51
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
52
|
Ng LT, Ng LF, Tang RMY, Barardo D, Halliwell B, Moore PK, Gruber J. Lifespan and healthspan benefits of exogenous H 2S in C. elegans are independent from effects downstream of eat-2 mutation. NPJ Aging Mech Dis 2020; 6:6. [PMID: 32566245 PMCID: PMC7287109 DOI: 10.1038/s41514-020-0044-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Caloric restriction (CR) is one of the most effective interventions to prolong lifespan and promote health. Recently, it has been suggested that hydrogen sulfide (H2S) may play a pivotal role in mediating some of these CR-associated benefits. While toxic at high concentrations, H2S at lower concentrations can be biologically advantageous. H2S levels can be artificially elevated via H2S-releasing donor drugs. In this study, we explored the function of a novel, slow-releasing H2S donor drug (FW1256) and used it as a tool to investigate H2S in the context of CR and as a potential CR mimetic. We show that exposure to FW1256 extends lifespan and promotes health in Caenorhabditis elegans (C. elegans) more robustly than some previous H2S-releasing compounds, including GYY4137. We looked at the extent to which FW1256 reproduces CR-associated physiological effects in normal-feeding C. elegans. We found that FW1256 promoted healthy longevity to a similar degree as CR but with fewer fitness costs. In contrast to CR, FW1256 actually enhanced overall reproductive capacity and did not reduce adult body length. FW1256 further extended the lifespan of already long-lived eat-2 mutants without further detriments in developmental timing or fertility, but these lifespan and healthspan benefits required H2S exposure to begin early in development. Taken together, these observations suggest that FW1256 delivers exogenous H2S efficiently and supports a role for H2S in mediating longevity benefits of CR. Delivery of H2S via FW1256, however, does not mimic CR perfectly, suggesting that the role of H2S in CR-associated longevity is likely more complex than previously described.
Collapse
Affiliation(s)
- Li Theng Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore
| | - Richard Ming Yi Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore.,NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, 117456 Singapore
| | - Diogo Barardo
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Jan Gruber
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| |
Collapse
|
53
|
Yan L, Jiaqiong L, Yue G, Xiaoyong L, Xuexian T, Ming L, Yinglan L, Xinxue L, Zena H. Atorvastatin protects against contrast-induced acute kidney injury via upregulation of endogenous hydrogen sulfide. Ren Fail 2020; 42:270-281. [PMID: 33685337 PMCID: PMC7144258 DOI: 10.1080/0886022x.2020.1740098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Contrast-induced acute kidney injury (CIAKI) is the third leading cause of acute renal failure in hospitalized patients. This study was aimed to investigate whether atorvastatin could upregulate the expression of hydrogen sulfide (H2S) and hence protect against CIAKI. Methods We treated male rats and NRK-52E cells by iopromide to establish in vivo and in vitro models of CIAKI. Pretreatment with atorvastatin was given in CIAKI rats to investigate its effect on CIAKI. We collected serum and urine samples to detect renal function. We obtained kidney tissue for histological analysis and detection of protein concentration. We tested the serum concentration of H2S and renal expression of two H2S synthetases [cystathionine γ-lyase (CSE) and cystathionine-β synthase (CBS)]. NaHS was pretreated in NRK-52E cells to testify its underlying effect on contrast-induced injury. Results Atorvastatin significantly ameliorated renal dysfunction and morphological changes in CIAKI rats, as well as inflammation, apoptosis, and excessive oxidative stress. Atorvastatin also markedly increased the serum concentration of H2S and renal expression of CSE and CBS. Moreover, pretreatment with NaHS in NRK-52E cells considerably attenuated contrast-induced cell death and inflammation. Conclusion Atorvastatin protects against CIAKI via upregulation of endogenous hydrogen sulfide.
Collapse
Affiliation(s)
- Lin Yan
- Department of Nephrology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Jiaqiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guo Yue
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Xiaoyong
- Department of General Surgery, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tan Xuexian
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Long Ming
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Yinglan
- Department of Endocrine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liao Xinxue
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huang Zena
- Department of General Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
54
|
Abstract
In the past, hydrogen sulfide (H2S) was considered as a poisonous gas or waste of the body. Later, researchers found that H2S-producing enzymes exist in mammals. Moreover, their findings indicated that endogenous H2S was associated with the occurrence of many diseases. Therefore, endogenous H2S is able to participate in the regulation of physiological and pathological functions of the body as a gas signaling molecule. In this review, we summarize the regulation mechanism of endogenous H2S on the body, such as proliferation, apoptosis, migration, angiogenesis, as well as vasodilation/vasoconstriction. Furthermore, we also analyze the relationship between H2S and some chronic diseases, including hypoxic pulmonary hypertension, myocardial infarction, ischemic perfusion kidney injury, diabetes, and chronic intestinal diseases. Finally, we discuss dietary restriction and drugs that target for H2S. Hence, H2S is expected to become a potential target for treatment of these chronic diseases.
Collapse
Affiliation(s)
- Na Yang
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yuan Liu
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Tianping Li
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Qinhui Tuo
- Medical College, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
55
|
Wang Y, Xing QQ, Tu JK, Tang WB, Yuan XN, Xie YY, Wang W, Peng ZZ, Huang L, Xu H, Qin J, Xiao XC, Tao LJ, Yuan QJ. Involvement of hydrogen sulfide in the progression of renal fibrosis. Chin Med J (Engl) 2019; 132:2872-2880. [PMID: 31856060 PMCID: PMC6940064 DOI: 10.1097/cm9.0000000000000537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Renal fibrosis is the most common manifestation of chronic kidney disease (CKD). Noting that existing treatments of renal fibrosis only slow disease progression but do not cure it, there is an urgent need to identify novel therapies. Hydrogen sulfide (H2S) is a newly discovered endogenous small gas signaling molecule exerting a wide range of biologic actions in our body. This review illustrates recent experimental findings on the mechanisms underlying the therapeutic effects of H2S against renal fibrosis and highlights its potential in future clinical application. DATA SOURCES Literature was collected from PubMed until February 2019, using the search terms including "Hydrogen sulfide," "Chronic kidney disease," "Renal interstitial fibrosis," "Kidney disease," "Inflammation factor," "Oxidative stress," "Epithelial-to-mesenchymal transition," "H2S donor," "Hypertensive kidney dysfunction," "Myofibroblasts," "Vascular remodeling," "transforming growth factor (TGF)-beta/Smads signaling," and "Sulfate potassium channels." STUDY SELECTION Literature was mainly derived from English articles or articles that could be obtained with English abstracts. Article type was not limited. References were also identified from the bibliographies of identified articles and the authors' files. RESULTS The experimental data confirmed that H2S is widely involved in various renal pathologies by suppressing inflammation and oxidative stress, inhibiting the activation of fibrosis-related cells and their cytokine expression, ameliorating vascular remodeling and high blood pressure, stimulating tubular cell regeneration, as well as reducing apoptosis, autophagy, and hypertrophy. Therefore, H2S represents an alternative or additional therapeutic approach for renal fibrosis. CONCLUSIONS We postulate that H2S may delay the occurrence and progress of renal fibrosis, thus protecting renal function. Further experiments are required to explore the precise role of H2S in renal fibrosis and its application in clinical treatment.
Collapse
Affiliation(s)
- Yu Wang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi-Qi Xing
- Division of Orthopedics, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing-Ke Tu
- Regenerative Medicine Clinic, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300041, China
| | - Wen-Bin Tang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Ning Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan-Yun Xie
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Wang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhang-Zhe Peng
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Huang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Xu
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Qin
- Division of Nephrology, Department of Internal Medicine, Changsha Central Hospital, Changsha, Hunan 410008, China
| | - Xiang-Cheng Xiao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Jian Tao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong-Jing Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
56
|
Yuan Y, Zhu L, Li L, Liu J, Chen Y, Cheng J, Peng T, Lu Y. S-Sulfhydration of SIRT3 by Hydrogen Sulfide Attenuates Mitochondrial Dysfunction in Cisplatin-Induced Acute Kidney Injury. Antioxid Redox Signal 2019; 31:1302-1319. [PMID: 31218880 DOI: 10.1089/ars.2019.7728] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aims: Clinical use of cisplatin (Cisp), one of the most widely used, common, and effective chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Previous studies suggest that hydrogen sulfide (H2S) alleviates Cisp-induced acute kidney injury (AKI). However, the underlying mechanism remains largely unclear. Results: A single intraperitoneal injection of Cisp is employed to induce AKI, and the mice exhibit severe kidney dysfunction and histological damage at day 4 after Cisp injection. Here, we reported that H2S alleviated Cisp-caused renal toxicity via SIRT3 activation and subsequent improvement of mitochondrial ATP production. Using a biotin-switch assay, we showed that H2S increased S-sulfhydration of SIRT3 and induced deacetylation of its target proteins (OPA1, ATP synthase β, and superoxide dismutase 2). These effects of H2S were associated with a reduction of mitochondrial fragmentation, an increase in ATP generation, and less oxidative injury. Notably, the S-sulfhydration of SIRT3 induced by H2S was abrogated when Cys256, Cys259, Cys280, and Cys283 residues on SIRT3 (two zinc finger domains) were mutated. Innovation and Conclusion: Our data suggest that H2S attenuates Cisp-induced AKI by preventing mitochondrial dysfunction via SIRT3 sulfhydrylation. Antioxid. Redox Signal. 31, 1302-1319.
Collapse
Affiliation(s)
- Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Center for Metabolic and Vascular Biology, School for Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Canada.,Departments of Medicine and Pathology, University of Western Ontario, London, Canada
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
58
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
59
|
Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging (Albany NY) 2019; 10:1666-1681. [PMID: 30026406 PMCID: PMC6075431 DOI: 10.18632/aging.101500] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a key driver of ageing, influenced by age-related changes to the regulation of alternative splicing. Hydrogen sulfide (H2S) has similarly been described to influence senescence, but the pathways by which it accomplishes this are unclear.We assessed the effects of the slow release H2S donor Na-GYY4137 (100 µg/ml), and three novel mitochondria-targeted H2S donors AP39, AP123 and RT01 (10 ng/ml) on splicing factor expression, cell proliferation, apoptosis, DNA replication, DNA damage, telomere length and senescence-related secretory complex (SASP) expression in senescent primary human endothelial cells.All H2S donors produced up to a 50% drop in senescent cell load assessed at the biochemical and molecular level. Some changes were noted in the composition of senescence-related secretory complex (SASP); IL8 levels increased by 24% but proliferation was not re-established in the culture as a whole. Telomere length, apoptotic index and the extent of DNA damage were unaffected. Differential effects on splicing factor expression were observed depending on the intracellular targeting of the H2S donors. Na-GYY4137 produced a general 1.9 - 3.2-fold upregulation of splicing factor expression, whereas the mitochondria-targeted donors produced a specific 2.5 and 3.1-fold upregulation of SRSF2 and HNRNPD splicing factors only. Knockdown of SRSF2 or HNRNPD genes in treated cells rendered the cells non-responsive to H2S, and increased levels of senescence by up to 25% in untreated cells.Our data suggest that SRSF2 and HNRNPD may be implicated in endothelial cell senescence, and can be targeted by exogenous H2S. These molecules may have potential as moderators of splicing factor expression and senescence phenotypes.
Collapse
|
60
|
Abstract
Hydrogen sulfide (H2S)-a potent gaseous signaling molecule-has emerged as a critical regulator of cardiovascular homeostasis. H2S is produced enzymatically by 3 constitutively active endogenous enzymes in all mammalian species. Within the past 2 decades, studies administering H2S-donating agents and the genetic manipulation of H2S-producing enzymes have revealed multiple beneficial effects of H2S, including vasodilation, activation of antiapoptotic and antioxidant pathways, and anti-inflammatory effects. More recently, the heightened enthusiasm in this field has shifted to the development of novel H2S-donating agents that exert favorable pharmacological profiles. This has led to the discovery of novel H2S-mediated signaling pathways. This review will discuss recently developed H2S therapeutics, introduce signaling pathways that are influenced by H2S-dependent sulfhydration, and explore the dual-protective effect of H2S in cardiorenal syndrome.
Collapse
Affiliation(s)
- Zhen Li
- From the Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Science Center, New Orleans, LA
| | - David J Polhemus
- From the Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Science Center, New Orleans, LA
| | - David J Lefer
- From the Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Science Center, New Orleans, LA
| |
Collapse
|
61
|
Chauhan P, Gupta K, Ravikumar G, Saini DK, Chakrapani H. Carbonyl Sulfide (COS) Donor Induced Protein Persulfidation Protects against Oxidative Stress. Chem Asian J 2019; 14:4717-4724. [DOI: 10.1002/asia.201901148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/07/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Preeti Chauhan
- Department of ChemistryIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411 008 Maharashtra India
| | - Kavya Gupta
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of Science Bangalore 560012 Karnataka India
| | - Govindan Ravikumar
- Department of ChemistryIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411 008 Maharashtra India
| | - Deepak K. Saini
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of Science Bangalore 560012 Karnataka India
| | - Harinath Chakrapani
- Department of ChemistryIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411 008 Maharashtra India
| |
Collapse
|
62
|
Wepler M, Merz T, Wachter U, Vogt J, Calzia E, Scheuerle A, Möller P, Gröger M, Kress S, Fink M, Lukaschewski B, Rumm G, Stahl B, Georgieff M, Huber-Lang M, Torregrossa R, Whiteman M, McCook O, Radermacher P, Hartmann C. The Mitochondria-Targeted H2S-Donor AP39 in a Murine Model of Combined Hemorrhagic Shock and Blunt Chest Trauma. Shock 2019; 52:230-239. [PMID: 29927788 DOI: 10.1097/shk.0000000000001210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hemorrhagic shock (HS) accounts for 30% to 40% of trauma-induced mortality, which is due to multi-organ-failure subsequent to systemic hyper-inflammation, triggered by hypoxemia and tissue ischemia. The slow-releasing, mitochondria-targeted H2S donor AP39 exerted beneficial effects in several models of ischemia-reperfusion injury and acute inflammation. Therefore, we tested the effects of AP39-treatment in a murine model of combined blunt chest trauma (TxT) and HS with subsequent resuscitation. METHODS After blast wave-induced TxT or sham procedure, anesthetized and instrumented mice underwent 1 h of hemorrhage followed by 4 h of resuscitation comprising an i.v. bolus injection of 100 or 10 nmol kg AP39 or vehicle, retransfusion of shed blood, fluid resuscitation, and norepinephrine. Lung mechanics and gas exchange were assessed together with hemodynamics, metabolism, and acid-base status. Blood and tissue samples were analyzed for cytokine and chemokine levels, western blot, immunohistochemistry, mitochondrial oxygen consumption (JO2), and histological changes. RESULTS High dose AP39 attenuated systemic inflammation and reduced the expression of inducible nitric oxide synthase (iNOS) and IκBα expression in lung tissue. In the combined trauma group (TxT + HS), animals treated with high dose AP39 presented with the lowest mean arterial pressure and thus highest norepinephrine requirements and higher mortality. Low dose AP39 had no effects on hemodynamics, leading to unchanged norepinephrine requirements and mortality rates. CONCLUSION AP39 is a systemic anti-inflammatory agent. In our model of trauma with HS, there may be a narrow dosing and timing window due to its potent vasodilatory properties, which might result in or contribute to aggravation of circulatory shock-related hypotension.
Collapse
Affiliation(s)
- Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
- Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Tamara Merz
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Ulrich Wachter
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Josef Vogt
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Peter Möller
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Michael Gröger
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Sandra Kress
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Marina Fink
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Britta Lukaschewski
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Grégoire Rumm
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Bettina Stahl
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | | | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, UK
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Clair Hartmann
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
- Department of Anesthesiology, University Hospital, Ulm, Germany
| |
Collapse
|
63
|
Xu W, Tang Y, Zhao X, Zhao L, Wu X, Liu L, Long X, Luo Z, Chen X, Wang B. Protective role of H 2S on acute renal damages in urinary-derived sepsis. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1664929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Wujun Xu
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Yachun Tang
- Department of Urogenital Surgery, Nanhua Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Xiaofeng Zhao
- Department of Urogenital Surgery, Kramayi Central Hospital, Kramayi, Xinjiang, PR China
| | - Liwen Zhao
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Xiaobin Wu
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Li Liu
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Xiangyang Long
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Zhigang Luo
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Xian Chen
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| | - Binhui Wang
- Department of Urogenital Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
64
|
Covarrubias AE, Lecarpentier E, Lo A, Salahuddin S, Gray KJ, Karumanchi SA, Zsengellér ZK. AP39, a Modulator of Mitochondrial Bioenergetics, Reduces Antiangiogenic Response and Oxidative Stress in Hypoxia-Exposed Trophoblasts: Relevance for Preeclampsia Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:104-114. [PMID: 30315766 DOI: 10.1016/j.ajpath.2018.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
Although the cause of preeclampsia, a pregnancy complication with significant maternal and neonatal morbidity, has not been fully characterized, placental ischemia attributable to impaired spiral artery remodeling and abnormal secretion of antiangiogenic factors are thought to be important in the pathogenesis of the disease. Placental ischemia could impair trophoblast mitochondrial function and energy production, leading to the release of reactive oxygen species (ROS). ROS have been shown to stabilize hypoxia-inducible factor (HIF)-1α, which, in turn, may induce transcription of antiangiogenic factors, soluble fms-like tyrosine kinase 1 (sFLT1), and soluble endoglin in trophoblasts. Herein, we tested whether the angiogenic imbalance and oxidative stress in the preeclamptic placenta may be prevented by improving mitochondrial function. First, to evaluate the cause-effect relationship between mitochondrial function and sFLT1 production, a human trophoblast primary cell culture model was established in which hypoxia induced mitochondrial ROS production and concurrent sFLT1 increase. Second, treatment with AP39, a novel mitochondria-targeted hydrogen sulfide donor, prevented ROS production, reduced HIF-1α protein levels, and diminished sFLT1 production. Finally, AP39, a modulator of mitochondrial bioenergetics enhanced cytochrome c oxidase activity, reversed oxidative stress and antiangiogenic response in hypoxic trophoblasts. These results suggest that placental hypoxia induces ROS production, HIF-1α stabilization, and sFLT1 up-regulation; these pathophysiological alterations can be attenuated by mitochondrial-targeted antioxidants.
Collapse
Affiliation(s)
- Ambart E Covarrubias
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Faculty of Health Sciences, University San Sebastian, Concepción, Chile; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Edouard Lecarpentier
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine of Créteil University Paris Est Créteil-Paris XII and Department of Gynecology-Obstetrics and Reproductive Medicine, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Agnes Lo
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Saira Salahuddin
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Kathryn J Gray
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - S Ananth Karumanchi
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zsuzsanna K Zsengellér
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
65
|
Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu Y, Wood ME, Whiteman M, Moore PK, Bian JS. Renal Protective Effect of Hydrogen Sulfide in Cisplatin-Induced Nephrotoxicity. Antioxid Redox Signal 2018; 29:455-470. [PMID: 29316804 DOI: 10.1089/ars.2017.7157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Cisplatin is a major therapeutic drug for solid tumors, but can cause severe nephrotoxicity. However, the role and therapeutic potential of hydrogen sulfide (H2S), an endogenous gasotransmitter, in cisplatin-induced nephrotoxicity remain to be defined. RESULTS Cisplatin led to the impairment of H2S production in vitro and in vivo by downregulating the expression level of cystathionine γ-lyase (CSE), which may contribute to the subsequent renal proximal tubule (RPT) cell death and thereby renal toxicity. H2S donors NaHS and GYY4137, but not AP39, mitigated cisplatin-induced RPT cell death and nephrotoxicity. The mechanisms underlying the protective effect of H2S donors included the suppression of intracellular reactive oxygen species generation and downstream mitogen-activated protein kinases by inhibiting NADPH oxidase activity, which may be possibly through persulfidating the subunit p47phox. Importantly, GYY4137 not only ameliorated cisplatin-caused renal injury but also added on more anticancer effect to cisplatin in cancer cell lines. Innovation and Conclusion: Our study provides a comprehensive understanding of the role and therapeutic potential of H2S in cisplatin-induced nephrotoxicity. Our results indicate that H2S may be a novel and promising therapeutic target to prevent cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 29, 455-470.
Collapse
Affiliation(s)
- Xu Cao
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Siping Xiong
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yebo Zhou
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Zhiyuan Wu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| | - Lei Ding
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yike Zhu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Mark E Wood
- 3 Department of Biosciences, University of Exeter , Exeter, United Kingdom
| | - Matthew Whiteman
- 4 School of Biosciences, College of Life and Environmental Science, University of Exeter , Exeter, United Kingdom
| | - Philip K Moore
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| | - Jin-Song Bian
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
66
|
Abstract
Hydrogen sulfide (H2S) is a novel signaling molecule most recently found to be of fundamental importance in cellular function as a regulator of apoptosis, inflammation, and perfusion. Mechanisms of endogenous H2S signaling are poorly understood; however, signal transmission is thought to occur via persulfidation at reactive cysteine residues on proteins. Although much has been discovered about how H2S is synthesized in the body, less is known about how it is metabolized. Recent studies have discovered a multitude of different targets for H2S therapy, including those related to protein modification, intracellular signaling, and ion channel depolarization. The most difficult part of studying hydrogen sulfide has been finding a way to accurately and reproducibly measure it. The purpose of this review is to: elaborate on the biosynthesis and catabolism of H2S in the human body, review current knowledge of the mechanisms of action of this gas in relation to ischemic injury, define strategies for physiological measurement of H2S in biological systems, and review potential novel therapies that use H2S for treatment.
Collapse
|
67
|
Abstract
SIGNIFICANCE Among many endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays an important role in the regulation of glucose homeostasis. In this article we discuss different functional roles of H2S in several metabolic organs/tissues required in the maintenance of glucose homeostasis. Recent Advances: New evidence has emerged revealing the insulin sensitizing role of H2S in adipose tissue and skeletal muscle biology. In addition, H2S was demonstrated to be a potent stimulator of gluconeogenesis via the induction and stimulation of various glucose-producing pathways in the liver. CRITICAL ISSUES Similar to its other physiological effects, H2S exhibits paradoxical characteristics in the regulation of glucose homeostasis: (1) H2S stimulates glucose production via activation of gluconeogenesis and glycogenolysis in hepatocytes, yet inhibits lipolysis in adipocytes; (2) H2S stimulates glucose uptake into adipocytes and skeletal muscle but inhibits glucose uptake into hepatocytes; (3) H2S inhibits insulin secretion from pancreatic β cells, yet sensitizes insulin signaling and insulin-triggered response in adipose tissues and skeletal muscle. It is also unclear the impact H2S may have on glucose metabolism and utilization by other vital organs, such as the brain. FUTURE DIRECTIONS Recent reports and ongoing studies lay the foundation for a general, although highly incomplete, understanding of the effect of H2S on regulating glucose homeostasis. In this review, we describe the molecular mechanisms and physiological outcomes of the gasotransmitter H2S on organs and tissues required for homeostatic maintenance of blood glucose. Future directions highlighting the H2S-mediated homeostatic control of glucose metabolism under physiological and insulin-resistant conditions are also discussed. Antioxid. Redox Signal. 28, 1463-1482.
Collapse
Affiliation(s)
- Ashley Untereiner
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Lingyun Wu
- 2 Cardiovascular & Metabolic Research Unit and School of Human Kinetics, Laurentian University , Sudbury, Canada .,3 Health Sciences North Research Institute , Sudbury, Canada
| |
Collapse
|
68
|
Dugbartey GJ, Bouma HR, Saha MN, Lobb I, Henning RH, Sener A. A Hibernation-Like State for Transplantable Organs: Is Hydrogen Sulfide Therapy the Future of Organ Preservation? Antioxid Redox Signal 2018; 28:1503-1515. [PMID: 28747071 DOI: 10.1089/ars.2017.7127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Renal transplantation is the treatment of choice for end-stage renal disease, during which renal grafts from deceased donors are routinely cold stored to suppress metabolic demand and thereby limit ischemic injury. However, prolonged cold storage, followed by reperfusion, induces extensive tissue damage termed cold ischemia/reperfusion injury (IRI) and puts the graft at risk of both early and late rejection. Recent Advances: Deep hibernators constitute a natural model of coping with cold IRI as they regularly alternate between 4°C and 37°C. Recently, endogenous hydrogen sulfide (H2S), a gas with a characteristic rotten egg smell, has been implicated in organ protection in hibernation. CRITICAL ISSUES In renal transplantation, H2S also seems to confer cytoprotection by lowering metabolism, thereby creating a hibernation-like environment, and increasing preservation time while allowing cellular processes of preservation of homeostasis and tissue remodeling to take place, thus increasing renal graft survival. FUTURE DIRECTIONS Although the underlying cellular and molecular mechanisms of organ protection during hibernation have not been fully explored, mammalian hibernation may offer a great clinical promise to safely cold store and reperfuse donor organs. In this review, we first discuss mammalian hibernation as a natural model of cold organ preservation with reference to the kidney and highlight the involvement of H2S during hibernation. Next, we present recent developments on the protective effects and mechanisms of exogenous and endogenous H2S in preclinical models of transplant IRI and evaluate the potential of H2S therapy in organ preservation as great promise for renal transplant recipients in the future. Antioxid. Redox Signal. 28, 1503-1515.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Medicine, Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Hjalmar R Bouma
- 2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Manujendra N Saha
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada .,4 Department of Surgery, Division of Urology, London Health Sciences Center, Western University , London, Canada .,5 Department of Microbiology and Immunology, London Health Sciences Center, Western University , London, Canada
| | - Ian Lobb
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada
| | - Robert H Henning
- 2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Alp Sener
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada .,4 Department of Surgery, Division of Urology, London Health Sciences Center, Western University , London, Canada .,5 Department of Microbiology and Immunology, London Health Sciences Center, Western University , London, Canada .,6 London Health Sciences Center, Western University , London, Canada
| |
Collapse
|
69
|
Lin S, Lian D, Liu W, Haig A, Lobb I, Hijazi A, Razvi H, Burton J, Whiteman M, Sener A. Daily therapy with a slow-releasing H 2S donor GYY4137 enables early functional recovery and ameliorates renal injury associated with urinary obstruction. Nitric Oxide 2018. [PMID: 29522906 DOI: 10.1016/j.niox.2018.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To assess the effects of slow-releasing H2S donor GYY4137 on post-obstructive renal function and injury following unilateral ureteral obstruction (UUO) by using the UUO and reimplantation (UUO-R) model in rats and to elucidate potential mechanisms by using an in vitro model of epithelial-mesenchymal transition (EMT). METHODS Male Lewis rats underwent UUO at the left ureterovesical junction. From post-operative day (POD) 1-13, rats received daily intraperitoneal (IP) injection of phosphate buffered saline (PBS, 1 mL) or GYY4137 (200 μmol/kg/day in 1 mL PBS, IP). On POD 14, the ureter was reimplanted back into the bladder, followed by a right nephrectomy. Urine and serum samples were collected to monitor renal function. On POD 30, the left kidney was removed and tissue sections were stained with H&E, TUNEL, CD68, CD206, myeloperoxidase, and Masson's trichrome to determine cortical thickness, apoptosis, inflammation, and fibrosis. In our in vitro model of EMT, NRK52E cells were treated with 10 ng/mL TGF-β1, 10 μM GYY4137 and/or 50 μM GYY4137. Western blot analysis was performed to determine the expression of E-cadherin, vimentin, Smad7 and TGF-β1 receptor II (TβRII). RESULTS GYY4137 led to a moderate decrease in post-obstructive serum creatinine, cystatin C and FENa. We also observed a trend towards a decrease in post-obstructive proteinuria following GYY4137 treatment. Histologically, we observed a significant decrease in apoptosis, inflammation, and fibrosis. Furthermore, our in vitro studies demonstrate that in the presence of TGF-β1, GYY4137 significantly decreases vimentin and TβRII and significantly increases E-cadherin and Smad7. CONCLUSIONS H2S may help to accelerate the recovery of renal function post-obstruction and attenuates renal injury associated with UUO. It is possible that H2S mitigates fibrosis by regulating the TGF-β1-mediated EMT pathway. Taken together, our data suggest that H2S may be a potential novel therapy for improving renal function and limiting renal injury associated with obstructive uropathy.
Collapse
Affiliation(s)
- Shouzhe Lin
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada
| | - Weihua Liu
- Department of Pathology, Western University, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology, Western University, London, Ontario, Canada
| | - Ian Lobb
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada
| | - Ahmed Hijazi
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Hassan Razvi
- Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, Devon, United Kingdom
| | - Alp Sener
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Department of Surgery, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada.
| |
Collapse
|
70
|
Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochem Pharmacol 2018; 149:29-41. [DOI: 10.1016/j.bcp.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
|
71
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
72
|
N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H 2S and Sulfane Sulfur Production. Cell Chem Biol 2018; 25:447-459.e4. [PMID: 29429900 DOI: 10.1016/j.chembiol.2018.01.011] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/04/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
The cysteine prodrug N-acetyl cysteine (NAC) is widely used as a pharmacological antioxidant and cytoprotectant. It has been reported to lower endogenous oxidant levels and to protect cells against a wide range of pro-oxidative insults. As NAC itself is a poor scavenger of oxidants, the molecular mechanisms behind the antioxidative effects of NAC have remained uncertain. Here we show that NAC-derived cysteine is desulfurated to generate hydrogen sulfide, which in turn is oxidized to sulfane sulfur species, predominantly within mitochondria. We provide evidence suggesting the possibility that sulfane sulfur species produced by 3-mercaptopyruvate sulfurtransferase and sulfide:quinone oxidoreductase are the actual mediators of the immediate antioxidative and cytoprotective effects provided by NAC.
Collapse
|
73
|
Hydrogen Sulfide Attenuates LPS-Induced Acute Kidney Injury by Inhibiting Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6717212. [PMID: 29636853 PMCID: PMC5831990 DOI: 10.1155/2018/6717212] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
In order to investigate the protective mechanism of hydrogen sulfide (H2S) in sepsis-associated acute kidney injury (SA-AKI), ten AKI patients and ten healthy controls were enrolled. In AKI patients, levels of creatinine (Cre), urea nitrogen (BUN), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and myeloperoxidase (MPO) activity as well as concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly increased compared with those of controls. However, plasma level of H2S decreased and was linearly correlated with levels of Cre and BUN. After that, an AKI mouse model by intraperitoneal lipopolysaccharide (LPS) injection was constructed for in vivo study. In AKI mice, H2S levels decreased with the decline of 3-MST activity and expression; similar changes were observed in other indicators mentioned above. However, the protein expressions of TLR4, NLRP3, and caspase-1 in mice kidney tissues were significantly increased 6 h after LPS injection. NaHS could improve renal function and kidney histopathological changes, attenuate LPS-induced inflammation and oxidative stress, and inhibit expressions of TLR4, NLRP3, and caspase-1. Our study demonstrated that endogenous H2S is involved in the pathogenesis of SA-AKI, and exogenous H2S exerts protective effects against LPS-induced AKI by inhibiting inflammation and oxidative stress via the TLR4/NLRP3 signaling pathway.
Collapse
|
74
|
Ahmad A, Druzhyna N, Szabo C. Delayed Treatment with Sodium Hydrosulfide Improves Regional Blood Flow and Alleviates Cecal Ligation and Puncture (CLP)-Induced Septic Shock. Shock 2018; 46:183-93. [PMID: 26863032 DOI: 10.1097/shk.0000000000000589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cecal ligation and puncture (CLP)-induced sepsis is a serious medical condition, caused by a severe systemic infection resulting in a systemic inflammatory response. Recent studies have suggested the therapeutic potential of donors of hydrogen sulfide (H2S), a novel endogenous gasotransmitter and biological mediator in various diseases. The aim of the present study was to assess the effect of H2S supplementation in sepsis, with special reference to its effect on the modulation of regional blood flow. We infused sodium hydrosulfide (NaHS), a compound that produces H2S in aqueous solution (1, 3, or 10 mg/kg/h, for 1 h at each dose level) in control rats or rats 24 h after CLP, and measured blood flow using fluorescent microspheres. In normal control animals, NaHS induced a characteristic redistribution of blood flow, and reduced cardiac, hepatic, and renal blood flow in a dose-dependent fashion. In contrast, in rats subjected to CLP, cardiac, hepatic, and renal blood flow was significantly reduced; infusion of NaHS (1 mg/kg/h and 3 mg/kg/h) significantly increased organ blood flow. In other words, the effect of H2S on regional blood flow is dependent on the status of the animals (i.e., a decrease in blood flow in normal controls, but an increase in blood flow in CLP). We have also evaluated the effect of delayed treatment with NaHS on organ dysfunction and the inflammatory response by treating the animals with NaHS (3 mg/kg) intraperitoneally (i.p.) at 24 h after the start of the CLP procedure; plasma levels of various cytokines and tissue indicators of inflammatory cell infiltration and oxidative stress were measured 6 h later. After 24 h of CLP, glomerular function was significantly impaired, as evidenced by markedly increased (over 4-fold over baseline) blood urea nitrogen and creatinine levels; this increase was also significantly reduced by treatment with NaHS. NaHS also attenuated the CLP-induced increases in malondialdehyde levels (an index of oxidative stress) in heart as well as in liver and myeloperoxidase levels (an index of neutrophil infiltration) in heart and lung. Plasma levels of IL-1β, IL-5, IL-6, TNF-α, and HMGB1 were attenuated by NaHS. Treatment of NaHS at 3 mg/kg i.p. (but not 1 mg/kg or 6 mg/kg), starting 24 h post-CLP, with dosing repeated every 6 h, improved the survival rate in CLP animals. In summary, treatment with 3 mg/kg H2S-when started in a delayed manner, when CLP-induced organ injury, inflammation and blood flow redistribution have already ensued-improves blood flow to several organs, protects against multiple organ failure, and reduces the plasma levels of multiple pro-inflammatory mediators. These findings support the view that H2S donation may have therapeutic potential in sepsis.
Collapse
Affiliation(s)
- Akbar Ahmad
- *Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas †Shriners Hospital for Children, Galveston, Texas
| | | | | |
Collapse
|
75
|
The mechanism of action and role of hydrogen sulfide in the control of vascular tone. Nitric Oxide 2017; 81:75-87. [PMID: 29097155 DOI: 10.1016/j.niox.2017.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/21/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
Abstract
Our knowledge about hydrogen sulfide (H2S) significantly changed over the last two decades. Today it is considered as not only a toxic gas but also as a gasotransmitter with diverse roles in different physiological and pathophysiological processes. H2S has pleiotropic effects and its possible mechanisms of action involve (1) a reversible protein sulfhydration which can alter the function of the modified proteins similar to nitrosylation or phosphorylation; (2) direct antioxidant effects and (3) interaction with metalloproteins. Its effects on the human cardiovascular system are especially important due to the high prevalence of hypertension and myocardial infarction. The exact molecular targets that affect the vascular tone include the KATP channel, the endothelial nitric oxide synthase, the phosphodiesterase of the vascular smooth muscle cell and the cytochrome c oxidase among others and the combination of all these effects lead to the final result on the vascular tone. The relative role of each effect depends immensely on the used concentration and also on the used donor molecules but several other factors and experimental conditions could alter the final effect. The aim of the current review is to give a comprehensive summary of the current understanding on the mechanism of action and role of H2S in the regulation of vascular tone and to outline the obstacles that hinder the better understanding of its effects.
Collapse
|
76
|
Untereiner AA, Pavlidou A, Druzhyna N, Papapetropoulos A, Hellmich MR, Szabo C. Drug resistance induces the upregulation of H 2S-producing enzymes in HCT116 colon cancer cells. Biochem Pharmacol 2017; 149:174-185. [PMID: 29061341 DOI: 10.1016/j.bcp.2017.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Hydrogen sulfide (H2S) production in colon cancer cells supports cellular bioenergetics and proliferation. The aim of the present study was to investigate the alterations in H2S homeostasis during the development of resistance to 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent. A 5-FU-resistant HCT116 human colon cancer cell line was established by serial passage in the presence of increasing 5-FU concentrations. The 5-FU-resistant cells also demonstrated a partial resistance to an unrelated chemotherapeutic agent, oxaliplatin. Compared to parental cells, the 5-FU-resistant cells rely more on oxidative phosphorylation than glycolysis for bioenergetic function. There was a significant increase in the expression of the drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP2A6 in 5-FU-resistant cells. The CYP450 inhibitor phenylpyrrole enhanced 5-FU-induced cytotoxicity in 5-FU-resistant cells. Two major H2S-generating enzymes, cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) were upregulated in the 5-FU-resistant cells. 5-FU-resistant cells exhibited decreased sensitivity to the CBS inhibitor aminooxyacetate (AOAA) in terms of suppression of cell viability, inhibition of cell proliferation and inhibition of oxidative phosphorylation. However, 5FU-resistant cells remained sensitive to the antiproliferative effect of benserazide (a recently identified, potentially repurposable CBS inhibitor). Taken together, the current data suggest that 5-FU resistance in HCT116 cells is associated with the upregulation of drug-metabolizing enzymes and an enhancement of endogenous H2S production. The anticancer effect of prototypical H2S biosynthesis inhibitor AOAA is impaired in 5-FU-resistant cells, but benserazide remains efficacious. Pharmacological approaches aimed at restoring the sensitivity of 5-FU-resistant cells to chemotherapeutic agents may be useful in the formulation of novel therapeutic strategies against colorectal cancer.
Collapse
Affiliation(s)
- Ashley A Untereiner
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Athanasia Pavlidou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Nadiya Druzhyna
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
77
|
Patinha D, Pijacka W, Paton JFR, Koeners MP. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Front Physiol 2017; 8:752. [PMID: 29046642 PMCID: PMC5632678 DOI: 10.3389/fphys.2017.00752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms. The kidney and the carotid body are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen sensing function by both the kidney and carotid body to ensure maintenance of whole body blood flow and tissue oxygen homeostasis. Under pathological conditions of severe or prolonged tissue hypoxia, these sensors may become continuously excessively activated and increase perfusion pressure chronically. Consequently, persistence of their activity could become a driver for the development of hypertension and cardiovascular disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid body mediated responses in arterial pressure appear to be synergistic as interruption of either afferent source has a summative effect of reducing blood pressure in renovascular hypertension. We discuss that this cooperative oxygen sensing system can activate/sensitize their own afferent transduction mechanisms via interactions between the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism supports our view point that the development of cardiovascular disease involves afferent nerve activation.
Collapse
Affiliation(s)
- Daniela Patinha
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Wioletta Pijacka
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maarten P Koeners
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
78
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
79
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1035] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
80
|
Faller S, Seiler R, Donus R, Engelstaedter H, Hoetzel A, Spassov SG. Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. PLoS One 2017; 12:e0176649. [PMID: 28453540 PMCID: PMC5409137 DOI: 10.1371/journal.pone.0176649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Although essential in critical care medicine, mechanical ventilation often results in ventilator-induced lung injury. Low concentrations of hydrogen sulfide have been proven to have anti-inflammatory and anti-oxidative effects in the lung. The aim of this study was to analyze the kinetic effects of pre- and posttreatment with hydrogen sulfide in order to prevent lung injury as well as inflammatory and oxidative stress upon mechanical ventilation. Mice were either non-ventilated or mechanically ventilated with a tidal volume of 12 ml/kg for 6 h. Pretreated mice inhaled hydrogen sulfide in low dose for 1, 3, or 5 h prior to mechanical ventilation. Posttreated mice were ventilated with air followed by ventilation with hydrogen sulfide in various combinations. In addition, mice were ventilated with air for 10 h, or with air for 5 h and subsequently with hydrogen sulfide for 5 h. Histology, interleukin-1β, neutrophil counts, and reactive oxygen species formation were examined in the lungs. Both pre-and posttreatment with hydrogen sulfide time-dependently reduced or even prevented edema formation, gross histological damage, neutrophil influx and reactive oxygen species production in the lung. These results were also observed in posttreatment, when the experimental time was extended and hydrogen sulfide administration started as late as after 5 h air ventilation. In conclusion, hydrogen sulfide exerts lung protection even when its application is limited to a short or delayed period. The observed lung protection is mediated by inhibition of inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Simone Faller
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
- * E-mail:
| | - Raphael Seiler
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Rosa Donus
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Helen Engelstaedter
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Hoetzel
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sashko Gregoriev Spassov
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
81
|
Di Cesare Mannelli L, Lucarini E, Micheli L, Mosca I, Ambrosino P, Soldovieri MV, Martelli A, Testai L, Taglialatela M, Calderone V, Ghelardini C. Effects of natural and synthetic isothiocyanate-based H 2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. Neuropharmacology 2017; 121:49-59. [PMID: 28431970 DOI: 10.1016/j.neuropharm.2017.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023]
Abstract
Hydrogen sulfide (H2S) is a crucial signaling molecule involved in several physiological and pathological processes. Nonetheless, the role of this gasotransmitter in the pathogenesis and treatment of neuropathic pain is controversial. The aim of the present study was to investigate the pain relieving profile of a series of slow releasing H2S donors (the natural allyl-isothiocyanate and the synthetics phenyl- and carboxyphenyl-isothiocyanate) in animal models of neuropathic pain induced by paclitaxel or oxaliplatin, anticancer drugs characterized by a dose-limiting neurotoxicity. The potential contribution of Kv7 potassium channels modulation was also studied. Mice were treated with paclitaxel (2.0 mg kg-1) i.p. on days 1, 3, 5 and 7; oxaliplatin (2.4 mg kg-1) was administered i.p. on days 1-2, 5-9, 12-14. Behavioral tests were performed on day 15. In both models, single subcutaneous administrations of H2S donors (1.33, 4.43, 13.31 μmol kg-1) reduced the hypersensitivity to cold non-noxious stimuli (allodynia-related measurement). The prototypical H2S donor NaHS was also effective. Activity was maintained after i.c.v. administrations. On the contrary, the S-lacking molecule allyl-isocyanate did not increase pain threshold; the H2S-binding molecule hemoglobin abolished the pain-relieving effects of isothiocyanates and NaHS. The anti-neuropathic properties of H2S donors were reverted by the Kv7 potassium channel blocker XE991. Currents carried by Kv7.2 homomers and Kv7.2/Kv7.3 heteromers expressed in CHO cells were potentiated by H2S donors. Sistemically- or centrally-administered isothiocyanates reduced chemotherapy-induced neuropathic pain by releasing H2S. Activation of Kv7 channels largely mediate the anti-neuropathic effect.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy.
| | - Elena Lucarini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Ilaria Mosca
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Paolo Ambrosino
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Maria Virginia Soldovieri
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Alma Martelli
- Dept. of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Lara Testai
- Dept. of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Maurizio Taglialatela
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy; Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Via Pansini 5, Naples, Italy
| | | | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| |
Collapse
|
82
|
Lobb I, Jiang J, Lian D, Liu W, Haig A, Saha MN, Torregrossa R, Wood ME, Whiteman M, Sener A. Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions. Am J Transplant 2017; 17:341-352. [PMID: 27743487 DOI: 10.1111/ajt.14080] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement, and prolonged ischemia-reperfusion injury IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H2 S (150 μM NaSH) during prolonged (24-h) cold (4°C) storage exhibited significantly (p < 0.05) decreased acute necrotic/apoptotic injury and significantly (p < 0.05) improved function and recipient Lewis rat survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) with the mitochondrial-targeted H2 S donor, AP39, during in vitro cold hypoxic injury improved the protective capacity of H2 S >1000-fold compared to similar levels of the nonspecific H2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW solution. H2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx.
Collapse
Affiliation(s)
- I Lobb
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, London, Ontario, Canada
| | - J Jiang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, London, Ontario, Canada
| | - D Lian
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, London, Ontario, Canada
| | - W Liu
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - A Haig
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - M N Saha
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, London, Ontario, Canada
| | | | - M E Wood
- Department of Biosciences, College of Life and Environmental Sciences, Exeter, UK
| | - M Whiteman
- University of Exeter Medical School, Exeter, UK
| | - A Sener
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada.,Multi-Organ Transplant Program, London Health Sciences Center, London, Ontario, Canada
| |
Collapse
|
83
|
Karwi QG, Bornbaum J, Boengler K, Torregrossa R, Whiteman M, Wood ME, Schulz R, Baxter GF. AP39, a mitochondria-targeting hydrogen sulfide (H 2 S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol 2017; 174:287-301. [PMID: 27930802 DOI: 10.1111/bph.13688] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE H2 S protects myocardium against ischaemia/reperfusion injury. This protection may involve the cytosolic reperfusion injury salvage kinase (RISK) pathway, but direct effects on mitochondrial function are possible. Here, we investigated the potential cardioprotective effect of a mitochondria-specific H2 S donor, AP39, at reperfusion against ischaemia/reperfusion injury. EXPERIMENTAL APPROACH Anaesthetized rats underwent myocardial ischaemia (30 min)/reperfusion (120 min) with randomization to receive interventions before reperfusion: vehicle, AP39 (0.01, 0.1, 1 μmol·kg-1 ), or control compounds AP219 and ADT-OH (1 μmol·kg-1 ). LY294002, L-NAME or ODQ were used to investigate the involvement of the RISK pathway. Myocardial samples harvested 5 min after reperfusion were analysed for RISK protein phosphorylation and isolated cardiac mitochondria were used to examine the direct mitochondrial effects of AP39. KEY RESULTS AP39, dose-dependently, reduced infarct size. Inhibition of either PI3K/Akt, eNOS or sGC did not affect this effect of AP39. Western blot analysis confirmed that AP39 did not induce phosphorylation of Akt, eNOS, GSK-3β or ERK1/2. In isolated subsarcolemmal and interfibrillar mitochondria, AP39 significantly attenuated mitochondrial ROS generation without affecting respiratory complexes I or II. Furthermore, AP39 inhibited mitochondrial permeability transition pore (PTP) opening and co-incubation of mitochondria with AP39 and cyclosporine A induced an additive inhibitory effect on the PTP. CONCLUSION AND IMPLICATIONS AP39 protects against reperfusion injury independently of the cytosolic RISK pathway. This cardioprotective effect could be mediated by inhibiting PTP via a cyclophilin D-independent mechanism. Thus, selective delivery of H2 S to mitochondria may be therapeutically applicable for employing the cardioprotective utility of H2 S.
Collapse
Affiliation(s)
- Qutuba G Karwi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,College of Medicine, University of Diyala, Diyala, Iraq
| | - Julia Bornbaum
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Roberta Torregrossa
- Medical School, University of Exeter, Exeter, UK.,School of Biosciences, University of Exeter, Exeter, UK
| | | | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Gary F Baxter
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
84
|
H 2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide 2017; 64:52-60. [PMID: 28069557 DOI: 10.1016/j.niox.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Hypertension is the most common cause of cardiovascular morbidities and mortalities, and a major risk factor for renal dysfunction. It is considered one of the causes of chronic kidney disease, which progresses into end-stage renal disease and eventually loss of renal function. Yet, the mechanism underlying the pathogenesis of hypertension and its associated kidney injury is still poorly understood. Moreover, despite existing antihypertensive therapies, achievement of blood pressure control and preservation of renal function still remain a worldwide public health challenge in a subset of hypertensive patients. Therefore, novel modes of intervention are in demand. Hydrogen sulfide (H2S), a gaseous signaling molecule, has been established to possess antihypertensive and renoprotective properties, which may represent an important therapeutic alternative for the treatment of hypertension and kidney injury. This review discusses recent findings about H2S in hypertension and kidney injury from both experimental and clinical studies. It also addresses future direction regarding therapeutic use of H2S.
Collapse
|
85
|
Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol 2016; 7:385. [PMID: 27803669 PMCID: PMC5067532 DOI: 10.3389/fphar.2016.00385] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H2S in mammalian renal system, with emphasis on both renal physiology and diseases. H2S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H2S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H2S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H2S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H2S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H2S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H2S in renal diseases, H2S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H2S donors in kidney diseases and understanding the molecular mechanism of H2S. The completion of the studies in these directions will not only improves our understanding of renal H2S functions but may also be critical to translate H2S to be a new therapy for renal diseases.
Collapse
Affiliation(s)
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| |
Collapse
|
86
|
Dugbartey GJ, Peppone LJ, de Graaf IAM. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology 2016; 371:58-66. [PMID: 27717837 DOI: 10.1016/j.tox.2016.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell's antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies including combination therapy with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Luke J Peppone
- Department of Surgery, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, United States
| | - Inge A M de Graaf
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
87
|
Ahmad A, Szabo C. Both the H 2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H 2S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 2016; 113:348-355. [PMID: 27639598 DOI: 10.1016/j.phrs.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/31/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) exerts beneficial as well as deleterious effects in various models of critical illness. Here we tested the effect of two different pharmacological interventions: (a) inhibition of H2S biosynthesis using the cystathionine-beta-synthase (CBS)/cystathionine-gamma-lyase (CSE) inhibitor aminooxyacetic acid (AOAA) and the mitochondrially targeted H2S donor [10-oxo-10-[4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy]decyl]triphenyl-phosphonium (AP39). A 30% body surface area burn injury was induced in anesthetized mice; animals were treated with vehicle, AOAA (10mg/kg i.p. once or once a day for 6days), or AP39 (0.3mg/kg/day once or once a day for 6days). In two separate groups, animals were sacrificed, at 24h post-burn or on Day 7 post-burn, blood and lungs were collected and the following parameters were evaluated: myeloperoxidase (MPO) and malondialdehyde (MDA) in lung homogenates, plasma cytokines (Luminex analysis) and circulating indicators of organ dysfunction (Vetscan analysis). Lung MPO levels (an index of neutrophil infiltration) and MDA levels (an index of oxidative stress) were significantly increased in response to burn injury both at 24h and at 7days; both AOAA and AP39 attenuated these increases. From a panel of inflammatory cytokines (TNFα, IL-1β, IL-6, IL-10, MCP-1, MIP-2, VEGF and IFNγ) in the plasma, IL-6 and IL-10 levels were markedly elevated at 24h and VEGF was slightly elevated. IL-6 remained highly elevated at 7days post-burn while IL-10 levels decreased, but remained slightly elevated over baseline 7days post-burn. The changes in cytokine levels were attenuated both by AP39 and AOAA at both time points studied. The burn-induced increases in the organ injury markers ALP and ALT, amylase and creatinine were reduced by both AOAA and AP39. We conclude that both H2S biosynthesis inhibition (using AOAA) and H2S donation (using AP39) suppresses inflammatory mediator production and reduces multi-organ injury in a murine model of burn injury, both at an early time point (when systemic H2S levels are elevated) and at a later time point (at which time systemic H2S levels have returned to baseline). These findings point to the complex pathogenetic role of H2S in burns.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA.
| |
Collapse
|
88
|
Chatzianastasiou A, Bibli SI, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabó C, Papapetropoulos A. Cardioprotection by H2S Donors: Nitric Oxide-Dependent and ‑Independent Mechanisms. J Pharmacol Exp Ther 2016; 358:431-40. [PMID: 27342567 PMCID: PMC6047225 DOI: 10.1124/jpet.116.235119] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD.
Collapse
Affiliation(s)
- Athanasia Chatzianastasiou
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Sofia-Iris Bibli
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Ioanna Andreadou
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Panagiotis Efentakis
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Nina Kaludercic
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Mark E Wood
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Matthew Whiteman
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Fabio Di Lisa
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Daiber
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Vangelis G Manolopoulos
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Csaba Szabó
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
89
|
Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M. The novel mitochondria-targeted hydrogen sulfide (H 2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 2016; 113:186-198. [PMID: 27565382 PMCID: PMC5113977 DOI: 10.1016/j.phrs.2016.08.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 01/24/2023]
Abstract
The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30–300 nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30–300 nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications.
Collapse
Affiliation(s)
- Domokos Gerő
- University of Exeter Medical School, Exeter, UK.
| | - Roberta Torregrossa
- University of Exeter Medical School, Exeter, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Alexis Perry
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Sophie Le-Trionnaire
- IRSET-UMR INSERM U1085, Equipe 3-Stress, Membrane et Signalisation, Rennes Cedex, France
| | | | - Mark Wood
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | |
Collapse
|
90
|
Dugbartey GJ, Bouma HR, Lobb I, Sener A. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity. Nitric Oxide 2016; 57:15-20. [PMID: 27095538 DOI: 10.1016/j.niox.2016.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ian Lobb
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON, Canada; Department of Microbiology and Immunology, London Health Sciences Center, Western University, London, ON, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON, Canada; Department of Microbiology and Immunology, London Health Sciences Center, Western University, London, ON, Canada; Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON, Canada; Department of Surgery, Division of Urology, University of Manitoba, Winnepeg, MB, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, ON, Canada
| |
Collapse
|
91
|
Zheng Y, Yu B, Ji K, Pan Z, Chittavong V, Wang B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. Angew Chem Int Ed Engl 2016; 55:4514-8. [PMID: 26822005 PMCID: PMC4902284 DOI: 10.1002/anie.201511244] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/17/2022]
Abstract
Prodrugs that release hydrogen sulfide upon esterase-mediated cleavage of an ester group followed by lactonization are described herein. By modifying the ester group and thus its susceptibility to esterase, and structural features critical to the lactonization rate, H2 S release rates can be tuned. Such prodrugs directly release hydrogen sulfide without the involvement of perthiol species, which are commonly encountered with existing H2 S donors. Additionally, such prodrugs can easily be conjugated to another non-steroidal anti-inflammatory agent, leading to easy synthesis of hybrid prodrugs. As a biological validation of the H2 S prodrugs, the anti-inflammatory effects of one such prodrug were examined by studying its ability to inhibit LPS-induced TNF-α production in RAW 264.7 cells. This type of H2 S prodrugs shows great potential as both research tools and therapeutic agents.
Collapse
Affiliation(s)
- Yueqin Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Kaili Ji
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Zhixiang Pan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Vayou Chittavong
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA.
| |
Collapse
|
92
|
Zheng Y, Yu B, Ji K, Pan Z, Chittavong V, Wang B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yueqin Zheng
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Bingchen Yu
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Kaili Ji
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Zhixiang Pan
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Vayou Chittavong
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Binghe Wang
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| |
Collapse
|
93
|
Greabu M, Totan A, Miricescu D, Radulescu R, Virlan J, Calenic B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants (Basel) 2016; 5:antiox5010003. [PMID: 26805896 PMCID: PMC4808752 DOI: 10.3390/antiox5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.
Collapse
Affiliation(s)
- Maria Greabu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Alexandra Totan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Daniela Miricescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Radu Radulescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Justina Virlan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Bogdan Calenic
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| |
Collapse
|