51
|
Jha RM, Koleck TA, Puccio AM, Okonkwo DO, Park SY, Zusman BE, Clark RSB, Shutter LA, Wallisch JS, Empey PE, Kochanek PM, Conley YP. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry 2018; 89:1152-1162. [PMID: 29674479 PMCID: PMC6181785 DOI: 10.1136/jnnp-2017-317741] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE ABCC8 encodes sulfonylurea receptor 1, a key regulatory protein of cerebral oedema in many neurological disorders including traumatic brain injury (TBI). Sulfonylurea-receptor-1 inhibition has been promising in ameliorating cerebral oedema in clinical trials. We evaluated whether ABCC8 tag single-nucleotide polymorphisms predicted oedema and outcome in TBI. METHODS DNA was extracted from 485 prospectively enrolled patients with severe TBI. 410 were analysed after quality control. ABCC8 tag single-nucleotide polymorphisms (SNPs) were identified (Hapmap, r2>0.8, minor-allele frequency >0.20) and sequenced (iPlex-Gold, MassArray). Outcomes included radiographic oedema, intracranial pressure (ICP) and 3-month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modelling, amino acid topology and functional predictions were determined using established software programs. RESULTS Wild-type rs7105832 and rs2237982 alleles and genotypes were associated with lower average ICP (β=-2.91, p=0.001; β=-2.28, p=0.003) and decreased radiographic oedema (OR 0.42, p=0.012; OR 0.52, p=0.017). Wild-type rs2237982 also increased favourable 3-month GOS (OR 2.45, p=0.006); this was partially mediated by oedema (p=0.03). Different polymorphisms predicted 3-month outcome: variant rs11024286 increased (OR 1.84, p=0.006) and wild-type rs4148622 decreased (OR 0.40, p=0.01) the odds of favourable outcome. Significant tag and concordant proxy SNPs regionally span introns/exons 2-15 of the 39-exon gene. CONCLUSIONS This study identifies four ABCC8 tag SNPs associated with cerebral oedema and/or outcome in TBI, tagging a region including 33 polymorphisms. In polymorphisms predictive of oedema, variant alleles/genotypes confer increased risk. Different variant polymorphisms were associated with favourable outcome, potentially suggesting distinct mechanisms. Significant polymorphisms spatially clustered flanking exons encoding the sulfonylurea receptor site and transmembrane domain 0/loop 0 (juxtaposing the channel pore/binding site). This, if validated, may help build a foundation for developing future strategies that may guide individualised care, treatment response, prognosis and patient selection for clinical trials.
Collapse
Affiliation(s)
- Ruchira Menka Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Ava M Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin E Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lori A Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jessica S Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yvette P Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
52
|
Tsaousi GG, Marocchi L, Sergi PG, Pourzitaki C, Santoro A, Bilotta F. Early and late clinical outcomes after decompressive craniectomy for traumatic refractory intracranial hypertension: a systematic review and meta-analysis of current evidence. J Neurosurg Sci 2018; 64:97-106. [PMID: 30356035 DOI: 10.23736/s0390-5616.18.04527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Decompressive craniectomy (DC) to control refractory intracranial hypertension in patients with traumatic brain injury (TBI), has been listed as possible but controversial therapeutic approach in the latest version of TBI management guidelines. This study aimed to perform a systematic review and meta-analysis on efficacy and safety of DC compared to standard care in TBI patients. EVIDENCE ACQUISITION A database search from 2011 to 2017 was conducted to identify studies pertinent to DC compared to standard care after TBI. The primary outcomes were mortality and functional outcome upon hospital discharge and at 6 and 12 months after intervention, whereas secondary outcomes were intracranial pressure (ICP) control, hospitalization data and occurrence of adverse events. EVIDENCE SYNTHESIS Three randomized controlled trials and two observational studies enrolling 3451 patients were selected for qualitative analysis, among which four were included in the meta-analysis. DC-treated patients showed a significant reduction of overall mortality (RR, 0.57; 95% CI: 0.5-0.66; P<0.001; I2=17%) with no profound beneficial effect on functional outcome (RR, 0.89; 95% CI: 0.78-1.02; P=0.09; I2=58%) compared to those receiving standard care. A more efficient ICP reduction and a tendency towards shorter duration of hospitalization were recorded in DC versus standard care group. Adverse events are more common in DC-treated patients. CONCLUSIONS It seems that, in TBI patients with intracranial hypertension, the use of DC is associated with survival benefit when compared to medical therapy alone, but with no clear improvement of functional outcome. Yet no definite conclusion can be drawn due to limited quantity and considerable heterogeneity of available data.
Collapse
Affiliation(s)
- Georgia G Tsaousi
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece -
| | - Lorenzo Marocchi
- Department of Anesthesiology and Intensive Care Medicine, Sapienza University, Rome, Italy
| | - Paola G Sergi
- Department of Anesthesiology and Intensive Care Medicine, Sapienza University, Rome, Italy
| | - Chryssa Pourzitaki
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonio Santoro
- Department of Neurosurgery, Sapienza University, Rome, Italy
| | - Federico Bilotta
- Department of Anesthesiology and Intensive Care Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
53
|
Gerzanich V, Stokum JA, Ivanova S, Woo SK, Tsymbalyuk O, Sharma A, Akkentli F, Imran Z, Aarabi B, Sahuquillo J, Simard JM. Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion. J Neurotrauma 2018; 36:1060-1079. [PMID: 30160201 PMCID: PMC6446209 DOI: 10.1089/neu.2018.5986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seung Kyoon Woo
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sharma
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fatih Akkentli
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ziyan Imran
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bizhan Aarabi
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- 2 Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,3 Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,4 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,5 Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
54
|
Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park SY, Poloyac S, Vagni VA, Janesko-Feldman KL, Hoshitsuki K, Minnigh MB, Kochanek PM. Glibenclamide Produces Region-Dependent Effects on Cerebral Edema in a Combined Injury Model of Traumatic Brain Injury and Hemorrhagic Shock in Mice. J Neurotrauma 2018; 35:2125-2135. [PMID: 29648981 PMCID: PMC6098411 DOI: 10.1089/neu.2016.4696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley J. Molyneaux
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent A. Vagni
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keito Hoshitsuki
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Beth Minnigh
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
55
|
King ZA, Sheth KN, Kimberly WT, Simard JM. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2539-2552. [PMID: 30147301 PMCID: PMC6101021 DOI: 10.2147/dddt.s150043] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glyburide (also known as glibenclamide) is a second-generation sulfonylurea drug that inhibits sulfonylurea receptor 1 (Sur1) at nanomolar concentrations. Long used to target KATP (Sur1–Kir6.2) channels for the treatment of diabetes mellitus type 2, glyburide was recently repurposed to target Sur1–transient receptor potential melastatin 4 (Trpm4) channels in acute central nervous system injury. Discovered nearly two decades ago, SUR1–TRPM4 has emerged as a critical target in stroke, specifically in large hemispheric infarction, which is characterized by edema formation and life-threatening brain swelling. Following ischemia, SUR1–TRPM4 channels are transcriptionally upregulated in all cells of the neurovascular unit, including neurons, astrocytes, microglia, oligodendrocytes and microvascular endothelial cells. Work by several independent laboratories has linked SUR1–TRPM4 to edema formation, with blockade by glyburide reducing brain swelling and death in preclinical models. Recent work showed that, following ischemia, SUR1–TRPM4 co-assembles with aquaporin-4 to mediate cellular swelling of astrocytes, which contributes to brain swelling. Additionally, recent work linked SUR1–TRPM4 to secretion of matrix metalloproteinase-9 (MMP-9) induced by recombinant tissue plasminogen activator in activated brain endothelial cells, with blockade of SUR1–TRPM4 by glyburide reducing MMP-9 and hemorrhagic transformation in preclinical models with recombinant tissue plasminogen activator. The recently completed GAMES (Glyburide Advantage in Malignant Edema and Stroke) clinical trials on patients with large hemispheric infarctions treated with intravenous glyburide (RP-1127) revealed promising findings with regard to brain swelling (midline shift), MMP-9, functional outcomes and mortality. Here, we review key elements of the basic science, preclinical experiments and clinical studies, both retrospective and prospective, on glyburide in focal cerebral ischemia and stroke.
Collapse
Affiliation(s)
- Zachary A King
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
56
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
57
|
Irimia A, Van Horn JD, Vespa PM. Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain. Neurobiol Aging 2018; 66:158-164. [PMID: 29579686 PMCID: PMC5924627 DOI: 10.1016/j.neurobiolaging.2018.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Although cerebral microbleeds (CMBs) are frequently associated with traumatic brain injury (TBI), their effects on clinical outcome after TBI remain controversial and poorly understood, particularly in older adults. Here we (1) highlight major challenges and opportunities associated with studying the effects of TBI-mediated CMBs; (2) review the evidence on their potential effects on cognitive and neural outcome as a function of age at injury; and (3) suggest priorities for future research on understanding the clinical implications of CMBs. Although TBI-mediated CMBs are likely distinct from those due to cerebral amyloid angiopathy or other neurodegenerative diseases, the effects of these 2 CMB types on brain function may share common features. Furthermore, in older TBI victims, the incidence of TBI-mediated CMBs may approximate that of cerebral amyloid angiopathy-related CMBs, and thus warrants detailed study. Because the alterations effected by CMBs on brain structure and function are both unique and age-dependent, it seems likely that novel, age-tailored therapeutic approaches are necessary for the adequate clinical interpretation and treatment of these ubiquitous and underappreciated TBI sequelae.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles CA, USA.
| | - John D Van Horn
- USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Paul M Vespa
- Departments of Neurosurgery and Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
58
|
Tucker LB, Velosky AG, McCabe JT. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 2018; 88:187-200. [PMID: 29545166 DOI: 10.1016/j.neubiorev.2018.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance.
Collapse
Affiliation(s)
- Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
59
|
Bodanapally UK, Shanmuganathan K, Issa G, Dreizin D, Li G, Sudini K, Fleiter TR. Dual-Energy CT in Hemorrhagic Progression of Cerebral Contusion: Overestimation of Hematoma Volumes on Standard 120-kV Images and Rectification with Virtual High-Energy Monochromatic Images after Contrast-Enhanced Whole-Body Imaging. AJNR Am J Neuroradiol 2018; 39:658-662. [PMID: 29439124 DOI: 10.3174/ajnr.a5558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE In patients with hemorrhagic contusions, hematoma volumes are overestimated on follow-up standard 120-kV images obtained after contrast-enhanced whole-body CT. We aimed to retrospectively determine hemorrhagic progression of contusion rates on 120-kV and 190-keV images derived from dual-energy CT and the magnitude of hematoma volume overestimation. MATERIALS AND METHODS We retrospectively analyzed admission and follow-up CT studies in 40 patients with hemorrhagic contusions. After annotating the contusions, we measured volumes from admission and follow-up 120-kV and 190-keV images using semiautomated 3D segmentation. Bland-Altman analysis was used for hematoma volume comparison. RESULTS On 120-kV images, hemorrhagic progression of contusions was detected in 24 of the 40 patients, while only 17 patients had hemorrhagic progression of contusions on 190-keV images (P = .008). Hematoma volumes were systematically overestimated on follow-up 120-kV images (9.68 versus 8 mm3; mean difference, 1.68 mm3; standard error, 0.37; P < .001) compared with 190-keV images. There was no significant difference in volumes between admission 120-kV and 190-keV images. Mean and median percentages of overestimation were 29% (95% CI, 18-39) and 22% (quartile 3 - quartile 1 = 36.8), respectively. CONCLUSIONS The 120-kV images, which are comparable with single-energy CT images, significantly overestimated the hematoma volumes, hence the rate of hemorrhagic progression of contusions, after contrast-enhanced whole-body CT. Hence, follow-up of hemorrhagic contusions should be performed on dual-energy CT, and 190-keV images should be used for the assessment of hematoma volumes.
Collapse
Affiliation(s)
- U K Bodanapally
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - K Shanmuganathan
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland.,Department of Environmental Health Sciences (K.S.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - G Issa
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - D Dreizin
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - G Li
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - K Sudini
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - T R Fleiter
- From the Department of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., G.I., D.D., G.L., T.R.F.), R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
60
|
Jha RM, Puccio AM, Okonkwo DO, Zusman BE, Park SY, Wallisch J, Empey PE, Shutter LA, Clark RSB, Kochanek PM, Conley YP. ABCC8 Single Nucleotide Polymorphisms are Associated with Cerebral Edema in Severe TBI. Neurocrit Care 2017; 26:213-224. [PMID: 27677908 DOI: 10.1007/s12028-016-0309-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cerebral edema (CE) in traumatic brain injury (TBI) is the consequence of multiple underlying mechanisms and is associated with unfavorable outcomes. Genetic variability in these pathways likely explains some of the clinical heterogeneity observed in edema development. A role for sulfonylurea receptor-1 (Sur1) in CE is supported. However, there are no prior studies examining the effect of genetic variability in the Sur1 gene (ABCC8) on the development of CE. We hypothesize that ABCC8 single nucleotide polymorphisms (SNPs) are predictive of CE. METHODS DNA was extracted from 385 patients. SNPs in ABCC8 were genotyped using the Human Core Exome v1.2 (Illumina). CE measurements included acute CT edema, mean and peak intracranial pressure (ICP), and need for decompressive craniotomy. RESULTS Fourteen SNPs with minor allele frequency >0.2 were identified. Four SNPS rs2283261, rs3819521, rs2283258, and rs1799857 were associated with CE measures. In multiple regression models, homozygote-variant genotypes in rs2283261, rs3819521, and rs2283258 had increased odds of CT edema (OR 2.45, p = 0.007; OR 2.95, p = 0.025; OR 3.00, p = 0.013), had higher mean (β = 3.13, p = 0.000; β = 2.95, p = 0.005; β = 3.20, p = 0.008), and peak ICP (β = 8.00, p = 0.001; β = 7.64, p = 0.007; β = 6.89, p = 0.034). The homozygote wild-type genotype of rs1799857 had decreased odds of decompressive craniotomy (OR 0.47, p = 0.004). CONCLUSIONS This is the first report assessing the impact of ABCC8 genetic variability on CE development in TBI. Minor allele ABCC8 SNP genotypes had increased risk of CE, while major SNP alleles were protective-potentially suggesting an evolutionary advantage. These findings could guide risk stratification, treatment responders, and the development of novel targeted or gene-based therapies against CE in TBI and other neurological disorders.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA. .,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ava M Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin E Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori A Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
61
|
Maegele M, Schöchl H, Menovsky T, Maréchal H, Marklund N, Buki A, Stanworth S. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol 2017; 16:630-647. [PMID: 28721927 DOI: 10.1016/s1474-4422(17)30197-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 01/28/2023]
Abstract
Normal haemostasis depends on an intricate balance between mechanisms of bleeding and mechanisms of thrombosis, and this balance can be altered after traumatic brain injury (TBI). Impaired haemostasis could exacerbate the primary insult with risk of initiation or aggravation of bleeding; anticoagulant use at the time of injury can also contribute to bleeding risk after TBI. Many patients with TBI have abnormalities on conventional coagulation tests at admission to the emergency department, and the presence of coagulopathy is associated with increased morbidity and mortality. Further blood testing often reveals a range of changes affecting platelet numbers and function, procoagulant or anticoagulant factors, fibrinolysis, and interactions between the coagulation system and the vascular endothelium, brain tissue, inflammatory mechanisms, and blood flow dynamics. However, the degree to which these coagulation abnormalities affect TBI outcomes and whether they are modifiable risk factors are not known. Although the main challenge for management is to address the risk of hypocoagulopathy with prolonged bleeding and progression of haemorrhagic lesions, the risk of hypercoagulopathy with an increased prothrombotic tendency also warrants consideration.
Collapse
Affiliation(s)
- Marc Maegele
- Department for Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Center, University Witten/Herdecke, Cologne, Germany; Institute for Research in Operative Medicine, University Witten/Herdecke, Cologne, Germany.
| | - Herbert Schöchl
- Department for Anaesthesiology and Intensive Care Medicine, AUVA Trauma Academic Teaching Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tomas Menovsky
- Department for Neurosurgery, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Hugues Maréchal
- Department of Anaesthesiology and Intensive Care Medicine, CRH La Citadelle, Liège, Belgium
| | - Niklas Marklund
- Department of Clinical Sciences, Division of Neurosurgery, University Hospital of Southern Sweden, Lund University, Lund, Sweden
| | - Andras Buki
- Department of Neurosurgery, The MTA-PTE Clinical Neuroscience MR Research Group, Janos Szentagothai Research Center, Hungarian Brain Research Program, University of Pécs, Pécs, Hungary
| | - Simon Stanworth
- NHS Blood and Transplant/Oxford University Hospitals NHS Foundation Trust, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
62
|
Stokum JA, Keledjian K, Hayman E, Karimy JK, Pampori A, Imran Z, Woo SK, Gerzanich V, Simard JM. Glibenclamide pretreatment protects against chronic memory dysfunction and glial activation in rat cranial blast traumatic brain injury. Behav Brain Res 2017; 333:43-53. [PMID: 28662892 DOI: 10.1016/j.bbr.2017.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 02/03/2023]
Abstract
Blast traumatic brain injury (bTBI) affects both military and civilian populations, and often results in chronic deficits in cognition and memory. Chronic glial activation after bTBI has been linked with cognitive decline. Pharmacological inhibition of sulfonylurea receptor 1 (SUR1) with glibenclamide was shown previously to reduce glial activation and improve cognition in contusive models of CNS trauma, but has not been examined in bTBI. We postulated that glibenclamide would reduce chronic glial activation and improve long-term memory function after bTBI. Using a rat direct cranial model of bTBI (dc-bTBI), we evaluated the efficacy of two glibenclamide treatment paradigms: glibenclamide prophylaxis (pre-treatment), and treatment with glibenclamide starting after dc-bTBI (post-treatment). Our results show that dc-bTBI caused hippocampal astrocyte and microglial/macrophage activation that was associated with hippocampal memory dysfunction (rapid place learning paradigm) at 28days, and that glibenclamide pre-treatment, but not post-treatment, effectively protected against glial activation and memory dysfunction. We also report that a brief transient time-window of blood-brain barrier (BBB) disruption occurs after dc-bTBI, and we speculate that glibenclamide, which is mostly protein bound and does not normally traverse the intact BBB, can undergo CNS delivery only during this brief transient opening of the BBB. Together, our findings indicate that prophylactic glibenclamide treatment may help to protect against chronic cognitive sequelae of bTBI in warfighters and other at-risk populations.
Collapse
Affiliation(s)
- Jesse A Stokum
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA.
| | - Kaspar Keledjian
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Erik Hayman
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Jason K Karimy
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Adam Pampori
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Ziyan Imran
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Seung Kyoon Woo
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Volodymyr Gerzanich
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - J Marc Simard
- Departments of Pathology, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA; Departments of Physiology, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| |
Collapse
|
63
|
Effects of Oral Glibenclamide on Brain Contusion Volume and Functional Outcome of Patients with Moderate and Severe Traumatic Brain Injuries: A Randomized Double-Blind Placebo-Controlled Clinical Trial. World Neurosurg 2017; 101:130-136. [DOI: 10.1016/j.wneu.2017.01.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 01/28/2023]
|
64
|
FVIIa prevents the progressive hemorrhaging of a brain contusion by protecting microvessels via formation of the TF–FVIIa–FXa complex. Neuroscience 2017; 348:114-125. [DOI: 10.1016/j.neuroscience.2017.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 02/12/2017] [Indexed: 11/20/2022]
|
65
|
Jha RM, Puccio AM, Chou SHY, Chang CCH, Wallisch JS, Molyneaux BJ, Zusman BE, Shutter LA, Poloyac SM, Janesko-Feldman KL, Okonkwo DO, Kochanek PM. Sulfonylurea Receptor-1: A Novel Biomarker for Cerebral Edema in Severe Traumatic Brain Injury. Crit Care Med 2017; 45:e255-e264. [PMID: 27845954 PMCID: PMC5550829 DOI: 10.1097/ccm.0000000000002079] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cerebral edema is a key poor prognosticator in traumatic brain injury. There are no biomarkers identifying patients at-risk, or guiding mechanistically-precise therapies. Sulfonylurea receptor-1-transient receptor potential cation channel M4 is upregulated only after brain injury, causing edema in animal studies. We hypothesized that sulfonylurea receptor-1 is measurable in human cerebrospinal fluid after severe traumatic brain injury and is an informative biomarker of edema and outcome. DESIGN A total of 119 cerebrospinal fluid samples were collected from 28 severe traumatic brain injury patients. Samples were retrieved at 12, 24, 48, 72 hours and before external ventricular drain removal. Fifteen control samples were obtained from patients with normal pressure hydrocephalus. Sulfonylurea receptor- 1 was quantified by enzyme-linked immunosorbent assay. Outcomes included CT edema, intracranial pressure measurements, therapies targeting edema, and 3-month Glasgow Outcome Scale score. MAIN RESULTS Sulfonylurea receptor-1 was present in all severe traumatic brain injury patients (mean = 3.54 ± 3.39 ng/mL, peak = 7.13 ± 6.09 ng/mL) but undetectable in all controls (p < 0.001). Mean and peak sulfonylurea receptor-1 was higher in patients with CT edema (4.96 ± 1.13 ng/mL vs 2.10 ± 0.34 ng/mL; p = 0.023). There was a temporal delay between peak sulfonylurea receptor-1 and peak intracranial pressure in 91.7% of patients with intracranial hypertension. There was no association between mean/peak sulfonylurea receptor-1 and mean/peak intracranial pressure, proportion of intracranial pressure greater than 20 mm Hg, use of edema-directed therapies, decompressive craniotomy, or 3-month Glasgow Outcome Scale. However, decreasing sulfonylurea receptor-1 trajectories between 48 and 72 hours were significantly associated with improved cerebral edema and clinical outcome. Area under the multivariate model receiver operating characteristic curve was 0.881. CONCLUSIONS This is the first report quantifying human cerebrospinal fluid sulfonylurea receptor-1. Sulfonylurea receptor-1 was detected in severe traumatic brain injury, absent in controls, correlated with CT-edema and preceded peak intracranial pressure. Sulfonylurea receptor-1 trajectories between 48 and 72 hours were associated with outcome. Because a therapy inhibiting sulfonylurea receptor-1 is available, assessing cerebrospinal fluid sulfonylurea receptor-1 in larger studies is warranted to evaluate our exploratory findings regarding its diagnostic, and monitoring utility, as well as its potential to guide targeted therapies in traumatic brain injury and other diseases involving cerebral edema.
Collapse
Affiliation(s)
- Ruchira M Jha
- 1Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 2Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 3Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 4Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 5Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 6Department of Biostatistics, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 7Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA. 8Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Xu Z, Liu Y, Yang D, Yuan F, Ding J, Wang L, Qu M, Yang G, Tian H. Glibenclamide–sulfonylurea receptor 1 antagonist alleviates LPS-induced BV2 cell activation through the p38/MAPK pathway. RSC Adv 2017. [DOI: 10.1039/c7ra03042h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the anti-neuroinflammatory activity and mechanism of glibenclamide, sulfonylurea receptor 1 (Sur1) antagonist, against LPS-induced microglial activationin vitro.
Collapse
Affiliation(s)
- Zhiming Xu
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Yingliang Liu
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Dianxu Yang
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Fang Yuan
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Jun Ding
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Liping Wang
- Department of Neurology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Meijie Qu
- Department of Neurology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Guoyuan Yang
- Department of Neurology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Hengli Tian
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| |
Collapse
|
67
|
Wang W, Liu L, Jiang P, Chen C, Zhang T. Levodopa improves learning and memory ability on global cerebral ischemia-reperfusion injured rats in the Morris water maze test. Neurosci Lett 2016; 636:233-240. [PMID: 27856221 DOI: 10.1016/j.neulet.2016.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that levodopa (L-dopa) for 1-7days improved the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment. It also has an awakening effect on patients with disorders of consciousness. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate the behavior of rats following global cerebral ischemia-reperfusion injury. Fifty-six healthy adult male Sprague-Dawley rats were randomly divided into four groups: shamoperated, global cerebral ischemia mode, 25mg/kg/d L-dopa intervention, and 50mg/kg/d L-dopa intervention. The level of consciousness and modified neurological severity score (NSS) of the rats in each group were measured before reperfusion and 6, 24, and 72h and 1-4 weeks after reperfusion. The Morris water maze test was used to assess behavior of rats 1 week after reperfusion and 2 weeks after reperfusion in each group. The results showed that after global cerebral ischemiareperfusion injury, neurological deficits of rats are severe, and space exploration capacity and learning and memory capacity are significantly decreased. L-dopa can shorten the duration of coma in rats following global cerebral ischemia-reperfusion injury and improve the symptoms of neurological deficits and advanced learning and memory. In the range of the selected doses, the relationship between L-dopa and improvement of the neurological behavior in rats was not dose-dependent. Dopamine may be useful for treating severe ischemia-reperfusion brain injury.
Collapse
Affiliation(s)
- Wenzhu Wang
- Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Neural Injury and Repair Center, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, PR China.
| | - Peng Jiang
- School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Chen Chen
- School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Tong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, PR China
| |
Collapse
|
68
|
Gruenbaum SE, Zlotnik A, Gruenbaum BF, Hersey D, Bilotta F. Pharmacologic Neuroprotection for Functional Outcomes After Traumatic Brain Injury: A Systematic Review of the Clinical Literature. CNS Drugs 2016; 30:791-806. [PMID: 27339615 PMCID: PMC5116376 DOI: 10.1007/s40263-016-0355-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. The deleterious effects of secondary brain injury may be attenuated by early pharmacological therapy in the emergency room and intensive care unit (ICU). Current medical management of acute TBI is primarily supportive, aimed at reducing intracranial pressure (ICP) and optimizing cerebral perfusion. There are no pharmacological therapies to date that have been unequivocally demonstrated to improve neurological outcomes after TBI. OBJECTIVES The purpose of this systematic review was to evaluate the recent clinical studies from January 2013 through November 2015 that investigated neuroprotective functional outcomes of pharmacological agents after TBI. METHODS The following databases were searched for relevant studies: MEDLINE (OvidSP January Week 1, 2013-November Week 2 2015), Embase (OvidSP 2013 January 1-2015 November 24), and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health [NLM/NIH]). This systematic review included only full-length clinical studies and case series that included at least five patients and were published in the English language. Only studies that examined functional clinical outcomes were included. RESULTS Twenty-five of 527 studies met our inclusion criteria, which investigated 15 independent pharmacological therapies. Eight of these therapies demonstrated possible neuroprotective properties and improved functional outcomes, of which five were investigated with randomized clinical trials: statins, N-acetyl cysteine (NAC), Enzogenol, Cerebrolysin, and nitric oxide synthase inhibitor (VAS203). Three pharmacological agents did not demonstrate neuroprotective effects, and four agents had mixed results. CONCLUSIONS While there is currently no single pharmacological therapy that will unequivocally improve clinical outcomes after TBI, several agents have demonstrated promising clinical benefits for specific TBI patients and should be investigated further.
Collapse
Affiliation(s)
- Shaun E. Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Ben-Gurion University of the Negev, 84101 Beer-Sheva, Israel
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Cushing/Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, ‘La Sapienza’ University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
69
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) remains the leading cause of morbidity and mortality in the United States. Over the last decade, several advancements have been made in the field of TBI all aimed at improving outcomes. RECENT FINDINGS Advancements in the management of TBI have been made possible through improved understanding of basic pathophysiology associated with this condition. The aim of this review is to briefly highlight the underlying pathophysiology of TBI and the most recent advancements and novel strategies being used in its treatment. We also briefly discuss coagulopathy of TBI, clinical management of TBI and how it has evolved recently. SUMMARY The mortality associated with TBI continues to remain high and several novel strategies have emerged as potential candidates for the treatment of secondary brain injury. The clinical management of TBI and associated coagulopathy has evolved allowing for a more tailored approach toward its management.
Collapse
|
70
|
Osier ND, Dixon CE. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front Neurol 2016; 7:134. [PMID: 27582726 PMCID: PMC4987613 DOI: 10.3389/fneur.2016.00134] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.
Collapse
Affiliation(s)
- Nicole D. Osier
- Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
71
|
Gainey SJ, Kwakwa KA, Bray JK, Pillote MM, Tir VL, Towers AE, Freund GG. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide. Front Behav Neurosci 2016; 10:156. [PMID: 27563288 PMCID: PMC4980396 DOI: 10.3389/fnbeh.2016.00156] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023] Open
Abstract
Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.
Collapse
Affiliation(s)
- Stephen J Gainey
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA
| | - Kristin A Kwakwa
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Julie K Bray
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Melissa M Pillote
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Vincent L Tir
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Albert E Towers
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| | - Gregory G Freund
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| |
Collapse
|
72
|
Xu ZM, Yuan F, Liu YL, Ding J, Tian HL. Glibenclamide Attenuates Blood-Brain Barrier Disruption in Adult Mice after Traumatic Brain Injury. J Neurotrauma 2016; 34:925-933. [PMID: 27297934 DOI: 10.1089/neu.2016.4491] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glibenclamide is a hypoglycemic drug that is widely used for the treatment of diabetes mellitus type 2 (DM II), but it also plays a protective role following injury to the central nervous system (CNS). However, the precise mechanisms underlying its neuroprotective actions remain to be elucidated. Therefore, the present study evaluated the effects of glibenclamide on the blood-brain barrier (BBB) in a mouse model of traumatic brain injury (TBI). In the present study, 86 adult male C57BL/6 mice were exposed to a controlled cortical impact (CCI) injury and then received glibenclamide (10 μg) for 3 days. Tight junction (TJ) protein levels, BBB permeability, and tissue hemoglobin levels were evaluated following the CCI injury. Additionally, a biaxial stretch injury was applied to cell cultures of bEnd.3 cells using the Cell Injury Controller II system to explore the mechanisms by which glibenclamide inhibits apoptosis-signaling pathways. Compared with the control group, glibenclamide-treated mice exhibited decreases in brain water content (p < 0.05), tissue hemoglobin levels (p < 0.05), and Evans Blue extravasation (p < 0.01) after the CCI injury. Glibenclamide primarily attenuated apoptosis via the JNK/c-jun signaling pathway and resulted in an elevation of stretch injury-induced ZO-1 expression in bEnd.3 cells (p < 0.01).Glibenclamide downregulated the activity of the JNK/c-jun apoptosis-signaling pathway which, in turn, decreased apoptosis in endothelial cells (ECs). This may have prevented the disruption of the BBB in a mouse model of TBI.
Collapse
Affiliation(s)
- Zhi-Ming Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
73
|
Wu Z, Zhu SZ, Hu YF, Gu Y, Wang SN, Lin ZZ, Xie ZS, Pan SY. Glibenclamide enhances the effects of delayed hypothermia after experimental stroke in rats. Brain Res 2016; 1643:113-22. [PMID: 27134036 DOI: 10.1016/j.brainres.2016.04.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022]
Abstract
In order to evaluate whether glibenclamide can extend the therapeutic window during which induced hypothermia can protect against stroke, we subjected adult male Sprague-Dawley rats to middle cerebral artery occlusion (MCAO). We first verified the protective effects of hypothermia induced at 0, 2, 4 or 6h after MCAO onset, and then we assessed the effects of the combination of glibenclamide and hypothermia at 6, 8 or 10h after MCAO onset. At 24h after MCAO, we assessed brain edema, infarct volume, modified neurological severity score, Evans Blue leakage and expression of Sulfonylurea receptor 1 (SUR1) protein and pro-inflammatory factors. No protective effects were observed when hypothermia was induced too long after MCAO. At 6h after MCAO onset, hypothermia alone failed to decrease cerebral edema and infarct volume, but the combination of glibenclamide and hypothermia decreased both. The combination also improved neurological outcome, ameliorated blood-brain barrier damage and decreased levels of COX-2, TNF-α and IL-1β. These results suggest that glibenclamide enhances and extends the therapeutic effects of delayed hypothermia against ischemia stroke, potentially by ameliorating blood-brain barrier damage and declining levels of pro-inflammatory factors.
Collapse
Affiliation(s)
- Zhou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Zhen Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Fang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng-Nan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen-Zhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zuo-Shan Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Su-Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
74
|
Zafardoost P, Ghasemi AA, Salehpour F, Piroti C, Ziaeii E. Evaluation of the Effect of Glibenclamide in Patients With Diffuse Axonal Injury Due to Moderate to Severe Head Trauma. Trauma Mon 2016; 21:e25113. [PMID: 28184360 PMCID: PMC5292034 DOI: 10.5812/traumamon.25113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background Traumatic brain injury (TBI) is a major health problem worldwide. Secondary injuries after TBI, including diffuse axonal injury (DAI) often occur, and proper treatments are needed in this regard. It has been shown that glibenclamide could reduce secondary brain damage after experimental TBI and improve outcomes. Objectives We aim to evaluate the role of glibenclamide on the short-term outcome of patients with DAI due to moderate to severe TBI. Patients and Methods In this controlled randomized clinical trial, 40 patients with moderate to severe TBI were assigned to glibenclamide (n = 20) and control (n = 20) groups. Six hours after admission the intervention group received 1.25 mg glibenclamide every 12 hours. The Glasgow coma scale (GCS) was administered at admission, in the first 24 and 48 hours, at one week post-trauma and at discharge. The Glasgow outcome scale (GOS) was also administered at discharge. All results were evaluated and compared between groups. Results Patients treated with glibenclamide compared to the control group had a significantly better GCS score one week post-trauma (P = 0.003) and at discharge (P = 0.004), as well as a better GOS score at discharge (P = 0.001). The glibenclamide group also had a shorter length of hospital stay compared to the control group (P = 0.03). In the control group, two patients (10%) died during the first week post-trauma, but there was no mortality in the glibenclamide group (P = 0.48). Conclusions Treatment with glibenclamide in patients with DAI due to moderate to severe TBI significantly improves short-term outcomes.
Collapse
Affiliation(s)
- Peyman Zafardoost
- Neurosurgery Department, Urmia University of Medical Sciences, Urmia, IR Iran
- Corresponding author: Peyman Zafardoost, Neurosurgery Department, Urmia University of Medical Sciences, Urmia, IR Iran. Tel: +98-4433485324, E-mail:
| | - Amir Abbas Ghasemi
- Neurosurgery Department, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Firooz Salehpour
- Neurosurgery Department, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Chia Piroti
- Neurosurgery Department, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Ehsan Ziaeii
- Neurosurgery Department, Urmia University of Medical Sciences, Urmia, IR Iran
| |
Collapse
|
75
|
Kenney K, Amyot F, Haber M, Pronger A, Bogoslovsky T, Moore C, Diaz-Arrastia R. Cerebral Vascular Injury in Traumatic Brain Injury. Exp Neurol 2016; 275 Pt 3:353-366. [DOI: 10.1016/j.expneurol.2015.05.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
|
76
|
Li X, Ji Z, Gu Y, Hu Y, Huang K, Pan S. Mild hypothermia decreases the total clearance of glibenclamide after low dose administration in rats. Neurosci Lett 2015; 614:55-9. [PMID: 26724224 DOI: 10.1016/j.neulet.2015.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/02/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Low dose glibenclamide exhibits pleiotropic protective effects in different central nervous system diseases. Previously, we have shown that mild hypothermia enhanced the efficacy of glibenclamide in the cultured cortical neuronal cells. This study aims to evaluate the impact of mild hypothermia on the pharmacokinetics of low dose glibenclamide in rats via its cytochrome P450 2C9 (CYP2C9) metabolic pathway. METHODS Male Sprague-Dawley rats were maintained at 37°C (normothermic group) or cooled to 33°C (hypothermic group). Glibenclamide (33μg/kg) or diclofenac (10mg/kg, a probe drug for assessing the activity of CYP2C9 which involves in glibenclamide and diclofenac metabolism in liver) were intravenously administered at 10min after stabilization of temperature. Plasma samples were collected at 9 different time points. Glibenclamide and diclofenac in sera were separated by liquid chromatography and quantified with tandem mass spectrometry. RESULTS Compared with normothermia, mild hypothermia significantly decreased the total clearance of glibenclamide (16.00±4.1-6.72±2.1mL/min/kg; p<0.01), and there was a non-significant trend in a slightly higher half-life, (1.64±0.34-2.71±1.7h, p=0.157). Area under the plasma concentration versus time curve (AUClast) in the hypothermic group was increased (33.2±11-77.8±18hng/mL, p<0.01). Moreover, mild hypothermia reduced the total clearance of diclofenac (10.33±1.53-7.20±1.66mL/min/kg, p<0.01), indicating that the CYP2C9 activity was compromised in reduced temperature. CONCLUSION Mild hypothermia reduced the total clearance of glibenclamide, probably via mediating the activity of CYP2C9. The impact of hypothermia in clinical application of glibenclamide should be considered.
Collapse
Affiliation(s)
- Xing Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
77
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
78
|
Abstract
OBJECTIVES Glibenclamide confers neuroprotection in animal models as well as in retrospective clinical studies. This study determines whether glibenclamide improves outcome after cardiac arrest in rats. DESIGN Prospective randomized laboratory study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats (n = 126). INTERVENTIONS Rats successfully resuscitated from 8-minute asphyxial cardiac arrest were randomized to glibenclamide or vehicle group. Rats in the glibenclamide group were intraperitoneally administered glibenclamide with a loading dose of 10 μg/kg at 10 minutes and a maintenance dose of 1.2 μg at 6, 12, 18, and 24 hours after return of spontaneous circulation, whereas rats in the vehicle group received equivalent volume of vehicle solution. MEASUREMENTS AND MAIN RESULTS Survival was recorded every day, and neurologic deficit scores were assessed at 24, 48, and 72 hours and 7 days after return of spontaneous circulation (n = 22 in each group). Results showed that glibenclamide treatment increased 7-day survival rate, reduced neurologic deficit scores, and prevented neuronal loss in the hippocampal cornu ammonis 1 region. To investigate the neuroprotective effects of glibenclamide in acute phase, we observed neuronal injury at 24 hours after return of spontaneous circulation and found that glibenclamide significantly decreased the rate of neuronal necrosis and apoptosis. In addition, glibenclamide reduced the messenger RNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1 in the cortex after return of spontaneous circulation. Furthermore, the sulfonylurea receptor 1 and transient receptor potential M4 heteromers, the putative therapeutic targets of glibenclamide, were up-regulated after cardiac arrest and cardiopulmonary resuscitation, indicating that they might be involved in neuroprotective effect of glibenclamide. CONCLUSIONS Glibenclamide treatment substantially improved survival and neurologic outcome throughout a 7-day period after return of spontaneous circulation. The salutary effects of glibenclamide were associated with suppression of neuronal necrosis and apoptosis, as well as inflammation in the brain.
Collapse
|
79
|
Rosa M, da Rocha AJ, Maia ACM, Saade N, Veiga JCE, Romero JM. Contusion Contrast Extravasation Depicted on Multidetector Computed Tomography Angiography Predicts Growth and Mortality in Traumatic Brain Contusion. J Neurotrauma 2015. [PMID: 26214242 DOI: 10.1089/neu.2015.4062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the main cause of death in trauma victims and causes high rates of disability and neurological sequelae. Approximately 38-65% of traumatic brain contusions (TBC) demonstrate hemorrhagic expansion on serial computed tomography (CT) scans. Thus far, however, no single variable can accurately predict the hemorrhage expansion of a TBC. Our purpose was to evaluate contrast extravasation (CE) as a predictor of expansion, mortality, and poor outcome in TBC in a Brazilian cohort. After Institutional Review Board approval, we used multidetector CT angiography (MDCTA) to study 121 consecutive patients (106 men, 87.6%) with ages varying from 10 to 85 years. Informed consent was obtained from all subjects. The clinical and imaging findings were correlated with the findings on the initial MDCTA using either the Fisher exact test or Student t test and a multivariate logistic regression model. Of the persons who presented CE in TBC, 21.8% died (in-hospital mortality), whereas in the absence of this sign, the mortality rate was 7.6% (p = 0.014). In addition, expansion of the hemorrhagic component of the TBC was detected in 61.1% of the CE-positive patients, whereas expansion was only observed in 10% of the CE-negative patients (p < 0.001). Poor outcome was observed in 24.2% of the patients in the CE-negative group, but in the presence of CE, 72.7% evolved with poor outcome (p < 0.001). The CE was a strong independent predictor of expansion, poor outcome, and increased risk of in-hospital mortality in our series of patients with TBC.
Collapse
Affiliation(s)
- Marcos Rosa
- 1 Section of Neuroradiology , Santa Casa de Misericórdia de São Paulo, São Paulo SP, Brazil .,2 Section of Radiology, Federal University of Espírito Santo , Vitória ES, Brazil
| | - Antônio José da Rocha
- 1 Section of Neuroradiology , Santa Casa de Misericórdia de São Paulo, São Paulo SP, Brazil
| | | | - Nelson Saade
- 3 Division of Neurosurgery , Santa Casa de Misericórdia de São Paulo, São Paulo SP, Brazil
| | | | - Javier M Romero
- 4 Division of Neuroradiology, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
80
|
Abstract
The nonselective monovalent cation channel transient receptor potential melastatin 4 (Trpm4) is transcriptionally upregulated in neural and vascular cells in animal models of brain infarction. It associates with sulfonylurea receptor 1 (Sur1) to form Sur1-Trpm4 channels, which have critical roles in cytotoxic edema, cell death, blood-brain barrier breakdown, and vasogenic edema. We examined Trpm4 expression in postmortem brain specimens from 15 patients who died within the first 31 days of the onset of focal cerebral ischemia. We found increased Trpm4 protein expression in all cases using immunohistochemistry; transcriptional upregulation was confirmed using in situ hybridization of Trpm4 messenger RNA. Transient receptor potential melastatin 4 colocalized and coassociated with Sur1 within ischemic endothelial cells and neurons. Coexpression of Sur1 and Trpm4 in necrotic endothelial cells was also associated with vasogenic edema indicated by upregulated perivascular tumor necrosis factor, extravasation of serum immunoglobulin G, and associated inflammation. Upregulated Trpm4 protein was present up to 1 month after the onset of cerebral ischemia. In a rat model of middle cerebral artery occlusion stroke, pharmacologic channel blockade by glibenclamide, a selective inhibitor of sulfonylurea receptor, mitigated perivascular tumor necrosis factor labeling. Thus, upregulated Sur1-Trpm4 channels and associated blood-brain barrier disruption and cerebral edema suggest that pharmacologic targeting of this channel may represent a promising therapeutic strategy for the clinical management of patients with cerebral ischemia.
Collapse
|
81
|
Shen WB, Plachez C, Tsymbalyuk O, Tsymbalyuk N, Xu S, Smith AM, Michel SLJ, Yarnell D, Mullins R, Gullapalli RP, Puche A, Simard JM, Fishman PS, Yarowsky P. Cell-Based Therapy in TBI: Magnetic Retention of Neural Stem Cells In Vivo. Cell Transplant 2015; 25:1085-99. [PMID: 26395573 DOI: 10.3727/096368915x689550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell therapy is under active investigation for traumatic brain injury (TBI). Noninvasive stem cell delivery is the preferred method, but retention of stem cells at the site of injury in TBI has proven challenging and impacts effectiveness. To investigate the effects of applying a magnetic field on cell homing and retention, we delivered human neuroprogenitor cells (hNPCs) labeled with a superparamagnetic nanoparticle into post-TBI animals in the presence of a static magnetic field. We have previously devised a method of loading hNPCs with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles Molday ION Rhodamine B (MIRB™). Labeling of hNPCs (MIRB-hNPCs) does not affect hNPC viability, proliferation, or differentiation. The 0.6 tesla (T) permanent magnet was placed ∼4 mm above the injured parietal cortex prior to intracarotid injection of 4 × 10(4) MIRB-hNPCs. Fluorescence imaging, Perls' Prussian blue histochemistry, immunocytochemistry with SC121, a human-specific antibody, and T2-weighted magnetic resonance imaging ex vivo revealed there was increased homing and retention of MIRB-hNPCs in the injured cortex as compared to the control group in which MIRB-hNPCs were injected in the absence of a static magnetic field. Fluoro-Jade C staining and immunolabeling with specific markers confirmed the viability status of MIRB-hNPCs posttransplantation. These results show that increased homing and retention of MIRB-hNPCs post-TBI by applying a static magnetic field is a promising technique to deliver cells into the CNS for treatment of neurological injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhuo J, Keledjian K, Xu S, Pampori A, Gerzanich V, Simard JM, Gullapalli RP. Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model. PLoS One 2015; 10:e0136151. [PMID: 26301778 PMCID: PMC4547765 DOI: 10.1371/journal.pone.0136151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1–14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14–19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Departments of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Su Xu
- Departments of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Adam Pampori
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- * E-mail: (RGP); (JMS)
| | - Rao P. Gullapalli
- Departments of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- * E-mail: (RGP); (JMS)
| |
Collapse
|
83
|
Martínez-Valverde T, Vidal-Jorge M, Martínez-Saez E, Castro L, Arikan F, Cordero E, Rădoi A, Poca MA, Simard JM, Sahuquillo J. Sulfonylurea Receptor 1 in Humans with Post-Traumatic Brain Contusions. J Neurotrauma 2015; 32:1478-87. [PMID: 26398596 DOI: 10.1089/neu.2014.3706] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic brain contusions (PTBCs) are traditionally considered primary injuries and can increase in size, generate perilesional edema, cause mass effect, induce neurological deterioration, and cause death. Most patients experience a progressive increase in pericontusional edema, and nearly half, an increase in the hemorrhagic component itself. The underlying molecular pathophysiology of contusion-induced brain edema and hemorrhagic progression remains poorly understood. The aim of this study was to investigate sulfonylurea 1/transient receptor potential melastatin 4 (SUR1-TRPM4) ion channel SUR1 expression in various cell types (neurons, astrocytes, endothelial cells, microglia, macrophages, and neutrophils) of human brain contusions and whether SUR1 up-regulation was related to time postinjury. Double immunolabeling of SUR1 and cell-type- specific proteins was performed in 26 specimens from traumatic brain injury patients whose lesions were surgically evacuated. Three samples from limited brain resections performed for accessing extra-axial skull-base tumors or intraventricular lesions were controls. We found SUR1 was significantly overexpresed in all cell types and was especially prominent in neurons and endothelial cells (ECs). The temporal pattern depended on cell type: 1) In neurons, SUR1 increased within 48 h of injury and stabilized thereafter; 2) in ECs, there was no trend; 3) in glial cells and microglia/macrophages, a moderate increase was observed over time; and 4) in neutrophils, it decreased with time. Our results suggest that up-regulation of SUR1 in humans point to this channel as one of the important molecular players in the pathophysiology of PTBCs. Our findings reveal opportunities to act therapeutically on the mechanisms of growth of traumatic contusions and therefore reduce the number of patients with neurological deterioration and poor neurological outcomes.
Collapse
Affiliation(s)
- Tamara Martínez-Valverde
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Marian Vidal-Jorge
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Elena Martínez-Saez
- 2 Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Lidia Castro
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Fuat Arikan
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Cordero
- 3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreea Rădoi
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Maria-Antonia Poca
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 4 Departments of Neurosurgery, Physiology and Pathology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Juan Sahuquillo
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
84
|
Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 2015; 24:743-60. [PMID: 25727893 PMCID: PMC4433440 DOI: 10.1517/13543784.2015.1021919] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. AREAS COVERED The following article provides an overview of select cell-based and pharmacological therapies under early development for the treatment of TBI. These therapies seek to enhance cognitive and neurological functional recovery through neuroprotective and neurorestorative strategies. EXPERT OPINION TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Hospital, Department of Neurosurgery , Education and Research Building, Room 3096, 2799 West Grand Boulevard, Detroit, MI 48202 , USA +1 313 916 4743 ; +1 313 916 9855 ;
| | | | | | | |
Collapse
|
85
|
Lee JY, Choi HY, Na WH, Ju BG, Yune TY. 17β-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology 2015; 156:1838-50. [PMID: 25763638 DOI: 10.1210/en.2014-1832] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Blood-spinal cord barrier (BSCB) disruption and progressive hemorrhage after spinal cord injury (SCI) lead to secondary injury and the subsequent apoptosis and/or necrosis of neuron and glia, causing permanent neurological deficits. In this study, we examined the effect of 17β-estradiol (E2) on BSCB breakdown and hemorrhage as well as subsequent inflammation after SCI. After a moderate contusion injury at the 9th thoracic segment of spinal cord, E2 (300 μg/kg) was administered by iv injection immediately after SCI, and the same dose of E2 was then administered 6 and 24 hours after injury. Our data show that E2 attenuated BSCB permeability and hemorrhage and reduced the infiltration of neutrophils and macorphages after SCI. Consistent with this finding, the expression of inflammatory mediators was significantly reduced by E2. Furthermore, E2 treatment significantly inhibited the expression of sulfonylurea receptor 1 and transient receptor potential melastatin 4 after injury, which are known to mediate hemorrhage at an early stage after SCI. Moreover, the expression and activation of matrix metalloprotease-9 after injury, which is known to disrupt BSCB, and the degradation of tight junction proteins, such as zona occludens-1 and occludin, were significantly inhibited by E2 treatment. Furthermore, the protective effects of E2 on BSCB disruption and functional improvement were abolished by an estrogen receptor antagonist, ICI 182780 (3 mg/kg). Thus, our study provides evidence that the neuroprotective effect of E2 after SCI is, in part, mediated by inhibiting BSCB disruption and hemorrhage through the down-regulation of sulfonylurea receptor 1/transient receptor potential melastatin 4 and matrix metalloprotease-9, which is dependent on estrogen receptor.
Collapse
Affiliation(s)
- Jee Y Lee
- Age-Related and Brain Diseases Research Center (J.Y.L., H.Y.C., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul, 130-701, Korea; and Department of Life Science (W.H.N., B.G.J.), Sogang University, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|
86
|
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite extensive preclinical research supporting the effectiveness of neuroprotective therapies for brain trauma, there have been no successful randomized controlled clinical trials to date. TBI results in delayed secondary tissue injury due to neurochemical, metabolic and cellular changes; modulating such effects has provided the basis for neuroprotective interventions. To establish more effective neuroprotective treatments for TBI it is essential to better understand the complex cellular and molecular events that contribute to secondary injury. Here we critically review relevant research related to causes and modulation of delayed tissue damage, with particular emphasis on cell death mechanisms and post-traumatic neuroinflammation. We discuss the concept of utilizing multipotential drugs that target multiple secondary injury pathways, rather than more specific "laser"-targeted strategies that have uniformly failed in clinical trials. Moreover, we assess data supporting use of neuroprotective drugs that are currently being evaluated in human clinical trials for TBI, as well as promising emerging experimental multipotential drug treatment strategies. Finally, we describe key challenges and provide suggestions to improve the likelihood of successful clinical translation.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
87
|
Stein DG, Geddes RI, Sribnick EA. Recent developments in clinical trials for the treatment of traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:433-51. [PMID: 25702233 DOI: 10.1016/b978-0-444-52892-6.00028-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical understanding of traumatic brain injury (TBI) and its manifestations is beginning to change. Both clinicians and research scientists are recognizing that TBI and related disorders such as stroke are complex, systemic inflammatory and degenerative diseases that require an approach to treatment more sophisticated than targeting a single gene, receptor, or signaling pathway. It is becoming increasingly clear that TBI is a form of degenerative disorder affecting the brain and other organs, and that its manifestations can unfold days, weeks, and years after the initial damage. Until recently, and despite numerous industry- and government-sponsored clinical trials, attempts to find a safe and effective neuroprotective agent have all failed - probably because the research and development strategies have been based on an outdated early 20th century paradigm seeking a magic bullet that will affect a narrowly circumscribed target. We propose that more attention be given to the development of drugs, given alone or in combination, that are pleiotropic in their actions and that have systemic as well as central nervous system effects. We review current Phase II and Phase III trials for acute pharmacologic treatments for TBI and report on their aims, methods, status, and important associated research issues.
Collapse
Affiliation(s)
- Donald G Stein
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rastafa I Geddes
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric A Sribnick
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
88
|
Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJB, Loh LTCY, Adam LTCGE, Oskvig D, Curley KC, Salzer W. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 2014; 31:135-58. [PMID: 23968241 DOI: 10.1089/neu.2013.3019] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI.
Collapse
Affiliation(s)
- Ramon Diaz-Arrastia
- 1 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zhang B, Gensel J. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 2014; 258:112-20. [DOI: 10.1016/j.expneurol.2014.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
|
90
|
Zweckberger K, Hackenberg K, Jung C, Hertle D, Kiening K, Unterberg A, Sakowitz O. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience 2014; 272:199-206. [DOI: 10.1016/j.neuroscience.2014.04.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/21/2022]
|
91
|
Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, Coksaygan T, Ivanova S, Gerzanich V, Simard JM. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci 2014; 3:215-38. [PMID: 23667741 PMCID: PMC3647482 DOI: 10.3390/brainsci3010215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied a model of hemorrhagic encephalopathy of prematurity (EP) that closely recapitulates findings in humans with hemorrhagic EP. This model involves tandem insults of 20 min intrauterine ischemia (IUI) plus an episode of elevated venous pressure induced by intraperitoneal glycerol on post-natal day (P) 0. We examined Sur1 expression, which is upregulated after focal ischemia but has not been studied after brief global ischemia including IUI. We found that 20 min IUI resulted in robust upregulation of Sur1 in periventricular microvessels and tissues. We studied tandem insult pups from untreated or vehicle-treated dams (TI-CTR), and tandem insult pups from dams administered a low-dose, non-hypoglycemogenic infusion of the Sur1 blocker, glibenclamide, for 1 week after IUI (TI-GLIB). Compared to pups from the TI-CTR group, pups from the TI-GLIB group had significantly fewer and less severe hemorrhages on P1, performed significantly better on the beam walk and accelerating Rotarod on P35 and in tests of thigmotaxis and rapid learning on P35–49, and had significantly greater body and brain weights at P52. We conclude that low-dose glibenclamide administered to the mother at the end of pregnancy protects pups subjected to IUI from post-natal events of elevated venous pressure and its consequences.
Collapse
Affiliation(s)
- Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Michael T. Koltz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Hina Ijaz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Melda Gurakar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Turhan Coksaygan
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mail:
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mail:
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-410-328-0850; Fax: +1-410-328-0124
| |
Collapse
|
92
|
Simard JM, Pampori A, Keledjian K, Tosun C, Schwartzbauer G, Ivanova S, Gerzanich V. Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain. J Neurotrauma 2014; 31:1292-304. [PMID: 24673157 DOI: 10.1089/neu.2013.3016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) caused by an explosive blast (blast-TBI) is postulated to result, in part, from transvascular transmission to the brain of a hydrodynamic pulse (a.k.a., volumetric blood surge, ballistic pressure wave, hydrostatic shock, or hydraulic shock) induced in major intrathoracic blood vessels. This mechanism of blast-TBI has not been demonstrated directly. We tested the hypothesis that a blast wave impacting the thorax would induce a hydrodynamic pulse that would cause pathological changes in the brain. We constructed a Thorax-Only Blast Injury Apparatus (TOBIA) and a Jugular-Only Blast Injury Apparatus (JOBIA). TOBIA delivered a collimated blast wave to the right lateral thorax of a rat, precluding direct impact on the cranium. JOBIA delivered a blast wave to the fluid-filled port of an extracorporeal intravenous infusion device whose catheter was inserted retrograde into the jugular vein, precluding lung injury. Long Evans rats were subjected to sublethal injury by TOBIA or JOBIA. Blast injury induced by TOBIA was characterized by apnea and diffuse bilateral hemorrhagic injury to the lungs associated with a transient reduction in pulse oximetry signals. Immunolabeling 24 h after injury by TOBIA showed up-regulation of tumor necrosis factor alpha, ED-1, sulfonylurea receptor 1 (Sur1), and glial fibrillary acidic protein in veins or perivenular tissues and microvessels throughout the brain. The perivenular inflammatory effects induced by TOBIA were prevented by ligating the jugular vein and were reproduced using JOBIA. We conclude that blast injury to the thorax leads to perivenular inflammation, Sur1 up-regulation, and reactive astrocytosis resulting from the induction of a hydrodynamic pulse in the vasculature.
Collapse
Affiliation(s)
- J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
93
|
Iaccarino C, Schiavi P, Picetti E, Goldoni M, Cerasti D, Caspani M, Servadei F. Patients with brain contusions: predictors of outcome and relationship between radiological and clinical evolution. J Neurosurg 2014; 120:908-18. [PMID: 24506250 DOI: 10.3171/2013.12.jns131090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Traumatic parenchymal mass lesions are common sequelae of traumatic brain injuries (TBIs). They occur in up to 8.2% of all TBI cases and 13%-35% of severe TBI cases, and they account for up to 20% of surgical intracranial lesions. Controversy exists concerning the association between radiological and clinical evolution of brain contusions. The aim of this study was to identify predictors of unfavorable outcome, analyze the evolution of brain contusions, and evaluate specific indications for surgery. METHODS In a retrospective, multicenter study, patients with brain contusions were identified in separate patient cohorts from 11 hospitals over a 4-year period (2008-2011). Data on clinical parameters and course of the contusion were collected. Radiological parameters were registered by using CT images taken at the time of hospital admission and at subsequent follow-up times. Patients who underwent surgical procedures were identified. Outcomes were evaluated 6 months after trauma by using the Glasgow Outcome Scale-Extended. RESULTS Multivariate analysis revealed the following reliable predictors of unfavorable outcome: 1) increased patient age, 2) lower Glasgow Coma Scale score at first evaluation, 3) clinical deterioration in the first hours after trauma, and 4) onset or increase of midline shift on follow-up CT images. Further multivariate analysis identified the following as statistically significant predictors of clinical deterioration during the first hours after trauma: 1) onset of or increase in midline shift on follow-up CT images (p < 0.001) and 2) increased effacement of basal cisterns on follow-up CT images (p < 0.001). CONCLUSIONS In TBI patients with cerebral contusion, the onset of clinical deterioration is predictably associated with the onset or increase of midline shift and worsened status of basal cisterns but not with hematoma or edema volume increase. A combination of clinical deterioration and increased midline shift/basal cistern compression is the most reasonable indicator for surgery.
Collapse
Affiliation(s)
- Corrado Iaccarino
- Arcispedale Santa Maria Nuova-Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia; and Neurosurgery-Neurotraumatology Unit
| | | | | | | | | | | | | |
Collapse
|
94
|
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2013; 2:492-516. [PMID: 22299022 DOI: 10.1007/s12975-011-0125-x] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is formed by tightly connected cerebrovascular endothelial cells, but its normal function also depends on paracrine interactions between the brain endothelium and closely located glia. There is a growing consensus that brain injury, whether it is ischemic, hemorrhagic, or traumatic, leads to dysfunction of the BBB. Changes in BBB function observed after injury are thought to contribute to the loss of neural tissue and to affect the response to neuroprotective drugs. New discoveries suggest that considering the entire gliovascular unit, rather than the BBB alone, will expand our understanding of the cellular and molecular responses to traumatic brain injury (TBI). This review will address the BBB breakdown in TBI, the role of blood-borne factors in affecting the function of the gliovascular unit, changes in BBB permeability and post-traumatic edema formation, and the major pathophysiological factors associated with TBI that may contribute to post-traumatic dysfunction of the BBB. The key role of neuroinflammation and the possible effect of injury on transport mechanisms at the BBB will also be described. Finally, the potential role of the BBB as a target for therapeutic intervention through restoration of normal BBB function after injury and/or by harnessing the cerebrovascular endothelium to produce neurotrophic growth factors will be discussed.
Collapse
Affiliation(s)
- Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
95
|
Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, Simard JM. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel) 2013; 6:1287-303. [PMID: 24275850 PMCID: PMC3817601 DOI: 10.3390/ph6101287] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide) is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1)-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel) and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.
Collapse
Affiliation(s)
- David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Adam Pampori
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Jason K. Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Nicholas M. Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-410-328-0850; Fax: +1-410-328-0124
| |
Collapse
|
96
|
Tosun C, Kurland DB, Mehta R, Castellani RJ, deJong JL, Kwon MS, Woo SK, Gerzanich V, Simard JM. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke 2013; 44:3522-8. [PMID: 24114458 DOI: 10.1161/strokeaha.113.002904] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) can leave patients with memory impairments that may not recover fully. Molecular mechanisms are poorly understood, and no treatment is available. The sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channel plays an important role in acute central nervous system injury. We evaluated upregulation of Sur1-Trpm4 in humans with SAH and, in rat models of SAH, we examined Sur1-Trpm4 upregulation, its role in barrier dysfunction and neuroinflammation, and its consequences on spatial learning. METHODS We used Förster resonance energy transfer to detect coassociated Sur1 and Trpm4 in human autopsy brains with SAH. We studied rat models of SAH involving filament puncture of the internal carotid artery or injection of blood into the subarachnoid space of the entorhinal cortex. In rats, we used Förster resonance energy transfer and coimmunoprecipitation to detect coassociated Sur1 and Trpm4, we measured immunoglobulin G extravasation and tumor necrosis α overexpression as measures of barrier dysfunction and neuroinflammation, and we assessed spatial learning and memory on days 7 to 19. RESULTS Sur1-Trpm4 channels were upregulated in humans and rats with SAH. In rats, inhibiting Sur1 using antisense or the selective Sur1 inhibitor glibenclamide reduced SAH-induced immunoglobulin G extravasation and tumor necrosis α overexpression. In models with entorhinal SAH, rats treated with glibenclamide for 7 days after SAH exhibited better platform search strategies and better performance on incremental and rapid spatial learning than vehicle-treated controls. CONCLUSIONS Sur1-Trpm4 channels are upregulated in humans and rats with SAH. Channel inhibition with glibenclamide may reduce neuroinflammation and the severity of cognitive deficits after SAH.
Collapse
Affiliation(s)
- Cigdem Tosun
- From the Departments of Neurosurgery (C.T., D.B.K., M.S.K., S.K.W., V.G., J.M.S.), Pathology (R.M., R.J.C., J.M.S.), and Physiology (J.M.S.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, Western Michigan University School of Medicine, Kalamazoo, MI (J.L.d.J.)
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Sajja VSSS, Galloway MP, Ghoddoussi F, Thiruthalinathan D, Kepsel A, Hay K, Bir CA, VandeVord PJ. Blast-induced neurotrauma leads to neurochemical changes and neuronal degeneration in the rat hippocampus. NMR IN BIOMEDICINE 2012; 25:1331-1339. [PMID: 22549883 DOI: 10.1002/nbm.2805] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/08/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Blast-induced neurotrauma is a major concern because of the complex expression of neuropsychiatric disorders after exposure. Disruptions in neuronal function, proximal in time to blast exposure, may eventually contribute to the late emergence of clinical deficits. Using magic angle spinning ¹H MRS and a rodent model of blast-induced neurotrauma, we found acute (24-48 h) decreases in succinate, glutathione, glutamate, phosphorylethanolamine and γ-aminobutyric acid, no change in N-acetylaspartate and increased glycerophosphorylcholine, alterations consistent with mitochondrial distress, altered neurochemical transmission and increased membrane turnover. Increased levels of the apoptotic markers Bax and caspase-3 suggested active cell death, consistent with increased FluoroJade B staining in the hippocampus. Elevated levels of glial fibrillary acidic protein suggested ongoing inflammation without diffuse axonal injury measured by no change in β-amyloid precursor protein. In conclusion, blast-induced neurotrauma induces a metabolic cascade associated with neuronal loss in the hippocampus in the acute period following exposure.
Collapse
|
98
|
Walcott BP, Kahle KT, Simard JM. The DECRA trial and decompressive craniectomy in diffuse traumatic brain injury: is decompression really ineffective? World Neurosurg 2012; 79:80-1. [PMID: 23159659 DOI: 10.1016/j.wneu.2012.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Brian P Walcott
- Department of Neurosurgery, University of Maryland, Baltimore, Maryland, USA
| | | | | |
Collapse
|
99
|
Atkins CM, Cepero ML, Kang Y, Liebl DJ, Dietrich WD. Effects of early rolipram treatment on histopathological outcome after controlled cortical impact injury in mice. Neurosci Lett 2012; 532:1-6. [PMID: 23103712 DOI: 10.1016/j.neulet.2012.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) pathology includes contusions, cavitation, cell death, all of which can be exacerbated by inflammation. We hypothesized that an anti-inflammatory drug, rolipram, may reduce pathology after TBI, since in several CNS injury models rolipram reduces inflammation and improves cell survival and functional recovery. Adult male C57BL/6 mice received a craniotomy over the right parietotemporal cortex. Vertically directed controlled cortical impact (CCI) injury was delivered. Naïve controls were used for comparison. At 30 min post-surgery, animals were treated with vehicle or rolipram (1 mg/kg), and then once per day for 3 days. On day 3, the brains were systematically sectioned and stained to visualize the resulting pathology using hematoxylin and eosin (H&E) staining and NeuN immunocytochemistry. Total parietotemporal cortical contusion and cavity volume were significantly increased in rolipram-treated as compared to vehicle-treated CCI animals. Contusion areas at specific bregma levels indicated a significant effect of drug across bregma levels. Neuronal cell loss in the dentate hilus and area CA3 of the hippocampus were similar between vehicle and rolipram-treated animals. Although rolipram is well known to reduce pathology and inflammation in several other CNS injury models, the pathology resulting from CCI was worsened with rolipram at this particular dose and administration schedule. These studies suggest that consideration of the unique characteristics of TBI pathology is important in the extrapolation of promising therapeutic interventions from other CNS injury models.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136-1060, USA.
| | | | | | | | | |
Collapse
|
100
|
Robertson CS, Garcia R, Gaddam SSK, Grill RJ, Cerami Hand C, Tian TS, Hannay HJ. Treatment of mild traumatic brain injury with an erythropoietin-mimetic peptide. J Neurotrauma 2012; 30:765-74. [PMID: 22827443 DOI: 10.1089/neu.2012.2431] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) results in an estimated 75-90% of the 1.7 million TBI-related emergency room visits each year. Post-concussion symptoms, which can include impaired memory problems, may persist for prolonged periods of time in a fraction of these cases. The purpose of this study was to determine if an erythropoietin-mimetic peptide, pyroglutamate helix B surface peptide (pHBSP), would improve neurological outcomes following mTBI. Sixty-four rats were randomly assigned to pHBSP or control (inactive peptide) 30 μg/kg IP every 12 h for 3 days, starting at either 1 hour (early treatment) or 24 h (delayed treatment), after mTBI (cortical impact injury 3 m/sec, 2.5 mm deformation). Treatment with pHBSP resulted in significantly improved performance on the Morris water maze task. Rats that received pHBSP required 22.3±1.3 sec to find the platform, compared to 26.3±1.3 sec in control rats (p=0.022). The rats that received pHBSP also traveled a significantly shorter distance to get to the platform, 5.0±0.3 meters, compared to 6.1±0.3 meters in control rats (p=0.019). Motor tasks were only transiently impaired in this mTBI model, and no treatment effect on motor performance was observed with pHBSP. Despite the minimal tissue injury with this mTBI model, there was significant activation of inflammatory cells identified by labeling with CD68, which was reduced in the pHBSP-treated animals. The results suggest that pHBSP may improve cognitive function following mTBI.
Collapse
Affiliation(s)
- Claudia S Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|