51
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
52
|
Heterogeneity of Fecal Calprotectin Reflecting Generation of Neutrophil Extracellular Traps (NETs) in the Gut: New Immunoassays Are Available. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: We aimed at obtaining more information on the structure of fecal calprotectin (CP) as a basis for establishing improved quantitative assays and detection of Neutrophil Extracellular Traps (NETs) in stools. Commercial fecal CP assays produce different results, probably due to differences in antibodies, extraction procedures, and standards used. In addition, the structure of fecal CP may be different from that in the standard so that rules for immunoassays are violated. We aimed at solving these problems by studying the structure of fecal CP and developing new antibodies and assay procedures including some for NETs in stools. Methods and Findings: Stool samples from children with abdominal symptoms were extracted by a conventional and a new procedure. Some extracts were run on anion exchange and size exclusion chromatography, and fractions were tested on ELISAs by use of ten new mouse monoclonal antibodies against the CP subunit S100A9. Hybrid ELISAs (named HELISA) were established using anti-DNA or anti-histones for coating of microwells, and enzyme labelled anti-CP was used for development. By ion exchange chromatography, five to ten fecal CP subfraction peaks differing in net electric charge were found, all of which contained the major chromatin components. The presence of DNA and histones followed calprotectin in the chromatographic fractions suggesting that NETs are generated in the gut lumen. The new CP monoclonals reacted very differently against the subfractions so that a mixture of them (called MiMo) must be used to obtain reliable assay values for fecal CP. A new method called FELISA was developed where standards and samples are applied directly in Nunc (Denmark) MaxiSorp plates, without any catching antibody. It takes advantage of the property of CP to bind strongly to the plastic in wells. This method has a higher sensitivity because it will detect CP molecules with only one antigenic epitope available. It will give more reliable estimates and more efficient selection of patients for complex diagnostic procedures. We also developed an alternative to the FELISA: a competitive ELISA where S100A9 coated in microwells will compete with CP in standards and samples for binding to a properly diluted HRP-anti-CP solution. In this method, the presence of other proteins in extraction or dilution buffers will not interfere. Using the HELISA, about 65% of the patients had detectable fecal NETs in concentrations between 150 and 1500 ng/mL; however, the values correlated poorly with CP values. Extraction of fecal samples with a simple buffer of TBS, and pH 5 with 5 mM EDTA, gave a yield of about 90%, while the yields of commercial kits are not specified or lie around 50%. A fecal CP standard will bring methods in accordance with the requirements for immunoassays that the structure of CP in the standard and sample must be the same. A mixture of fecal anion exchange fractions as a standard may be a solution to this problem. The principle worked in the first trial by giving the same values after storage of such a standard at 5C for four months. Conclusions: Fecal CP consists of at least five subfractions containing NETs or degradation products thereof. Commercial kits should not be accepted for clinical use unless it has been shown that they can detect all subfractions which may require the use of a mixture of monoclonals. The methods presented here can be used for such a quality control. The HELISA methods can be used for assays on NETs in stools and to study their possible pathogenic effects in the gut. Use of the FELISA and the S100A9 competitive method may give increased sensitivity, higher precision, and better selection of patients for more complex procedures.
Collapse
|
53
|
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 2022; 13:1968257. [PMID: 34494943 PMCID: PMC8437544 DOI: 10.1080/19490976.2021.1968257] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Host-microbial cross-talk plays a crucial role in maintenance of gut homeostasis. However, how microbiota-derived metabolites, e.g., butyrate, regulate functions of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. We sought to investigate the effects of butyrate on IBD neutrophils and elucidate the therapeutic potential in regulating mucosal inflammation. Peripheral neutrophils were isolated from IBD patients and healthy donors, and profiles of proinflammatory cytokines and chemokines were determined by qRT-PCR and ELISA, respectively. The migration and release of neutrophil extracellular traps (NETs) were studied by a Transwell model and immunofluorescence, respectively. The in vivo role of butyrate in regulating IBD neutrophils was evaluated in a DSS-induced colitis model in mice. We found that butyrate significantly inhibited IBD neutrophils to produce proinflammatory cytokines, chemokines, and calprotectins. Blockade of GPCR signaling with pertussis toxin (PTX) did not interfere the effects whereas pan-histone deacetylase (HDAC) inhibitor, trichostatin A (TSA) effectively mimicked the role of butyrate. Furthermore, in vitro studies confirmed that butyrate suppressed neutrophil migration and formation of NETs from both CD and UC patients. RNA sequencing analysis revealed that the immunomodulatory effects of butyrate on IBD neutrophils were involved in leukocyte activation, regulation of innate immune response and response to oxidative stress. Consistently, oral administration of butyrate markedly ameliorated mucosal inflammation in DSS-induced murine colitis through inhibition of neutrophil-associated immune responses such as proinflammatory mediators and NET formation. Our data thus reveal that butyrate constrains neutrophil functions and may serve as a novel therapeutic potential in the treatment of IBD.
Collapse
Affiliation(s)
- Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Lin
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cui Zhang
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhitao Li
- Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Mingsong Li Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China,CONTACT Zhanju Liu Center for IBD Research, Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, No. 301 Yanchang Road, Shanghai200072, China
| |
Collapse
|
54
|
Novikov D, Zolotov A, Bikbavova G, Livzan M, Telyatnikova L. Neutrophil extracellular traps in a patient with ulcerative colitis. DOKAZATEL'NAYA GASTROENTEROLOGIYA 2022; 11:31. [DOI: 10.17116/dokgastro20221102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
55
|
Giaglis S, Sur Chowdhury C, van Breda SV, Stoikou M, Tiaden AN, Daoudlarian D, Schaefer G, Buser A, Walker UA, Lapaire O, Hoesli I, Hasler P, Hahn S. Circulatory Neutrophils Exhibit Enhanced Neutrophil Extracellular Trap Formation in Early Puerperium: NETs at the Nexus of Thrombosis and Immunity. Int J Mol Sci 2021; 22:ijms222413646. [PMID: 34948443 PMCID: PMC8704360 DOI: 10.3390/ijms222413646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnancy is associated with elevated maternal levels of cell-free DNA of neutrophil extracellular trap (NET) origin, as circulatory neutrophils exhibit increased spontaneous NET formation, mainly driven by G-CSF and finely modulated by sex hormones. The postpartum period, on the other hand, involves physiological alterations consistent with the need for protection against infections and fatal haemorrhage. Our findings indicate that all relevant serum markers of neutrophil degranulation and NET release are substantially augmented postpartum. Neutrophil pro-NETotic activity in vitro is also upregulated particularly in post-delivery neutrophils. Moreover, maternal puerperal neutrophils exhibit a strong pro-NETotic phenotype, associated with increased levels of all key players in the generation of NETs, namely citH3, MPO, NE, and ROS, compared to non-pregnant and pregnant controls. Intriguingly, post-delivery NET formation is independent of G-CSF in contrast to late gestation and complemented by the presence of TF on the NETs, alterations in the platelet activity status, and activation of the coagulation cascade, triggered by circulating microparticles. Taken together, our results reveal the highly pro-NETotic and potentially procoagulant nature of postpartum neutrophils, bridging an overt immune activation with possible harmful thrombotic incidence.
Collapse
Affiliation(s)
- Stavros Giaglis
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
- Division of Rheumatology, Department of Internal Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (A.N.T.); (D.D.); (U.A.W.)
- Department of Rheumatology, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence:
| | - Chanchal Sur Chowdhury
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shane Vontelin van Breda
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
- Division of Rheumatology, Department of Internal Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland;
| | - Maria Stoikou
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
| | - André N. Tiaden
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (A.N.T.); (D.D.); (U.A.W.)
- Department of Rheumatology, University Hospital Basel, 4031 Basel, Switzerland
| | - Douglas Daoudlarian
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (A.N.T.); (D.D.); (U.A.W.)
- Department of Rheumatology, University Hospital Basel, 4031 Basel, Switzerland
| | - Guenther Schaefer
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
| | - Andreas Buser
- Swiss Red Cross, Blood Transfusion Center, Department of Internal Medicine, Division of Hematology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Ulrich A. Walker
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (A.N.T.); (D.D.); (U.A.W.)
- Department of Rheumatology, University Hospital Basel, 4031 Basel, Switzerland
| | - Olav Lapaire
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
| | - Irene Hoesli
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Department of Internal Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland;
| | - Sinuhe Hahn
- Laboratory for Prenatal Medicine, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland; (C.S.C.); (S.V.v.B.); (M.S.); (G.S.); (O.L.); (I.H.); (S.H.)
- University Women’s Hospital, University Hospital Basel, 4056 Basel, Switzerland
| |
Collapse
|
56
|
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice. Front Oncol 2021; 11:766636. [PMID: 34868992 PMCID: PMC8639597 DOI: 10.3389/fonc.2021.766636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Characterized as a complex of extracellular DNA fibers and granule proteins, neutrophil extracellular traps (NETs) are generated specifically by neutrophils which play a critical role in host defense and immune regulation. NETs have been initially found crucial for neutrophil anti-microbial function. Recent studies suggest that NETs are involved in tumorigenesis and cancer progression. However, the function of NETs in cancer remains unclear, which might be due to the variation of research models and the heterogeneity of cancers. Although most of malignant tumors have similar biological behaviors, significant differences indeed exist in various systems. Malignant tumors of the digestive system cause the most incidence and mortality of cancer worldwide. In this review, we would focus on research developments on NETs in digestive cancers to provide insights on their role in digestive cancer progression and future research directions.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
57
|
An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease. Int J Mol Sci 2021; 22:ijms222313038. [PMID: 34884842 PMCID: PMC8657670 DOI: 10.3390/ijms222313038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are innate immune phagocytes that play a key role in immune defense against invading pathogens. The main offensive mechanisms of neutrophils are the phagocytosis of pathogens, release of granules, and production of cytokines. The formation of neutrophil extracellular traps (NETs) has been described as a novel defense mechanism in the literature. NETs are a network of fibers assembled from chromatin deoxyribonucleic acid, histones, and neutrophil granule proteins that have the ability to kill pathogens, while they can also cause toxic effects in hosts. Activated neutrophils with NET formation stimulate autoimmune responses related to a wide range of inflammatory autoimmune diseases by exposing autoantigens in susceptible individuals. The association between increased NET formation and autoimmunity was first reported in antineutrophil cytoplasmic antibody-related vasculitis, and the role of NETs in various diseases, including systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, has since been elucidated in research. Herein, we discuss the mechanistic role of neutrophils, including NETs, in the pathogenesis of systemic juvenile idiopathic arthritis (SJIA) and adult-onset Still’s disease (AOSD), and provide their clinical values as biomarkers for monitoring and prognosis.
Collapse
|
58
|
Investigation of H 2S Donor Treatment on Neutrophil Extracellular Traps in Experimental Colitis. Int J Mol Sci 2021; 22:ijms222312729. [PMID: 34884536 PMCID: PMC8657984 DOI: 10.3390/ijms222312729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders, which affect the gastrointestinal tract with intermittent ulceration. It is increasingly clear that neutrophil extracellular traps (NETs) seem to have a role in IBD; however, the associated pathogenesis is still not known. Furthermore, several conventional therapies are available against IBD, although these might have side effects. Our current study aimed to investigate the effects of hydrogen sulfide (H2S) treatment on NETs formation and on the expression of inflammatory mediators in experimental rat colitis. To model IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was administered intracolonically (i.c.) to Wistar-Harlan male rats. Animals were treated (2 times/day) with H2S donor Lawesson's reagent per os. Our results showed that H2S treatment significantly decreased the extent of colonic lesions. Furthermore, the expression of members of NETs formation: peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (citH3), myeloperoxidase (MPO) and inflammatory regulators, such as nuclear transcription factor-kappa B (NF-κB) and high-mobility group box 1 (HMGB1) were reduced in H2S treated group compared to TNBS. Additionally, H2S donor administration elevated the expression of ubiquitin C-terminal hydroxylase L1 (UCHL-1), a potential anti-inflammatory mediator. Taken together, our results showed that H2S may exert anti-inflammatory effect through the inhibition of NETs formation, which suggests a new therapeutic approach against IBD.
Collapse
|
59
|
Chen H, Wu X, Xu C, Lin J, Liu Z. Dichotomous roles of neutrophils in modulating pathogenic and repair processes of inflammatory bowel diseases. PRECISION CLINICAL MEDICINE 2021; 4:246-257. [PMID: 35692862 PMCID: PMC8982532 DOI: 10.1093/pcmedi/pbab025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Neutrophils are considered as complex innate immune cells and play a critical role in maintaining intestinal mucosal homeostasis. They exert robust pro-inflammatory effects and recruit other immune cells in the acute phase of pathogen infection and intestinal inflammation, but paradoxically, they also limit exogenous microbial invasion and facilitate mucosal restoration. Hyperactivation or dysfunction of neutrophils results in abnormal immune responses, leading to multiple autoimmune and inflammatory diseases including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel diseases (IBD). As a refractory intestinal inflammatory disease, the pathogenesis and progression of IBD are associated with complicated immune response processes in which neutrophils are profoundly involved. However, the consensus on potential roles of neutrophils in modulating pathogenic and repair processes of IBD remains not fully understood. Accumulated infiltrating neutrophils cross the epithelial barrier and contribute to microbial dysbiosis, aggravated intestinal architectural damage, compromised resolution of intestinal inflammation and increased risk of thrombosis during IBD. Paradoxically, activated neutrophils are also associated with effective elimination of invaded microbiota, promoted angiogenesis and tissue restoration of gut mucosa in IBD. Here, we discuss the beneficial and detrimental roles of neutrophils in the onset and resolution of intestinal mucosal inflammation, hoping to provide a precise overview of neutrophil functions in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Inflammatory Bowel Disease Research, the Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research, the Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chunjin Xu
- Department of Gastroenterology, the First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu 476100, China
| | - Jian Lin
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian 351106, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, the Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
60
|
Netting Gut Disease: Neutrophil Extracellular Trap in Intestinal Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541222. [PMID: 34712384 PMCID: PMC8548149 DOI: 10.1155/2021/5541222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Many gut disease etiologies are attributed to the presence of robust inflammatory cell recruitment. The recruitment of neutrophils plays a vital role in inflammatory infiltration. Neutrophils have various antimicrobial effector mechanisms, including phagocytosis, oxidative burst, and degranulation. It is suggested that neutrophils could release neutrophil extracellular traps (NETs) to kill pathogens. However, recent evidence indicates that neutrophil infiltration within the gut is associated with disrupted local immunological microenvironment and impaired epithelial barrier. Growing evidence implies that NETs are involved in the progression of many diseases, including cancer, diabetes, thrombosis, and autoimmune disease. Increased NET formation was found in acute or chronic conditions, including infection, sterile inflammation, cancer, and ischemia/reperfusion injury (IRI). Here, we present a comprehensive review of recent advances in the understanding of NETs, focusing on their effects in gut disease. We also discuss NETs as a potential therapeutic target in gut disease.
Collapse
|
61
|
Poulsen TBG, Damgaard D, Jørgensen MM, Senolt L, Blackburn JM, Nielsen CH, Stensballe A. Identification of potential autoantigens in anti-CCP-positive and anti-CCP-negative rheumatoid arthritis using citrulline-specific protein arrays. Sci Rep 2021; 11:17300. [PMID: 34453079 PMCID: PMC8397748 DOI: 10.1038/s41598-021-96675-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with different etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA-positive patients, emphasize the need for further stratification of the patients. We used high-density protein array technology for fingerprinting of ACPA reactivity. Identification of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti-CCP-negative and 15 anti-CCP-positive RA patients were assessed for ACPA content using a modified protein microarray containing 1631 different natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti-CCP-positive RA plasma showed high-intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding significantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti-CCP-negative plasma was also enhanced by PAD2- and PAD4-mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, significantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein. We demonstrate that PAD2 and PAD4 are equally efficient in generating citrullinated autoantigens recognized by ACPAs. Patterns of proteins recognized by ACPAs may serve as a future diagnostic tool for further subtyping of RA patients.
Collapse
Affiliation(s)
- Thomas B G Poulsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg, Denmark.,Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Dres Damgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Malene M Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ladislav Senolt
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg, Denmark.
| |
Collapse
|
62
|
Baldan-Martin M, Chaparro M, Gisbert JP. Tissue Proteomic Approaches to Understand the Pathogenesis of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1184-1200. [PMID: 33529308 DOI: 10.1093/ibd/izaa352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has become a global disease encompassing a group of progressive disorders characterized by recurrent chronic inflammation of the gut with variable disease courses and complications. Despite recent advances in the knowledge of IBD pathophysiology, the elucidation of its etiopathology and progression is far from fully understood, requiring complex and multiple approaches. Therefore, limited clinical progress in diagnosis, assessment of disease activity, and optimal therapeutic regimens have been made over the past few decades. This review explores recent advances and challenges in tissue proteomics with an emphasis on biomarker discovery and better understanding of the molecular mechanisms underlying IBD pathogenesis. Future multi-omic studies are required for the comprehensive molecular characterization of disease biology in real time with a future impact on early detection, disease monitoring, and prediction of the clinical outcome.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
63
|
Dos Santos Ramos A, Viana GCS, de Macedo Brigido M, Almeida JF. Neutrophil extracellular traps in inflammatory bowel diseases: Implications in pathogenesis and therapeutic targets. Pharmacol Res 2021; 171:105779. [PMID: 34298111 DOI: 10.1016/j.phrs.2021.105779] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two main forms of inflammatory bowel disease (IBD). Among the various immune cells involved in IBD, neutrophils are the first to infiltrate and appear to contribute to the impairment of the epithelial barrier, destruction of tissues by oxidative and proteolytic damage, as well as to the perpetuation of inflammation by the release of cytokines and chemokines associated with pro-inflammatory effects. In addition to basic effector mechanisms, such as phagocytosis and chemotaxis, neutrophils can also form extracellular traps (NETs), which is made up of a mesh-like structure - which contains its chromatin (DNA + histones) together with granules and enzymes, such as myeloperoxidase (MPO) and neutrophilic elastase (NE) - and that acts as a trap that can result in the death of extracellular pathogens and/or can promote tissue damage. Recent evidence indicates that NETs also play an important and significant role in the pathogenesis of IBD. Previous studies have reported increased levels of NETs in tissue and serum samples from patients with IBD, as well as in experimental colitis. In this review, we discuss current knowledge about the formation of NETs and their role in the pathophysiology of IBD, pointing out potential mechanisms by which NETs promote tissue damage, as well as their involvement in complications associated with IBD. In addition, we propose potential targets for therapy to regulate the production of NETs, making it possible to expand the current spectrum of therapies for IBD.
Collapse
Affiliation(s)
- Anderson Dos Santos Ramos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| | | | | | - Juliana Franco Almeida
- Department of Cellular Biology, University of Brasilia, Brasilia, Brazil; Department of Cellular and Molecular Biology, Federal University of Paraíba, Paraíba, Brazil.
| |
Collapse
|
64
|
Abstract
As the main protein components of chromatin, histones play central roles in gene regulation as spools of winding DNA. Histones are subject to various modifications, including phosphorylation, acetylation, glycosylation, methylation, ubiquitination and citrullination, which affect gene transcription. Histone citrullination, a posttranscriptional modification catalyzed by peptidyl arginine deiminase (PAD) enzymes, is involved in human carcinogenesis. In this study, we highlighted the functions of histone citrullination in physiological regulation and tumors. Additionally, because histone citrullination involves forming neutrophil extracellular traps (NETs), the relationship between NETs and tumors was illustrated. Finally, the clinical application of histone citrullination and PAD inhibitors was discussed.
Collapse
Affiliation(s)
- Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
65
|
Ding J, Zhang Z, Huang W, Bi G. Nicotinamide phosphoribosyltransferase inhibitor is a novel therapeutic candidate in LPS-induced neutrophil extracellular traps. Microbiol Immunol 2021; 65:257-264. [PMID: 33871094 DOI: 10.1111/1348-0421.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/27/2022]
Abstract
Neutrophil extracellular traps (NETs) are beneficial antibacterial defense structures. However, excessive NETs have also been linked to tissue damage and organ dysfunction. LPS and Gram-negative bacteria induce the formation of reactive oxygen species (ROS)-dependent NETs via the JNK pathway. It was found previously that knockdown of nicotinamide phosphoribosyltransferase (NAMPT) upregulates surfactant protein B (SFTPB or SP-B) and attenuates LPS-induced acute lung injury (ALI) via inhibiting JNK activation. This study investigated the effect of FK866, an intracellular NAMPT inhibitor, on the formation of LPS-induced NETs in mouse bronchoalveolar lavage (BAL) neutrophils and in differentiated HL-60 cells. The results show that inhibition of NAMPT by FK866 suppresses NETs formation in BAL neutrophils from the mice exposed to LPS. FK866 also suppresses NETs formation in the differentiated HL-60 cells stimulated with LPS. Additional data indicate that these effects are mediated by suppressing ROS production at least partly via inhibiting JNK activation and depleting NAD(P)H. The utility of inhibition of intracellular NAMPT may be a potential therapy for LPS-induced NETs-related diseases.
Collapse
Affiliation(s)
- Jing Ding
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangliang Bi
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
66
|
Frich LH, Fernandes LR, Schrøder HD, Hejbøl EK, Nielsen PV, Jørgensen PH, Stensballe A, Lambertsen KL. The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions. J Shoulder Elbow Surg 2021; 30:e261-e275. [PMID: 32919047 DOI: 10.1016/j.jse.2020.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff (RC) disorders involve a spectrum of shoulder conditions from early tendinopathy to full-thickness tears leading to impaired shoulder function and pain. The pathology of RC disorder is, nonetheless, still largely unknown. Our hypothesis is that a supraspinatus (SS) tendon tear leads to sustained inflammatory changes of the SS muscle along with fatty infiltration and muscle degeneration, which are threshold markers for poor RC muscle function. The aim of this study was to determine the extent of this muscle inflammation in conjunction with lipid accumulation and fibrosis in RC tear conditions. METHODS We used proteomics, histology, electrochemiluminescence immunoassay, and quantitative polymerase chain reaction analyses to evaluate inflammatory and degenerative markers and fatty infiltration in biopsies from 22 patients undergoing surgery with repair of a full-thickness SS tendon tear. RESULTS Bioinformatic analysis showed that proteins involved in innate immunity, extracellular matrix organization, and lipid metabolism were among the most upregulated, whereas mitochondrial electronic transport chain along with muscle fiber function was among the most downregulated. Histologic analysis confirmed changes in muscle fiber organization and the presence of inflammation and fatty infiltration. Inflammation appeared to be driven by a high number of infiltrating macrophages, accompanied by elevated matrix metalloprotease levels and changes in transforming growth factor-β and cytokine levels in the SS compared with the deltoid muscle. CONCLUSIONS We demonstrated massive SS muscle inflammation after the tendon tear combined with fatty infiltration and degeneration. The regulation of tissue repair is thus extremely complex, and it may have opposite effects at different time points of healing. Inhibition or stimulation of muscle inflammation may be a potential target to enhance the outcome of the repaired torn RC.
Collapse
Affiliation(s)
- Lars Henrik Frich
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark; The Orthopaedic Research Unit, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Livia Rosa Fernandes
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; BRIDGE (Brain Research - Inter-Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
67
|
Dong W, Liu D, Zhang T, You Q, Huang F, Wu J. Oral delivery of staphylococcal nuclease ameliorates DSS induced ulcerative colitis in mice via degrading intestinal neutrophil extracellular traps. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112161. [PMID: 33812202 DOI: 10.1016/j.ecoenv.2021.112161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have revealed that neutrophil extracellular traps (NETs) may contribute directly to the initiation of ulcerative colitis (UC), a typical inflammatory bowel disease (IBD) characterized by mucosal damage. Staphylococcal nuclease (SNase), a nonspecific phosphodiesterase, has a strong ability to degrade DNA. Here we investigate whether intestinal NET degradation with an oral preparation of SNase can ameliorate dextran sulfate sodium (DSS)-induced UC in mice. SNase encapsulated with calcium alginate (ALG-SNase) was formulated using crosslinking technology with sodium alginate and calcium chloride. ALG-SNase were orally administered to DSS-induced UC mice, and their therapeutic efficacy was evaluated. The expression of inflammatory cytokines and biomarkers of NETs was also assessed, as well as the intestinal permeability in mice. The results showed that ALG-SNase nanoparticles were successfully prepared and delivered to the colon of UC mice. In addition, oral administration of ALG-SNase nanoparticles decreased NET levels in the colon and effectively alleviated the clinical colitis index and tissue inflammation in UC mice. Moreover, the SNase nanoparticles reduced intestinal permeability and regulated the expression of proinflammatory cytokines. Furthermore, the markers of NETs were strongly correlated with the expression levels of tight junction proteins in colon tissue. In conclusion, our data showed that oral administration of ALG-SNase can effectively ameliorate colitis in UC mice via NET degradation and suggested SNase as a candidate therapy for the treatment of UC.
Collapse
Affiliation(s)
- Wanfa Dong
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tingting Zhang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
68
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
69
|
Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol 2021; 12:321-333. [PMID: 33689803 PMCID: PMC8166923 DOI: 10.1016/j.jcmgh.2021.03.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The Inflammatory Bowel Diseases (IBD), Ulcerative Colitis (UC) and Crohn's Disease (CD) are characterised by chronic non-resolving gut mucosal inflammation involving innate and adaptive immune responses. Neutrophils, usually regarded as first responders in inflammation, are a key presence in the gut mucosal inflammatory milieu in IBD. Here, we review the role of neutrophil extracellular trap (NET) formation as a potential effector disease mechanism. NETs are extracellular webs of chromatin, microbicidal proteins and oxidative enzymes that are released by neutrophils to contain pathogens. NETs contribute to the pathogenesis of several immune-mediated diseases such as systemic lupus erythematosus and rheumatoid arthritis; and recently, as a major tissue damaging process involved in the host response to severe acute respiratory syndrome coronavirus 2 infection. NETs are pertinent as a defence mechanism at the gut mucosal interphase exposed to high levels of bacteria, viruses and fungi. On the other hand, NETs can also potentiate and perpetuate gut inflammation. In this review, we discuss the broad protective vs. pathogenic roles of NETs, explanatory factors that could lead to an increase in NET formation in IBD and how NETs may contribute to gut inflammation and IBD-related complications. Finally, we summarise therapeutic opportunities to target NETs in IBD.
Collapse
Affiliation(s)
- Broc Drury
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Gareth Hardisty
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Robert D Gray
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
70
|
Shimshoni E, Adir I, Afik R, Solomonov I, Shenoy A, Adler M, Puricelli L, Sabino F, Savickas S, Mouhadeb O, Gluck N, Fishman S, Werner L, Salame TM, Shouval DS, Varol C, Auf dem Keller U, Podestà A, Geiger T, Milani P, Alon U, Sagi I. Distinct extracellular-matrix remodeling events precede symptoms of inflammation. Matrix Biol 2021; 96:47-68. [PMID: 33246101 DOI: 10.1016/j.matbio.2020.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/04/2023]
Abstract
Identification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular-matrix dynamics during disease onset, while treating the matrix as a complete and defined entity. Through the analysis of matrix structure, stiffness and composition, we unexpectedly revealed that even prior to the first clinical symptoms, the colon displays its own unique extracellular-matrix signature and found specific markers of clinical potential, which were also validated in human subjects. We also show that the emergence of this pre-symptomatic matrix is mediated by subclinical infiltration of immune cells bearing remodeling enzymes. Remarkably, whether the inflammation is chronic or acute, its matrix signature converges at pre-symptomatic states. We suggest that the existence of a pre-symptomatic extracellular-matrix is general and relevant to a wide range of diseases.
Collapse
Affiliation(s)
- Elee Shimshoni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Idan Adir
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Ran Afik
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Miri Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Puricelli
- CIMAINA and Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Odelia Mouhadeb
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nathan Gluck
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sigal Fishman
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Chen Varol
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alessandro Podestà
- CIMAINA and Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Paolo Milani
- CIMAINA and Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel.
| |
Collapse
|
71
|
Dragoni G, De Hertogh G, Vermeire S. The Role of Citrullination in Inflammatory Bowel Disease: A Neglected Player in Triggering Inflammation and Fibrosis? Inflamm Bowel Dis 2021; 27:134-144. [PMID: 32426830 DOI: 10.1093/ibd/izaa095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Citrullination is a posttranslational modification of proteins mediated by a specific family of enzymes called peptidylarginine deiminases (PAD). Dysregulation of these enzymes is involved in the etiology of various diseases, from cancer to autoimmune disorders. In inflammatory bowel disease (IBD), data for a role of citrullination in the disease process are starting to accumulate at different experimental levels including gene expression analyses, RNA, and protein quantifications. Most data have been generated in ulcerative colitis, but data in Crohn disease are lacking so far. In addition, the citrullination of histones is the fundamental process promoting inflammation through the formation of neutrophil extracellular traps (NETs). Interestingly, NETs have also been shown to activate fibroblasts into myofibroblasts in fibrotic interstitial lung disease. Therefore, citrullination merits more thorough study in the bowel to determine its role in driving disease complications such as fibrosis. In this review we describe the process of citrullination and the different players in this pathway, the role of citrullination in autoimmunity with a special focus on IBD, the emerging role for citrullination and NETs in triggering fibrosis, and, finally, how this process could be therapeutically targeted.
Collapse
Affiliation(s)
- Gabriele Dragoni
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Italy
| | - Gert De Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
72
|
Hu J, Kang H, Chen H, Yao J, Yi X, Tang W, Wan M. Targeting neutrophil extracellular traps in severe acute pancreatitis treatment. Therap Adv Gastroenterol 2020; 13:1756284820974913. [PMID: 33281940 PMCID: PMC7692350 DOI: 10.1177/1756284820974913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a critical abdominal disease associated with high death rates. A systemic inflammatory response promotes disease progression, resulting in multiple organ dysfunction. The functions of neutrophils in the pathology of SAP have been presumed traditionally to be activation of chemokine and cytokine cascades accompanying the inflammatory process. Recently, since their discovery, a new type of antimicrobial mechanism, neutrophil extracellular traps (NETs), and their role in SAP, has attracted widespread attention from the scientific community. Significantly different from phagocytosis and degranulation, NETs kill extracellular microorganisms by releasing DNA fibers decorated with granular proteins. In addition to their strong antimicrobial functions, NETs participate in the pathophysiological process of many noninfectious diseases. In SAP, NETs injure normal tissues under inflammatory stress, which is associated with the activation of inflammatory cells, to cause an inflammatory cascade, and SAP products also trigger NET formation. Thus, due to the interaction between NET generation and SAP, a treatment targeting NETs might become a key point in SAP therapy. In this review, we summarize the mechanism of NETs in protecting the host from pathogen invasion, the stimulus that triggers NET formation, organ injury associated with SAP involving NETs, methods to interrupt the harmful effects of NETs, and different therapeutic strategies to preserve the organ function of patients with SAP by targeting NETs.
Collapse
Affiliation(s)
| | | | - Huan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
73
|
Lausen M, Thomsen ME, Christiansen G, Karred N, Stensballe A, Bennike TB, Birkelund S. Analysis of complement deposition and processing on Chlamydia trachomatis. Med Microbiol Immunol 2020; 210:13-32. [PMID: 33206237 DOI: 10.1007/s00430-020-00695-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is the leading cause of sexually transmitted bacterial infections worldwide, with over 120 million annual cases. C. trachomatis infections are associated with severe reproductive complications in women such as extrauterine pregnancy and tubal infertility. The infections are often long lasting, associated with immunopathology, and fail to elicit protective immunity which makes recurrent infections common. The immunological mechanisms involved in C. trachomatis infections are only partially understood. Murine infection models suggest that the complement system plays a significant role in both protective immunity and immunopathology during primary Chlamydia infections. However, only limited structural and mechanistic evidence exists on complement-mediated immunity against C. trachomatis. To expand our current knowledge on this topic, we analyzed global complement deposition on C. trachomatis using comprehensive in-depth mass spectrometry-based proteomics. We show that factor B, properdin, and C4b bind to C. trachomatis demonstrating that C. trachomatis-induced complement activation proceeds through at least two activation pathways. Complement activation leads to cleavage and deposition of C3 and C5 activation products, causing initiation of the terminal complement pathway and deposition of C5b, C6, C7, C8, C9 on C. trachomatis. Interestingly, using immunoelectron microscopy, we show that C5b-9 deposition occurred sporadically and only in rare cases formed complete lytic terminal complexes, possibly caused by the presence of the negative regulators vitronectin and clusterin. Finally, cleavage analysis of C3 demonstrated that deposited C3b is degraded to the opsonins iC3b and C3dg and that this complement opsonization facilitates C. trachomatis binding to human B-cells.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.,Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000, Aarhus, Denmark
| | - Nichlas Karred
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| |
Collapse
|
74
|
Guerra M, Halls VS, Schatterny J, Hagner M, Mall MA, Schultz C. Protease FRET Reporters Targeting Neutrophil Extracellular Traps. J Am Chem Soc 2020; 142:20299-20305. [PMID: 33186023 DOI: 10.1021/jacs.0c08130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.
Collapse
Affiliation(s)
- Matteo Guerra
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Victoria S Halls
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jolanthe Schatterny
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Matthias Hagner
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcus A Mall
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
75
|
Abd El Hafez A, Mohamed AS, Shehta A, Sheta HAEAS. Neutrophil extracellular traps-associated protein peptidyl arginine deaminase 4 immunohistochemical expression in ulcerative colitis and its association with the prognostic predictors. Pathol Res Pract 2020; 216:153102. [PMID: 32853943 DOI: 10.1016/j.prp.2020.153102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Abstract
Neutrophil extracellular traps (NETs) are incriminated in several immune and inflammatory diseases including ulcerative colitis (UC). Analysis of colonic tissues for NETs-related markers in UC carries prognostic and therapeutic implications. This work aims to evaluate the immunohistochemical (IHC) expression of NETs-associated-protein arginine deaminase 4 (PAD4) in colonic biopsies from UC patients in comparison to normal colon (NC). Association between PAD4 expression level and histopathologic grade, patient's therapeutic response and other clinicopathological prognostic predictors in UC are determined. This cohort study included biopsies from 42 UC patients and 11 NC controls. Clinicopathological data including patient's age at diagnosis, gender, presenting symptoms, anatomical disease extent, extra-intestinal manifestations, type and response to therapy and surgical interventions were recorded and tabulated. Histopathological grading of disease activity and associated epithelial changes were assessed. PAD4 immunostaining was conducted using Horseradish Peroxidase technique and scored semiquantitatively considering intensity and percentage of nuclear staining of lamina propria inflammatory cells. Appropriate statistical tests were applied. Anti-PAD4 was localized mainly in the nuclei of lamina propria infiltrating neutrophils. It was expressed more significantly in UC (95.2 %) compared to NC (p 0.001). Increased PAD4 expression level was significantly associated with increasing histopathologic grade, anatomical disease extent, lacking response to therapy and subjection to radical surgery (p:0.001, = 0.038, 0.046, 0.046 respectively). Age, gender, presenting symptoms, extra-intestinal manifestations and epithelial changes showed insignificant associations. This study characterizes a subset of UC patients with high histopathological grade of activity, pancolonic involvement, strong/moderate PAD4 expression levels and who are unresponsive to routine medical therapeutic regimens rendering them candidates for radical surgery. In conjunction with histopathological grading, IHC evaluation of PAD4 in UC is recommended to guide patient's selection for targeted therapy using the novel-discovered selective PAD4 inhibitors.
Collapse
Affiliation(s)
- Amal Abd El Hafez
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Abdelaty Shawky Mohamed
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Al Maarefa University, Riyadh, Saudi Arabia.
| | - Ahmed Shehta
- Gastrointestinal Surgery Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | |
Collapse
|
76
|
Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L, Hibi T. Ulcerative colitis. Nat Rev Dis Primers 2020; 6:74. [PMID: 32913180 DOI: 10.1038/s41572-020-0205-x] [Citation(s) in RCA: 885] [Impact Index Per Article: 177.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown aetiology affecting the colon and rectum. Multiple factors, such as genetic background, environmental and luminal factors, and mucosal immune dysregulation, have been suggested to contribute to UC pathogenesis. UC has evolved into a global burden given its high incidence in developed countries and the substantial increase in incidence in developing countries. An improved understanding of the mechanisms underlying UC has led to the emergence of new treatments. Since the early 2000s, anti-tumour necrosis factor (TNF) treatment has significantly improved treatment outcomes. Advances in medical treatments have enabled a paradigm shift in treatment goals from symptomatic relief to endoscopic and histological healing to achieve better long-term outcomes and, consequently, diagnostic modalities have also been improved to monitor disease activity more tightly. Despite these improvements in patient care, a substantial proportion of patients, for example, those who are refractory to medical treatment or those who develop colitis-associated colorectal dysplasia or cancer, still require restorative proctocolectomy. The development of novel drugs and improvement of the treatment strategy by implementing personalized medicine are warranted to achieve optimal disease control. However, delineating the aetiology of UC is necessary to ultimately achieve disease cure.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charite-Universitatsmedizin, Berlin, Germany
| | - Catherine Le Berre
- Department of Gastroenterology, Nancy University Hospital, Inserm U1256 NGERE, Lorraine University, Lorraine, France
| | - Shu Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, Columbia University Irving Medical Center-New York Presbyterian Hospital, New York, NY, USA
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre and Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Silvio Danese
- Humanitas Clinical and Research Center - IRCCS - and Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Inserm U1256 NGERE, Lorraine University, Lorraine, France
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| |
Collapse
|
77
|
Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L, Hibi T. Ulcerative colitis. Nat Rev Dis Primers 2020; 6:74. [PMID: 32913180 DOI: 10.4103/wjtcm.wjtcm_1_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 02/05/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown aetiology affecting the colon and rectum. Multiple factors, such as genetic background, environmental and luminal factors, and mucosal immune dysregulation, have been suggested to contribute to UC pathogenesis. UC has evolved into a global burden given its high incidence in developed countries and the substantial increase in incidence in developing countries. An improved understanding of the mechanisms underlying UC has led to the emergence of new treatments. Since the early 2000s, anti-tumour necrosis factor (TNF) treatment has significantly improved treatment outcomes. Advances in medical treatments have enabled a paradigm shift in treatment goals from symptomatic relief to endoscopic and histological healing to achieve better long-term outcomes and, consequently, diagnostic modalities have also been improved to monitor disease activity more tightly. Despite these improvements in patient care, a substantial proportion of patients, for example, those who are refractory to medical treatment or those who develop colitis-associated colorectal dysplasia or cancer, still require restorative proctocolectomy. The development of novel drugs and improvement of the treatment strategy by implementing personalized medicine are warranted to achieve optimal disease control. However, delineating the aetiology of UC is necessary to ultimately achieve disease cure.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charite-Universitatsmedizin, Berlin, Germany
| | - Catherine Le Berre
- Department of Gastroenterology, Nancy University Hospital, Inserm U1256 NGERE, Lorraine University, Lorraine, France
| | - Shu Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, Columbia University Irving Medical Center-New York Presbyterian Hospital, New York, NY, USA
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre and Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Silvio Danese
- Humanitas Clinical and Research Center - IRCCS - and Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Inserm U1256 NGERE, Lorraine University, Lorraine, France
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| |
Collapse
|
78
|
Longo S, Chieppa M, Cossa LG, Spinelli CC, Greco M, Maffia M, Giudetti AM. New Insights into Inflammatory Bowel Diseases from Proteomic and Lipidomic Studies. Proteomes 2020; 8:proteomes8030018. [PMID: 32784952 PMCID: PMC7565982 DOI: 10.3390/proteomes8030018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) represent the two main forms of chronic inflammatory bowel diseases (IBD). The exact IBD etiology is not yet revealed but CD and UC are likely induced by an excessive immune response against normal constituents of the intestinal microbial flora. IBD diagnosis is based on clinical symptoms often combined with invasive and costly procedures. Thus, the need for more non-invasive markers is urgent. Several routine laboratory investigations have been explored as indicators of intestinal inflammation in IBD, including blood testing for C-reactive protein, erythrocyte sedimentation rate, and specific antibodies, in addition to stool testing for calprotectin and lactoferrin. However, none has been universally adopted, some have been well-characterized, and others hold great promise. In recent years, the technological developments within the field of mass spectrometry (MS) and bioinformatics have greatly enhanced the ability to retrieve, characterize, and analyze large amounts of data. High-throughput research allowed enhancing the understanding of the biology of IBD permitting a more accurate biomarker discovery than ever before. In this review, we summarize currently used IBD serological and stool biomarkers and how proteomics and lipidomics are contributing to the identification of IBD biomarkers.
Collapse
Affiliation(s)
- Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy;
| | - Luca G. Cossa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
| | - Chiara C. Spinelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
| | - Marco Greco
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Monteroni, 73100 Lecce, Italy;
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
- Correspondence: (M.M.); (A.M.G.)
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
- Correspondence: (M.M.); (A.M.G.)
| |
Collapse
|
79
|
Birkelund S, Bennike TB, Kastaniegaard K, Lausen M, Poulsen TBG, Kragstrup TW, Deleuran BW, Christiansen G, Stensballe A. Proteomic analysis of synovial fluid from rheumatic arthritis and spondyloarthritis patients. Clin Proteomics 2020; 17:29. [PMID: 32782445 PMCID: PMC7412817 DOI: 10.1186/s12014-020-09292-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/29/2020] [Indexed: 01/03/2023] Open
Abstract
Background The aetiologies and pathogeneses of the joint diseases rheumatoid arthritis (RA) and spondyloarthritis (SpA) are still not fully elucidated. To increase our understanding of the molecular pathogenesis, we analysed the protein composition of synovial fluid (SF) from rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients. Methods Fifty-six synovial fluid samples (RA, n = 32; SpA, n = 24) were digested with trypsin, and the resulting peptides were separated by liquid chromatography and analysed by tandem mass spectrometry. Additionally, the concentration of cell-free DNA (cfDNA) in the synovial fluid was measured, and plasma C-reactive protein (CRP) was determined. Results Three hundred thirty five proteins were identified within the SF. The more abundant proteins seen in RA SF were inflammatory proteins, including proteins originating from neutrophil granulocytes, while SpA SF had less inflammatory proteins and a higher concentration of haptoglobin. The concentration of cell-free DNA in the SF increased together with proteins that may have originated from neutrophils. Plasma CRP levels in both RA and SpA, correlated to other acute phase reactants. Conclusions The proteomic results underline that neutrophils are central in the RA pathology but not in SpA, and even though inhibitors of neutrophils (migration, proteinase inhibitors) were present in the SF it was not sufficient to interrupt the disease process.
Collapse
Affiliation(s)
- Svend Birkelund
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark.,Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredriks Bajers Vej 3b, 9200 Aalborg Ø, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| | - Kenneth Kastaniegaard
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark.,Biogenity, 9200 Aalborg Ø, Denmark
| | - Mads Lausen
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| | | | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| |
Collapse
|
80
|
Lin EYH, Lai HJ, Cheng YK, Leong KQ, Cheng LC, Chou YC, Peng YC, Hsu YH, Chiang HS. Neutrophil Extracellular Traps Impair Intestinal Barrier Function during Experimental Colitis. Biomedicines 2020; 8:biomedicines8080275. [PMID: 32764411 PMCID: PMC7459452 DOI: 10.3390/biomedicines8080275] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Aberrant neutrophil extracellular trap (NET) formation and the loss of barrier integrity in inflamed intestinal tissues have long been associated with inflammatory bowel disease (IBD). However, whether NETs alter intestinal epithelium permeability during colitis remains elusive. Here, we demonstrated that NETs promote the breakdown in intestinal barrier function for the pathogenesis of intestinal inflammation in mouse models of colitis. NETs were abundant in the colon of mice with colitis experimentally induced by dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS). Analysis of the intestinal barrier integrity revealed that NETs impaired gut permeability, enabling the initiation of luminal bacterial translocation and inflammation. Furthermore, NETs induced the apoptosis of epithelial cells and disrupted the integrity of tight junctions and adherens junctions. Intravenous administration of DNase I, an enzyme that dissolves the web-like DNA filaments of NETs, during colitis restored the mucosal barrier integrity which reduced the dissemination of luminal bacteria and attenuated intestinal inflammation in both DSS and TNBS models. We conclude that NETs serve a detrimental factor in the gut epithelial barrier function leading to the pathogenesis of mucosal inflammation during acute colitis.
Collapse
Affiliation(s)
- Elliot Yi-Hsin Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Hsuan-Ju Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Kai-Quan Leong
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Li-Chieh Cheng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Yi-Chun Chou
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Chun Peng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Yi-Hsuan Hsu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (E.Y.-H.L.); (H.-J.L.); (Y.-K.C.); (K.-Q.L.); (L.-C.C.); (Y.-C.P.); (Y.-H.H.)
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: ; Tel.: +886-2-3366-2454
| |
Collapse
|
81
|
Widbom L, Schneede J, Midttun Ø, Ueland PM, Karling P, Hultdin J. Elevated plasma cotinine is associated with an increased risk of developing IBD, especially among users of combusted tobacco. PLoS One 2020; 15:e0235536. [PMID: 32614903 PMCID: PMC7332008 DOI: 10.1371/journal.pone.0235536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/17/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Smoking has previously been associated with inflammatory bowel disease (IBD), but no study has reported on cotinine, an objective, biochemical measure of tobacco use. We aimed at testing the hypothesis that cotinine levels among healthy subjects are associated with an increased risk of developing IBD in later life. DESIGN We analysed plasma cotinine and evaluated corresponding lifestyle questionnaires that included tobacco habits in subjects (n = 96) who later developed late-onset IBD (70 ulcerative colitis (UC) and 26 Crohn's disease (CD)) and in sex and age-matched controls (n = 191). RESULTS Patients who later developed IBD had significantly higher plasma cotinine levels compared to controls. In multivariable analysis, higher log-cotinine was associated with a higher risk of developing IBD (OR 1.34 (95% CI 1.01-1.63)). After stratifying for time to diagnosis, the association was only significant in subjects with shorter time (< 5.1 years) to diagnosis (OR 1.45 (1.09-1.92)). The findings were similar for UC- and CD-cases, but did not reach statistical significance in CD-cases. Although plasma cotinine concentrations were higher in snuff users compared to combusted tobacco users, no increase in the risk of IBD and lower risk of developing IBD among subjects with shorter time (< 5.1 years) to diagnosis was seen among snuff users. CONCLUSIONS Cotinine, a biomarker of tobacco use, is associated with increased risk of developing late-onset IBD in general, and UC in particular. No increased risk among snuff users indicates that other components in combusted tobacco than nicotine may be involved in the pathogenesis of IBD among smokers.
Collapse
Affiliation(s)
- Lovisa Widbom
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| | - Jörn Schneede
- Department of Pharmacology and Clinical Neuroscience, Clinical Pharmacology, Umeå University, Umeå, Sweden
| | | | - Per Magne Ueland
- Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Pontus Karling
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
82
|
Curciarello R, Sobande T, Jones S, Giuffrida P, Di Sabatino A, Docena GH, MacDonald TT, Kok K. Human Neutrophil Elastase Proteolytic Activity in Ulcerative Colitis Favors the Loss of Function of Therapeutic Monoclonal Antibodies. J Inflamm Res 2020; 13:233-243. [PMID: 32547155 PMCID: PMC7251227 DOI: 10.2147/jir.s234710] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Proteases play an essential role in the pathophysiology of inflammatory bowel disease (IBD), contributing to the intestinal mucosal lesions through the degradation of the extracellular matrix and alteration of the barrier function. Ulcerative colitis (UC) is characterized by an extensive infiltrate of neutrophils into the mucosa and hence, increased proteolytic activity. Human neutrophil elastase (HNE) is a serine protease that has been reported to be increased in UC patients’ intestinal mucosa. Based on our previous studies, we hypothesized that HNE might induce proteolytic degradation and loss of function of therapeutic monoclonal antibodies in IBD patients. Patients and Methods Elastase expression and elastinolytic activity were determined in mucosal explants from ulcerative colitis patients (n=6) and cultured ex vivo in the presence or absence of recombinant elafin. Enzymatic digestions of therapeutic monoclonal antibodies were performed using recombinant HNE and elafin. The integrity of the therapeutic antibodies was evaluated by immunoblotting and protein G binding assay, whereas their TNF-neutralizing activity was assessed with a reporter cell line. Results We found that HNE and its elastinolytic activity were increased in the gut mucosa of UC patients. We also demonstrated that HNE cleaved biological drugs, impairing the TNF-α neutralizing capacity of anti-TNF monoclonal antibodies. This proteolytic degradation was inhibited by the addition of the specific inhibitor, elafin. Conclusion Our results suggest that the high level of proteolytic degradation by mucosal neutrophil elastase, along with a potential imbalance with elafin, contributes to the loss of function of biologic agents, which are currently used in patients with IBD. These findings might explain the non-responsiveness of UC patients to therapeutic monoclonal antibodies and suggest the potential beneficial concomitant use of elafin in this treatment.
Collapse
Affiliation(s)
- Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos IIFP-CONICET, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.,Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Toni Sobande
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Samantha Jones
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Paolo Giuffrida
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK.,First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos IIFP-CONICET, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Thomas T MacDonald
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK.,Barts Health NHS Trust, Royal London Hospital, London, UK
| |
Collapse
|
83
|
Evaluation of protein arginine deiminase-4 inhibitor in TNBS- induced colitis in mice. Int Immunopharmacol 2020; 84:106583. [PMID: 32416455 DOI: 10.1016/j.intimp.2020.106583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM Many evidences indicated that neutrophil extracellular traps (NETs) are involved in the pathogenesis of inflammatory bowel disease (IBD). Citrullination of histones by Protein Arginine Deiminase-4 (PAD4) is central for NETs formation. This paper aimed to explore the definite role of NETs in mouse model of Crohn's disease (CD) with 2,4,6-trinitrobenzene sulfonic acid (TNBS). METHODS The expression of NETs-associated proteins and mRNAs in colon tissue were detected by immunohistochemistry and Real-time Quantitative PCR (QPCR) respectively. Neutrophils were isolated and stimulated in vitro to form NETs. In addition, we also administered Cl-amidine, PAD4 inhibitor, resulting in less NETs formation to investigate protective effect by measuring weight loss, gross bleeding, colon length, myeloperoxidase (MPO) activity, and cytokine expression in mice. RESULTS The results showed enhanced expression of Ly6G, citrullinated histone H3 (CitH3), and PAD4 in TNBS-induced colitis mice and higher ability of neutrophil to produce NETs in vitro. Blocking NETs formation through Cl-amidine effectively alleviated the clinical colitis index and tissue inflammation in TNBS mice, regulated the expression of pro- or anti-inflammatory cytokines. In addition, Cl-amidine reduced the gene expression of PAD4 and the expression of NETs-associated proteins in the colon of TNBS mice and inhibited the formation of NETs in vitro. CONCLUSIONS Our data showed that Cl-amidine could alleviate the clinical colitis index in TNBS mice to some extend and suggested blocking NETs formation through inhibition of PAD4 as therapeutic targets for the treatment of CD.
Collapse
|
84
|
Alyethodi RR, Karthik S, Muniswamy K, Ravi SK, Perumal P, Bhattacharya D, Bala PA, De AK, Sujatha T, Sunder J, Kundu A. Assessment of Protein Profiles of RNAlater Stored and Fresh PBMC Cells Using Different Protein Extraction Buffers. Protein J 2020; 39:291-300. [DOI: 10.1007/s10930-020-09888-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
85
|
Pisani LF, Moriggi M, Gelfi C, Vecchi M, Pastorelli L. Proteomic insights on the metabolism in inflammatory bowel disease. World J Gastroenterol 2020; 26:696-705. [PMID: 32116417 PMCID: PMC7039832 DOI: 10.3748/wjg.v26.i7.696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/02/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory conditions of the gut that include Crohn's disease and ulcerative colitis. The pathogenesis of IBD is not completely unraveled, IBD are multi-factorial diseases with reported alterations in the gut microbiota, activation of different immune cell types, changes in the vascular endothelium, and alterations in the tight junctions' structure of the colonic epithelial cells. Proteomics represents a useful tool to enhance our biological understanding and to discover biomarkers in blood and intestinal specimens. It is expected to provide reproducible and quantitative data that can support clinical assessments and help clinicians in the diagnosis and treatment of IBD. Sometimes a differential diagnosis of Crohn's disease and ulcerative colitis and the prediction of treatment response can be deducted by finding meaningful biomarkers. Although some non-invasive biomarkers have been described, none can be considered as the "gold standard" for IBD diagnosis, disease activity and therapy outcome. For these reason new studies have proposed an "IBD signature", which consists in a panel of biomarkers used to assess IBD. The above described approach characterizes "omics" and in this review we will focus on proteomics.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Cecilia Gelfi
- Department of Biomedical Science for Health, University of the Study of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan 20122, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, IRCCS Ca' Granda Foundation, Policlinico Hospital, University of the Study of Milan, Milan 20122, Italy
| | - Luca Pastorelli
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
- Department of Biomedical Science for Health, University of the Study of Milan, Milan 20122, Italy
| |
Collapse
|
86
|
Li T, Wang C, Liu Y, Li B, Zhang W, Wang L, Yu M, Zhao X, Du J, Zhang J, Dong Z, Jiang T, Xie R, Ma R, Fang S, Zhou J, Shi J. Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:240-253. [PMID: 31325355 DOI: 10.1093/ecco-jcc/jjz132] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Despite the presence of neutrophil extracellular traps [NETs] in inflamed colon having been confirmed, the role of NETs, especially the circulating NETs, in the progression and thrombotic tendency of inflammatory bowel disease [IBD] remains elusive. We extended our previous study to prove that NETs constitute a central component in the progression and prothrombotic state of IBD. METHODS In all 48 consecutive patients with IBD were studied. Acute colitis was induced by the treatment of C57BL/6 mice with 3.5% dextran sulphate sodium [DSS] in drinking water for 6 days. Peripheral blood neutrophils and sera were collected from IBD patients and murine colitis models. Exposed phosphatidylserine [PS] was analysed with flow cytometry and confocal microscopy. Procoagulant activity was evaluated using clotting time, purified coagulation complex, and fibrin formation assays. RESULTS We observed higher plasma NET levels and presence of NETs in colon tissue in patients with active IBD. More importantly, NETs were induced in mice with DSS colitis, and inhibition of NET release attenuated colitis as well as colitis-associated tumorigenesis. NET degradation through DNase administration decreased cytokine levels during DSS-induced colitis. In addition, DNase treatment also significantly attenuated the accelerated thrombus formation and platelet activation observed in DSS-induced colitis. NETs triggered PS-positive microparticle release and PS exposure on platelets and endothelial cells partially through TLR2 and TLR4, converting them to a procoagulant phenotype. CONCLUSIONS NETs exacerbate colon tissue damage and drive thrombotic tendency during active IBD. Strategies directed against NET formation may offer a potential therapeutic approach for the treatment of IBD.
Collapse
Affiliation(s)
- Tao Li
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang, China
| | - Chunxu Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Yingmiao Liu
- Department of Stomatology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Baorong Li
- Department of Stomatology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Wujian Zhang
- Department of General Surgery of the First Hospital, Harbin Medical University, Heilongjiang, China
| | - Lixiu Wang
- Department of Cardiology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Muxin Yu
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Xinyi Zhao
- Department of Cardiology of the Second Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Jingwen Du
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Jinming Zhang
- Department of Gastroenterology of the Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Zengxiang Dong
- Department of Cardiology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Tao Jiang
- Department of General Surgery of the First Hospital, Harbin Medical University, Heilongjiang, China
| | - Rui Xie
- Department of Oncology of The Third Hospital, Harbin Medical University, Heilongjiang, China
| | - Ruishuang Ma
- Department of Oncology of The Third Hospital, Harbin Medical University, Heilongjiang, China
| | - Shaohong Fang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang, China
| | - Jin Zhou
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China.,Medicine Departments of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
87
|
Bastrup J, Kastaniegaard K, Asuni AA, Volbracht C, Stensballe A. Proteomic and Unbiased Post-Translational Modification Profiling of Amyloid Plaques and Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2020; 73:393-411. [DOI: 10.3233/jad-190652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | | | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
88
|
Chapuy L, Bsat M, Rubio M, Sarkizova S, Therrien A, Bouin M, Orlicka K, Weber A, Soucy G, Villani AC, Sarfati M. IL-12 and Mucosal CD14+ Monocyte-Like Cells Induce IL-8 in Colonic Memory CD4+ T Cells of Patients With Ulcerative Colitis but not Crohn's Disease. J Crohns Colitis 2020; 14:79-95. [PMID: 31206576 PMCID: PMC6930004 DOI: 10.1093/ecco-jcc/jjz115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS CD14+ mononuclear phagocytes [MNPs] and T cells infiltrate colon in ulcerative colitis [UC]. Here we investigated how CD14+ MNPs and the cytokines they produce shape the colonic effector T cell profile. METHODS Colonic or mesenteric lymph node [mLNs] CD4+ T cells isolated from UC or Crohn's disease [CD] patients were stimulated with cytokines or autologous CD14+ MNPs. Cytokine expression was assessed by intracytoplasmic staining and multiplex ELISA. Unsupervised phenotypic multicolour analysis of colonic CD14+ MNPs was performed using the FlowSOM algorithm. RESULTS Among CD14+CD64+HLA-DR+SIRPα + MNPs, only the pro-inflammatory cytokine-producing CD163- subpopulation accumulated in inflamed UC colon and promoted mucosal IL-1β-dependent Th17, Th17/Th1, Th17/Th22 but not Th1 responses. Unsupervised phenotypic analysis of CD14+CD64+ MNPs segregated CD163- monocyte-like cells and CD163+ macrophages. Unexpectedly, IL-12, IL-1β and CD163-, but not CD163+, cells induced IL-8 expression in colonic CD4+ T cells, which co-expressed IFN-γ and/or IL-17 in UC and not CD. The CD163- monocyte-like cells increased the frequency of IL-8+IL-17+/-IFN-γ +/- T cells through IL-1β and IL-12. Finally, colonic IL-8+ T cells co-expressing GM-CSF, TNF-α and IL-6 were detected ex vivo and, promoted by IL-12 in the mucosa and mLNs in UC only. CONCLUSIONS Our findings established a link between monocyte-like CD163- MNPs, IL-12, IL-1β and the detection of colonic memory IL-8-producing CD4+ T cells, which might all contribute to the pathogenesis of UC.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Sisi Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amélie Therrien
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada,Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Mickael Bouin
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Katarzina Orlicka
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Audrey Weber
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Geneviève Soucy
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada,Corresponding author: Marika Sarfati, Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
89
|
Wang C, Baer HM, Gaya DR, Nibbs RJB, Milling S. Can molecular stratification improve the treatment of inflammatory bowel disease? Pharmacol Res 2019; 148:104442. [PMID: 31491469 PMCID: PMC6902263 DOI: 10.1016/j.phrs.2019.104442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disease of the gastrointestinal (GI) tract. It affects more than 3.5 million people in the western world and places a huge financial burden on healthcare systems. IBD is highly heterogeneous; disease severity and outcomes in IBD are highly variable, and patients may experience episodes of relapse and remission. However, treatment often follows a step-up model whereby the patients start with anti-inflammatory agents (corticosteroids or immunosuppressants) and step-up to monoclonal anti-tumour necrosis factor-α (TNFα) antibodies and then other biologics if the initial drugs cannot control disease. Unfortunately, many patients do not respond to the costly biologics, and thus often still require gut-resective surgery, which decreases quality of life. In order to decrease rates of surgery and ineffective treatments, it is important to identify markers that accurately predict disease progression and treatment responses, to inform decisions about the best choice of therapeutics. Here we examine molecular approaches to patient stratification that aim to increase the effectiveness of treatments and potentially reduce healthcare costs. In the future, it may become possible to stratify patients based on their suitability for specific molecular-targeted therapeutic agents, and eventually use molecular stratification for personalised medicine in IBD.
Collapse
Affiliation(s)
- Claire Wang
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hannah M Baer
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel R Gaya
- Gastroenterology Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Milling
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
90
|
Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. Int J Mol Sci 2019; 20:ijms20153662. [PMID: 31357438 PMCID: PMC6696129 DOI: 10.3390/ijms20153662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-free nucleic acids (cfNAs) are defined as any nucleic acids that are present outside the cell. They represent valuable biomarkers in various diagnostic protocols such as prenatal diagnostics, the detection of cancer, and cardiovascular or autoimmune diseases. However, in the current literature, little is known about their implication in inflammatory bowel disease (IBD). IBD is a group of multifactorial, autoimmune, and debilitating diseases with increasing incidence worldwide. Despite extensive research, their etiology and exact pathogenesis is still unclear. Since cfNAs were observed in other autoimmune diseases and appear to be relevant in inflammatory processes, their role in the pathogenesis of IBD has also been suggested. This review provides a summary of knowledge from the available literature about cfDNA and cfRNA and the structures involving them such as exosomes and neutrophil extracellular traps and their association with IBD. Current studies showed the promise of cfNAs in the management of IBD not only as biomarkers distinguishing patients from healthy people and differentiating active from inactive disease state, but also as a potential therapeutic target. However, the detailed biological characteristics of cfNAs need to be fully elucidated in future experimental and clinical studies.
Collapse
|
91
|
Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J Gastroenterol 2019; 25:3503-3526. [PMID: 31367153 PMCID: PMC6658389 DOI: 10.3748/wjg.v25.i27.3503] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are currently regarded as versatile mobile cells controlling and regulating multiple biological pathways and responses in health and disease. These cells store in their specific granules numerous biologically active substances (cytotoxic cationic proteins, cytokines, growth factors, chemokines, enzymes) ready for rapid release. The human gut is the main destination of eosinophils that are produced and matured in the bone marrow and then transferred to target tissues through the circulation. In health the most important functions of gut-residing eosinophils comprise their participation in the maintenance of the protective mucosal barrier and interactions with other immune cells in providing immunity to microbiota of the gut lumen. Eosinophils are closely involved in the development of inflammatory bowel disease (IBD), when their cytotoxic granule proteins cause damage to host tissues. However, their roles in Crohn’s disease and ulcerative colitis appear to follow different immune response patterns. Eosinophils in IBD are especially important in altering the structure and protective functions of the mucosal barrier and modulating massive neutrophil influx to the lamina propria followed by transepithelial migration to colorectal mucus. IBD-associated inflammatory process involving eosinophils then appears to expand to the mucus overlaying the internal gut surface. The author hypothesises that immune responses within colorectal mucus as well as ETosis exerted by both neutrophils and eosinophils on the both sides of the colonic epithelial barrier act as additional pathogenetic factors in IBD. Literature analysis also shows an association between elevated eosinophil levels and better colorectal cancer (CRC) prognosis, but mechanisms behind this effect remain to be elucidated. In conclusion, the author emphasises the importance of investigating colorectal mucus in IBD and CRC patients as a previously unexplored milieu of disease-related inflammatory responses.
Collapse
|
92
|
Kirov S, Sasson A, Zhang C, Chasalow S, Dongre A, Steen H, Stensballe A, Andersen V, Birkelund S, Bennike TB. Degradation of the extracellular matrix is part of the pathology of ulcerative colitis. Mol Omics 2019; 15:67-76. [PMID: 30702115 DOI: 10.1039/c8mo00239h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scientific value of re-analyzing existing datasets is often proportional to the complexity of the data. Proteomics data are inherently complex and can be analyzed at many levels, including proteins, peptides, and post-translational modifications to verify and/or develop new hypotheses. In this paper, we present our re-analysis of a previously published study comparing colon biopsy samples from ulcerative colitis (UC) patients to non-affected controls. We used a different statistical approach, employing a linear mixed-effects regression model and analyzed the data both on the protein and peptide level. In addition to confirming and reinforcing the original finding of upregulation of neutrophil extracellular traps (NETs), we report novel findings, including that Extracellular Matrix (ECM) degradation and neutrophil maturation are involved in the pathology of UC. The pharmaceutically most relevant differential protein expressions were confirmed using immunohistochemistry as an orthogonal method. As part of this study, we also compared proteomics data to previously published mRNA expression data. These comparisons indicated compensatory regulation at transcription levels of the ECM proteins we identified and open possible new avenues for drug discovery.
Collapse
Affiliation(s)
- Stefan Kirov
- Translational Bioinformatics, Bristol Myers Squib, Pennington, NJ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Dinallo V, Marafini I, Di Fusco D, Laudisi F, Franzè E, Di Grazia A, Figliuzzi MM, Caprioli F, Stolfi C, Monteleone I, Monteleone G. Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J Crohns Colitis 2019; 13:772-784. [PMID: 30715224 DOI: 10.1093/ecco-jcc/jjy215] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS In ulcerative colitis [UC], mucosal damage occurs in areas that are infiltrated with neutrophils. The antimicrobial function of neutrophils relies in part on the formation of extracellular web-like structures, named neutrophil extracellular traps [NETs]. The formation and/or clearance of aberrant NETs have been associated with several immune diseases. Here we investigated the role of NETs in UC-related inflammation. METHODS The expression of NET-associated proteins was evaluated in colonic biopsies of patients with Crohn's disease [CD], UC and in normal controls [NC] by Western blotting, immunofluorescence and immunohistochemistry. Colonic biopsies of UC patients were analysed before and after anti-tumour necrosis factor α [anti-TNF-α] treatment. The capacity of neutrophils to produce NETs upon activation was tested in vitro. UC lamina propria mononuclear cells [LPMCs] were cultured with NETs in the presence or absence of an extracellular signal-regulated kinase-1/2 [ERK1/2] inhibitor and inflammatory cytokine induction was assessed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We also characterized the contribution of NETs in dextran sodium sulfate [DSS]-induced colitis. RESULTS NET-associated proteins were over-expressed in inflamed colon of UC patients as compared to CD patients and NC. Circulating neutrophils of UC patients produced NETs in response to TNF-α stimulation, and reduced expression of NET-related proteins and diminished NET formation were seen in patients receiving successful treatment with anti-TNF-α. Treatment of UC LPMCs with NETs activated ERK1/2, thus enhancing TNF-α and interleukin-1β [IL-1β] production. NETs were induced in mice with DSS-colitis and in vivo inhibition of NET release attenuated colitis. CONCLUSIONS Our data show that NET release occurs in UC and suggest a role for NETs in sustaining mucosal inflammation in this disorder.
Collapse
Affiliation(s)
- Vincenzo Dinallo
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of 'Tor Vergata', Rome, Italy
| | | |
Collapse
|
94
|
Savedoroudi P, Bennike TB, Kastaniegaard K, Talebpour M, Ghassempour A, Stensballe A. Serum proteome changes and accelerated reduction of fat mass after laparoscopic gastric plication in morbidly obese patients. J Proteomics 2019; 203:103373. [PMID: 31054967 DOI: 10.1016/j.jprot.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Laparoscopic Gastric Plication (LGP) is a relatively new bariatric surgical procedure which no part of the stomach is removed. It is not clearly understood how LGP leads to fatty tissue reduction. We aimed to investigate the impact of LGP on serum proteome and understand molecular mechanisms of LGP-induced weight loss post-surgery. A Prospective observational study of 16 obese individuals who underwent LGP was performed. A Label-free quantitative shotgun proteomics approach was used to compare serum proteome of subjects before surgery with serum of the same individuals 1 to 2 months post-surgery (T1) and 4 to 5 months post-surgery (T2). The proteome analysis revealed that 48 proteins were differentially regulated between pre-surgery and T1, and seven proteins between pre-surgery and T2 of which six proteins were shared between the two timepoints. Among differentially regulated proteins, four proteins (SRGN, FETUB, LCP1 and CFP) have not previously been described in the context of BMI/weight loss. Despite few differences following LGP, most regulated serum proteins are in accordance with alternative weight loss procedures. Pathway analysis revealed changes to lipid- and inflammatory pathways, including PPARα/RXRα, LXR/RXR and FXR/RXR activation, especially at T1. At T2, the pathways related to inflammation and immune system are most affected. SIGNIFICANCE: Among the available clinical therapies for morbid obesity, bariatric surgery is considered as the most effective approach to achieve long-term weight loss, alongside a significant improvement in metabolic syndrome. However, very little is known about the underlying mechanism associated with significant weight loss post-surgery. Understanding such mechanisms could lead to development of safer non-surgical weight loss approaches. We here present the first analysis of the impact of LGP on the serum proteome, to bring new insights into the underlying molecular mechanism. Our findings indicate that LGP has a comprehensive systemic effect based on the blood serum proteome profile which might account for accelerated reduction of fat mass after surgery, thus, food restriction is not the only reason for weight loss following this unique surgical approach. As secretory regions of the stomach are preserved in LGP and it is associated with minimal physiological and anatomical changes, the findings are of high importance in the field of bariatric surgery and weight loss.
Collapse
Affiliation(s)
- Parisa Savedoroudi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Health Science and Technology, Aalborg University, Denmark.
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Denmark.
| | | | - Mohammad Talebpour
- Laparoscopic Surgery Ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
95
|
Metaproteomics of fecal samples of Crohn's disease and Ulcerative Colitis. J Proteomics 2019; 201:93-103. [PMID: 31009805 DOI: 10.1016/j.jprot.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic inflammatory bowel diseases (IBD) of the gastrointestinal tract. This study used non-invasive LC-MS/MS to find disease specific microbial and human proteins which might be used later for an easier diagnosis. Therefore, 17 healthy controls, 11 CD patients and 14 UC patients but also 13 Irritable Bowel Disease (IBS) patients, 8 Colon Adenoma (CA) patients, and 8 Gastric Carcinoma (GCA) patients were investigated. The proteins were extracted from the fecal samples with liquid phenol in a ball mill. Subsequently, the proteins were digested tryptically to peptides and analyzed by an Orbitrap LC-MS/MS. For protein identification and interpretation of taxonomic and functional results, the MetaProteomeAnalyzer software was used. Cluster analysis and non-parametric test (analysis of similarities) separated healthy controls from patients with CD and UC as well as from patients with GCA. Among others, CD and UC correlated with an increase of neutrophil extracellular traps and immune globulins G (IgG). In addition, a decrease of human IgA and the transcriptional regulatory protein RprY from Bacillus fragilis was found for CD and UC. A specific marker in feces for CD was an increased amount of the human enzyme sucrose-isomaltase. SIGNIFICANCE: Crohn's Disease and Ulcerative Colitis are chronic inflammatory diseases of the gastrointestinal tract, whose diagnosis required comprehensive medical examinations including colonoscopy. The impact of the microbial communities in the gut on the pathogenesis of these diseases is poorly understood. Therefore, this study investigated the impact of gut microbiome on these diseases by a metaproteome approach, revealing several disease specific marker proteins. Overall, this indicated that fecal metaproteomics has the potential to be useful as non-invasive tool for a better and easier diagnosis of both diseases.
Collapse
|
96
|
Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 2019; 10:1667. [PMID: 30971685 PMCID: PMC6458182 DOI: 10.1038/s41467-019-09040-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
Neutrophils are crucial mediators of host defense that are recruited to the central nervous system (CNS) in large numbers during acute bacterial meningitis caused by Streptococcus pneumoniae. Neutrophils release neutrophil extracellular traps (NETs) during infections to trap and kill bacteria. Intact NETs are fibrous structures composed of decondensed DNA and neutrophil-derived antimicrobial proteins. Here we show NETs in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis, and their absence in other forms of meningitis with neutrophil influx into the CSF caused by viruses, Borrelia and subarachnoid hemorrhage. In a rat model of meningitis, a clinical strain of pneumococci induced NET formation in the CSF. Disrupting NETs using DNase I significantly reduces bacterial load, demonstrating that NETs contribute to pneumococcal meningitis pathogenesis in vivo. We conclude that NETs in the CNS reduce bacterial clearance and degrading NETs using DNase I may have significant therapeutic implications. Neutrophils play critical roles in the host response to bacteria, including the production neutrophil extracellular traps (NET). Here the authors show that NET formation in the context of pneumococcal meningitis impairs bacterial clearance and targeting NET formation in this context could be a potential therapeutic option.
Collapse
|
97
|
"NETtling" the host: Breaking of tolerance in chronic inflammation and chronic infection. J Autoimmun 2019; 88:1-10. [PMID: 29100671 DOI: 10.1016/j.jaut.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022]
Abstract
How and why we break tolerance to self-proteins still remains a largely unanswered question. Neutrophils have been identified as a rich source of autoantigens in a wide array of autoimmune diseases that arise as a consequence of different environmental and genetic factors, e.g. rheumatoid arthritis (RA), lupus, vasculitis, cystic fibrosis (CF) etc. Specifically, neutrophil extracellular trap (NET) formation has been identified as a link between innate and adaptive immune responses in autoimmunity. Autoantigens including neutrophil granular proteins (targeted by anti-neutrophil cytoplasmic antibodies, ANCA) as well as post-translationally modified proteins, i.e. citrullinated and carbamylated proteins targeted by anti-citrullinated protein antibodies (ACPA) and anti-carbamylated protein antibodies (ACarPA), respectively, localize to the NETs. Moreover, NETs provide stimuli to dendritic cells that potentiate adaptive autoimmune responses. However, while NETs promote inflammation and appear to induce humoral autoreactivity across autoimmune diseases, the antigen specificity of autoantibodies found in these disorders is striking. These unique autoantigen signatures suggest that not all NETs are created equal and that the environment in which NETs arise shapes their disease-specific character. In this review article, we discuss the effects of different stimuli on the mechanism of NET formation as well as how they contribute to antigen specificity in the breaking of immune tolerance. Specifically, we compare and contrast the autoreactive nature of NETs in two settings of chronic airway inflammation: one triggered by smoking, a recognized environmental NET stimulus in RA patients, and one mediated by Pseudomonas aeruginosa, the most prevalent lung pathogen in CF patients. Finally, we draw attention to novel findings that, together with the specific environmental/chemical stimuli, should be taken into account when investigating how and why antigen specificity arises in the context of NET formation.
Collapse
|
98
|
Gisbert JP, Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review. J Crohns Colitis 2019; 13:374-384. [PMID: 30307487 DOI: 10.1093/ecco-jcc/jjy158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein domain is probably the most ubiquitously affected in disease, response and recovery, and therefore proteomics holds special promise for biomarker discovery in general, and particularly in inflammatory bowel disease [IBD], i.e. ulcerative colitis and Crohn's disease. Tremendous progress has been made over the past decade in the development and refinement of proteomics technologies. These advances provide opportunities for a long-anticipated personalized medicine approach to the treatment of IBD. The present review examines the current state of IBD proteomics research and its usefulness in clinical practice. We performed a systematic bibliographic search to identify studies investigating the use of proteomics in patients with IBD, and we then summarized the current 'state of the art' in the applications of proteomic technologies in the study of IBD. In particular, in the present review we provide: [1] a brief introduction to proteomics in health and disease; [2] a review of the different stages from biomarker discovery to clinical application; and [3] a comprehensive review of the clinical usefulness and application of proteomics in IBD, including: [a] screening to differentiate IBD from healthy controls; [b] differentiating Crohn's disease from ulcerative colitis; [c] prediction of the behaviour or the IBD course; [d] prediction of IBD response to biological treatment; and [e] monitoring response to treatment. We also review the importance of the type of sample-blood vs intestinal tissue-for the study of proteomics in IBD patients. Finally, we emphasize the current limitations of proteomic studies in IBD.
Collapse
Affiliation(s)
- Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
99
|
Kim S, Moore J, Alonso E, Bednarek J, Bezerra JA, Goodhue C, Karpen SJ, Loomes KM, Magee JC, Ng VL, Sherker AH, Smith C, Spino C, Venkat V, Wang K, Sokol RJ, Mack CL. Correlation of Immune Markers With Outcomes in Biliary Atresia Following Intravenous Immunoglobulin Therapy. Hepatol Commun 2019; 3:685-696. [PMID: 31061956 PMCID: PMC6492477 DOI: 10.1002/hep4.1332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a progressive fibroinflammatory cholangiopathy of infancy that is associated with activation of innate and adaptive immune responses targeting bile ducts. A recently completed multicenter phase I/IIA trial of intravenous immunoglobulin in biliary atresia did not improve serum total bilirubin levels at 90 days after hepatoportoenterostomy or survival with the native liver at 1 year. A mechanistic aim of this trial was to determine if the peripheral blood immunophenotype was associated with clinical outcomes. Flow cytometry of peripheral blood cell markers (natural killer [NK], macrophage subsets, T‐ and B‐cell subsets, regulatory T cells), neutrophils, and activation markers (clusters of differentiation [CD]38, CD69, CD86, human leukocyte antigen‐DR isotype [HLA‐DR]) was performed on 29 patients with biliary atresia at baseline and at 60, 90, 180, and 360 days after hepatoportoenterostomy. Plasma cytokines and neutrophil products were also measured. Spearman correlations of change of an immune marker from baseline to day 90 with change in serum bilirubin revealed that an increase in total bilirubin correlated with 1) increased percentage of HLA‐DR+CD38+ NK cells and expression of NK cell activation markers CD69 and HLA‐DR, 2) decreased percentage of regulatory T cells, and 3) increased interleukin (IL)‐8 and associated neutrophil products (elastase and neutrophil extracellular traps). Cox modeling revealed that the change from baseline to day 60 of the percentage of HLA‐DR+CD38+ NK cells and plasma IL‐8 levels was associated with an increased risk of transplant or death by day 360. Conclusion: Poor outcomes in biliary atresia correlated with higher peripheral blood NK cells and IL‐8 and lower regulatory T cells. Future studies should include immunotherapies targeting these pathways in order to protect the biliary tree from ongoing damage.
Collapse
Affiliation(s)
| | | | - Estella Alonso
- Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | | | | | | | | | | | | | - Vicky L Ng
- The Hospital for Sick Children, University of Toronto Toronto Canada
| | - Averell H Sherker
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD
| | | | | | | | - Kasper Wang
- Children's Hospital Los Angeles Los Angeles CA
| | - Ronald J Sokol
- Children's Hospital Colorado, University of Colorado School of Medicine Aurora CO
| | - Cara L Mack
- Children's Hospital Colorado, University of Colorado School of Medicine Aurora CO
| | | |
Collapse
|
100
|
Pararasa C, Zhang N, Tull TJ, Chong MHA, Siu JHY, Guesdon W, Chavele KM, Sanderson JD, Langmead L, Kok K, Spencer J, Vossenkamper A. Reduced CD27 -IgD - B Cells in Blood and Raised CD27 -IgD - B Cells in Gut-Associated Lymphoid Tissue in Inflammatory Bowel Disease. Front Immunol 2019; 10:361. [PMID: 30891036 PMCID: PMC6411645 DOI: 10.3389/fimmu.2019.00361] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
The intestinal mucosa in inflammatory bowel disease (IBD) contains increased frequencies of lymphocytes and a disproportionate increase in plasma cells secreting immunoglobulin (Ig)G relative to other isotypes compared to healthy controls. Despite consistent evidence of B lineage cells in the mucosa in IBD, little is known of B cell recruitment to the gut in IBD. Here we analyzed B cells in blood of patients with Crohn's disease (CD) and ulcerative colitis (UC) with a range of disease activities. We analyzed the frequencies of known B cell subsets in blood and observed a consistent reduction in the proportion of CD27-IgD- B cells expressing all Ig isotypes in the blood in IBD (independent of severity of disease and treatment) compared to healthy controls. Successful treatment of patients with biologic therapies did not change the profile of B cell subsets in blood. By mass cytometry we demonstrated that CD27-IgD- B cells were proportionately enriched in the gut-associated lymphoid tissue (GALT) in IBD. Since production of TNFα is a feature of IBD relevant to therapies, we sought to determine whether B cells in GALT or the CD27-IgD- subset in particular could contribute to pathology by secretion of TNFα or IL-10. We found that donor matched GALT and blood B cells are capable of producing TNFα as well as IL-10, but we saw no evidence that CD27-IgD- B cells from blood expressed more TNFα compared to other subsets. The reduced proportion of CD27-IgD- B cells in blood and the increased proportion in the gut implies that CD27-IgD- B cells are recruited from the blood to the gut in IBD. CD27-IgD- B cells have been implicated in immune responses to intestinal bacteria and recruitment to GALT, and may contribute to the intestinal inflammatory milieu in IBD.
Collapse
Affiliation(s)
- Chathyan Pararasa
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Na Zhang
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, United Kingdom.,Obstetrics and Gynecology Hospital, Institutes of Biomedical Sciences (IBS), Fudan University, Shanghai, China
| | - Thomas J Tull
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Ming H A Chong
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom
| | - Jacqueline H Y Siu
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - William Guesdon
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Konstantia Maria Chavele
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Louise Langmead
- Department of Gastroenterology, Royal London Hospital, Barts Health, London, United Kingdom
| | - Klaartje Kok
- Department of Gastroenterology, Royal London Hospital, Barts Health, London, United Kingdom
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Anna Vossenkamper
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom
| |
Collapse
|