that PAEE, time spent in light activity and duration of physically active time were associated with a similar metabolic pattern, whereas the metabolic signature associated with sedentary time mirrored this pattern. In contrast, average activity intensity and time spent in MVPA appeared to be associated with somewhat different metabolic patterns. CONCLUSIONS Overall, the metabolomics patterns support a beneficial role of higher volume of physical activity in cardiometabolic health. Our findings identified candidate pathways and provide insight into the mechanisms underlying the health effects of physical activity.
Collapse
Affiliation(s)
- Qian Xiao
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven C Moore
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sarah K Keadle
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Wei Zheng
- Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tricia M Peters
- Department of Internal Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles E Matthews
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
60
|
Oosthuyse T, Millen AME. Comparison of energy supplements during prolonged exercise for maintenance of cardiac function: carbohydrate only versus carbohydrate plus whey or casein hydrolysate. Appl Physiol Nutr Metab 2016; 41:674-83. [PMID: 27177231 DOI: 10.1139/apnm-2015-0491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiac function is often suppressed following prolonged strenuous exercise and this may occur partly because of an energy deficit. This study compared left ventricular (LV) function by 2-dimensional echocardiography and tissue Doppler imaging (TDI) before and after ∼2.5 h of cycling (2-h steady-state 60% peak aerobic power output plus 16 km time trial) in 8 male cyclists when they ingested either placebo, carbohydrate-only (CHO-only), carbohydrate-casein hydrolysate (CHO-casein), or carbohydrate-whey hydrolysate (CHO-whey). No treatment-by-time interactions occurred, but pre-to-postexercise time effects occurred selectively. Although diastolic function measured by pulsed-wave Doppler early-to-late (E/A) transmitral blood flow velocity was suppressed in all trials from pre- to postexercise (mean change post-pre exercise: -0.53 (95% CI -0.15 to -0.91)), TDI early-to-late (e'/a') tissue velocity was significantly suppressed pre- to postexercise only with placebo, CHO-only, and CHO-whey (septal and lateral wall e'/a' average change: -0.62 (95% CI -1.12 to -0.12); -0.69 (95% CI -1.19 to -0.20); and -0.79 (95% CI -1.28 to -0.29), respectively) but not with CHO-casein (-0.40 (95% CI -0.90 to 0.09)). LV contractility was, or tended to be, significantly reduced pre- to postexercise with placebo, CHO-only, and CHO-whey (systolic blood pressure/end systolic volume change, mm Hg·mL(-1): -0.8 (95% CI -1.2 to -0.4), p = 0.0003; -0.5 (95% CI -0.9 to -0.02), p = 0.035; and -0.4 (95% CI -0.8 to 0.04), p = 0.086, respectively), but not with CHO-casein (-0.3 (95% CI -0.8 to 0.1), p = 0.22). However, ejection fraction (EF) and ventricular-arterial coupling were significantly reduced pre- to postexercise only with placebo (placebo change: EF, -4.6 (95% CI -8.4 to -0.7)%; stroke volume/end systolic volume, -0.3 (95% CI -0.6 to -0.04)). Despite no treatment-by-time interactions, pre-to-postexercise time effects observed with specific beverages may be meaningful for athletes. Tentatively, the order of beverages with least-to-most variables displaying a time effect indicating suppression of LV function following exercise was CHO-casein < CHO-only and CHO-whey < placebo, and calls for further verification.
Collapse
Affiliation(s)
- Tanja Oosthuyse
- Exercise Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.,Exercise Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Aletta M E Millen
- Exercise Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.,Exercise Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
61
|
Chen T, Ni Y, Ma X, Bao Y, Liu J, Huang F, Hu C, Xie G, Zhao A, Jia W, Jia W. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci Rep 2016; 6:20594. [PMID: 26846565 PMCID: PMC4742847 DOI: 10.1038/srep20594] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total of 429 Chinese participants at different stages of diabetes development, using an ultra-performance liquid chromatography triple quadruple mass spectrometry platform. The alterations of the five AAs in Chinese populations are well in accordance with previous reports. Early elevation of the five AAs and their combined score was closely associated with future development of diabetes, suggesting an important role of these metabolites as early markers of diabetes. On the other hand, the five AAs were not as good as existing clinical markers in differentiating diabetic patients from their healthy counterparts. Our findings verified the close correlation of BCAAs and AAAs with insulin resistance and future development of diabetes in Chinese populations and highlighted the predictive value of these markers for future development of diabetes.
Collapse
Affiliation(s)
- Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yan Ni
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; Shanghai, 200233, China
| | - Yuqian Bao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; Shanghai, 200233, China
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; Shanghai, 200233, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; Shanghai, 200233, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
62
|
Health-Related Findings Among Twin Pairs Discordant for Leisure-Time Physical Activity for 32 Years: The TWINACTIVE Study Synopsis. Twin Res Hum Genet 2015; 18:266-72. [DOI: 10.1017/thg.2015.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We are lacking very long-term and controlled intervention studies investigating the effects of habitual physical activity on health-related factors. To address this gap, we performed a natural experiment by identifying same-sex twin pairs in which the co-twins of each pair differed with respect to leisure-time physical-activity habits throughout their adult life. Our criterion for the discordance was that the same co-twin had a higher leisure time-activity volume than that of the other member of the pair at the majority –– if not all –– of the follow-up time points according to reported/interviewed physical-activity data. Overall, we identified and conducted multidimensional health-related measurements (including fitness, body composition, cardiometabolic risk factor levels, bone and arterial status, and exercise motivation) of 16 twin pairs (seven monozygotic (MZ) and nine dizygotic (DZ) pairs, mean age 60 years) who had persistent discordance in leisure-time physical-activity habits over three decades (TWINACTIVE study). In our discordant-pair study design, after adjusting for sequence-level genes, both systemic-level metabolic, and site-specific structural findings differed significantly in the pairwise analysis in MZ pairs only. These findings included intrapair differences in accumulated fat depots and structure of heart, arteries, and bones. In addition, our study revealed intrapair differences in metabolic and regulatory pathways, which may partly explain the mechanistic links between long-term physical activity, phenotypic changes, and decreased risk of cardiometabolic diseases.
Collapse
|
63
|
Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance. J Nutr Metab 2015; 2015:715859. [PMID: 25949823 PMCID: PMC4408745 DOI: 10.1155/2015/715859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance athlete or resistance/strength athlete) to an integrative, multimode approach encompassing all four of the major fitness components: resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P) intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore limit an athletes' ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic performance.
Collapse
|
64
|
Kainulainen H, Papaioannou KG, Silvennoinen M, Autio R, Saarela J, Oliveira BM, Nyqvist M, Pasternack A, 't Hoen PAC, Kujala UM, Ritvos O, Hulmi JJ. Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol 2015; 399:131-42. [PMID: 25304272 DOI: 10.1016/j.mce.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy is characterized by muscle wasting and decreased aerobic metabolism. Exercise and blocking of myostatin/activin signaling may independently or combined counteract muscle wasting and dystrophies. The effects of myostatin/activin blocking using soluble activin receptor-Fc (sActRIIB-Fc) administration and wheel running were tested alone or in combination for 7 weeks in dystrophic mdx mice. Expression microarray analysis revealed decreased aerobic metabolism in the gastrocnemius muscle of mdx mice compared to healthy mice. This was not due to reduced home-cage physical activity, and was further downregulated upon sActRIIB-Fc treatment in enlarged muscles. However, exercise activated pathways of aerobic metabolism and counteracted the negative effects of sActRIIB-Fc. Exercise and sActRIIB-Fc synergistically increased expression of major urinary protein, but exercise blocked sActRIIB-Fc induced phosphorylation of STAT5 in gastrocnemius muscle. In conclusion, exercise alone or in combination with myostatin/activin blocking corrects aerobic gene expression profiles of dystrophic muscle toward healthy wild type mice profiles.
Collapse
Affiliation(s)
- Heikki Kainulainen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Konstantinos G Papaioannou
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mika Silvennoinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Reija Autio
- Department of Signal Processing, Tampere University of Technology, Korkeakoulunkatu 1, P.O. BOX 553, Tampere FI-33101, Finland
| | - Janne Saarela
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Bernardo M Oliveira
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Miro Nyqvist
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FIN-20520, Finland
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center (LUMC), Postzone S-04-P, PO Box 9600, Leiden 2300 RC, The Netherlands
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland.
| |
Collapse
|
65
|
Knapik-Czajka M. Simvastatin increases liver branched-chain α-ketoacid dehydrogenase activity in rats fed with low protein diet. Toxicology 2014; 325:107-14. [DOI: 10.1016/j.tox.2014.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/24/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
|
66
|
Abstract
Branch chain amino acids (BCAAs) have unique properties with diverse physiological and metabolic roles. They have functions other than simple nutrition. Different diseases including metabolic disease lead to protein loss, especially muscle protein. Supplementation of BCAAs promotes protein synthesis and reduces break down, as well as improving disease conditions. They are important regulators of mTOR signaling pathway and regulate protein synthesis as well as protein turnover. BCAAs facilitate glucose uptake by liver and SK muscle and also enhance glycogen synthesis. Oxidation of BCAAs seems to be beneficial for metabolic health as their catabolism increases fatty acid oxidation and reduces risk of obesity. BCAAs are also important in immunity, brain function, and other physiological aspects of well-being. All three BCAAs are absolutely required for lymphocyte growth and proliferation. They are also important for proper immune cell function. BCAAs may influence brain protein synthesis, and production of energy and may influence synthesis of different neurotransmitters. BCAAs can be used therapeutically and future studies may be directed to investigating the diverse effects of BCAAs in different tissues and their signaling pathways.
Collapse
|