51
|
Pusara S. Molecular Dynamics Insights into the Aggregation Behavior of N-Terminal β-Lactoglobulin Peptides. Int J Mol Sci 2024; 25:4660. [PMID: 38731878 PMCID: PMC11083573 DOI: 10.3390/ijms25094660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
β-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in β-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of β-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of β-sheets, which serve as nucleation points for further fibril growth.
Collapse
Affiliation(s)
- Srdjan Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
52
|
Khorsand FR, Aziziyan F, Khajeh K. Factors influencing amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:55-83. [PMID: 38811089 DOI: 10.1016/bs.pmbts.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.
Collapse
Affiliation(s)
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
53
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
54
|
Puławski W, Dec R, Dzwolak W. Clues to the Design of Aggregation-Resistant Insulin from Proline Scanning of Highly Amyloidogenic Peptides Derived from the N-Terminal Segment of the A-Chain. Mol Pharm 2024; 21:2025-2033. [PMID: 38525800 PMCID: PMC10988558 DOI: 10.1021/acs.molpharmaceut.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Insulin aggregation poses a significant problem in pharmacology and medicine as it occurs during prolonged storage of the hormone and in vivo at insulin injection sites. We have recently shown that dominant forces driving the self-assembly of insulin fibrils are likely to arise from intermolecular interactions involving the N-terminal segment of the A-chain (ACC1-13). Here, we study how proline substitutions within the pilot GIVEQ sequence of this fragment affect its propensity to aggregate in both neutral and acidic environments. In a reasonable agreement with in silico prediction based on the Cordax algorithm, proline substitutions at positions 3, 4, and 5 turn out to be very effective in preventing aggregation according to thioflavin T-fluorescence-based kinetic assay, infrared spectroscopy, and atomic force microscopy (AFM). Since the valine and glutamate side chains within this segment are strongly involved in the interactions with the insulin receptor, we have focused on the possible implications of the Q → P substitution for insulin's stability and interactions with the receptor. To this end, comparative molecular dynamics (MD) simulations of the Q5P mutant and wild-type insulin were carried out for both free and receptor-bound (site 1) monomers. The results point to a mild destabilization of the mutant vis à vis the wild-type monomer, as well as partial preservation of key contacts in the complex between Q5P insulin and the receptor. We discuss the implications of these findings in the context of the design of aggregation-resistant insulin analogues retaining hormonal activity.
Collapse
Affiliation(s)
- Wojciech Puławski
- Bioinformatics
Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinski Street 5, 02-106 Warsaw, Poland
| | - Robert Dec
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| |
Collapse
|
55
|
Sheikhi M, Nemayandeh N, Shirangi M. Peptide Acylation in Aliphatic Polyesters: a Review of Mechanisms and Inhibition Strategies. Pharm Res 2024; 41:765-778. [PMID: 38504074 DOI: 10.1007/s11095-024-03682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Biodegradable polyesters are widely employed in the development of controlled release systems for peptide drugs. However, one of the challenges in developing a polyester-based delivery system for peptides is the acylation reaction between peptides and polymers. Peptide acylation is an important factor that affects formulation stability and can occur during storage, in vitro release, and after drug administration. This review focuses on the mechanisms and parameters that influence the rate of peptide acylation within polyesters. Furthermore, it discusses reported strategies to minimize the acylation reaction.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran
| | - Nasrin Nemayandeh
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran.
| |
Collapse
|
56
|
Ghosh M, Shadangi S, Rana S. Rational design of antibody-like peptides for targeting the human complement fragment protein C5a. Proteins 2024; 92:449-463. [PMID: 37933678 DOI: 10.1002/prot.26637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Human complement fragment 5a (C5a) is one of the most potent glycoproteins generated downstream of C3a and C4a during late-stage activation of the complement signaling cascade. C5a recruits receptors like C5aR1 and C5aR2 and is established to play a critical role in complement-mediated inflammation. Thus, excessive C5a in the plasma due to aberrant activation of the complement contributes to the pathophysiology of several chronic inflammatory diseases. Therefore, restricting the excessive interaction of C5a with its receptors by neutralizing C5a has been one of the most effective therapeutic strategies for the management of inflammatory diseases. Indeed, antibodies targeting C5 (Eculizumab), the precursor of C5a, and C5a (Vilobelimab) have already been approved by the FDA. Still, small designer peptides that work like antibodies and can target and stop C5a from interacting with its receptors seem to be a possible therapeutic alternative to antibodies because they are smaller, cheaper to make, more specific to their target, and can get through membrane barriers. As a proof-of-principle, the current study describes the computational design and evaluation of a pair of peptides that are able to form stable high-affinity complexes with the epitope regions of C5a that are important for the recruitment of C5aR1 and C5aR2. The computational data further supports the potential of designer peptides for mimicking the function of antibodies targeting C5a. However, further experimental studies will be required to establish the structure-function relationship of the designer peptides and also to establish the hypothesis of antibody-like peptides targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
57
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
58
|
Fonseca D, Alves PM, Neto E, Custódio B, Guimarães S, Moura D, Annis F, Martins M, Gomes A, Teixeira C, Gomes P, Pereira RF, Freitas P, Parreira P, Martins MCL. One-Pot Microfluidics to Engineer Chitosan Nanoparticles Conjugated with Antimicrobial Peptides Using "Photoclick" Chemistry: Validation Using the Gastric Bacterium Helicobacter pylori. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14533-14547. [PMID: 38482690 PMCID: PMC10982938 DOI: 10.1021/acsami.3c18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Surface bioconjugation of antimicrobial peptides (AMP) onto nanoparticles (AMP-NP) is a complex, multistep, and time-consuming task. Herein, a microfluidic system for the one-pot production of AMP-NP was developed. Norbornene-modified chitosan was used for NP production (NorChit-NP), and thiolated-AMP was grafted on their surface via thiol-norbornene "photoclick" chemistry over exposure of two parallel UV LEDs. The MSI-78A was the AMP selected due to its high activity against a high priority (level 2) antibiotic-resistant gastric pathogen: Helicobacter pylori (H. pylori). AMP-NP (113 ± 43 nm; zeta potential 14.3 ± 7 mV) were stable in gastric settings without a cross-linker (up to 5 days in pH 1.2) and bactericidal against two highly pathogenic H. pylori strains (1011 NP/mL with 96 μg/mL MSI-78A). Eradication was faster for H. pylori 26695 (30 min) than for H. pylori J99 (24 h), which was explained by the lower minimum bactericidal concentration of soluble MSI-78A for H. pylori 26695 (32 μg/mL) than for H. pylori J99 (128 μg/mL). AMP-NP was bactericidal by inducing H. pylori cell membrane alterations, intracellular reorganization, generation of extracellular vesicles, and leakage of cytoplasmic contents (transmission electron microscopy). Moreover, NP were not cytotoxic against two gastric cell lines (AGS and MKN74, ATCC) at bactericidal concentrations. Overall, the designed microfluidic setup is a greener, simpler, and faster approach than the conventional methods to obtain AMP-NP. This technology can be further explored for the bioconjugation of other thiolated-compounds.
Collapse
Affiliation(s)
- Diana
R. Fonseca
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade
de Engenharia, Departamento de Engenharia Metalúrgica e de
Materiais, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro M. Alves
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade
de Engenharia, Departamento de Engenharia Metalúrgica e de
Materiais, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Estrela Neto
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Beatriz Custódio
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS−Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Sofia Guimarães
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Duarte Moura
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade
de Engenharia, Departamento de Engenharia Metalúrgica e de
Materiais, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francesca Annis
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marco Martins
- INL, International
Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
| | - Ana Gomes
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Rúben F. Pereira
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS−Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Paulo Freitas
- INL, International
Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
- INESC-MN,
INESC Microsystems and Nanotechnologies, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
| | - Paula Parreira
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - M. Cristina L. Martins
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS−Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| |
Collapse
|
59
|
Brunzell E, Sigfridsson K, Gedda L, Edwards K, Bergström LM. Investigation of supramolecular structures in various aqueous solutions of an amyloid forming peptide using small-angle X-ray scattering. SOFT MATTER 2024; 20:2272-2279. [PMID: 38353286 DOI: 10.1039/d3sm01172k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Aggregation of peptide molecules into amyloid fibrils is a characteristic feature of several degenerative diseases. However, the details behind amyloid-formation, and other self-assembled peptide aggregates, remain poorly understood. In this study, we have used small-angle X-ray scattering (SAXS), static and dynamic light scattering (SLS and DLS) as well as cryogenic transmission electron microscopy (cryo-TEM) to determine the structural geometry of self-assembled peptide aggregates in various dilute aqueous solutions. Pramlintide was used as a model peptide to assess the aggregation behaviour of an amyloid-forming peptide. The effects of adding sodium chloride (NaCl), sodium thiocyanate (NaSCN), and sodium fluoride (NaF) and the co-solvent dimethyl sulfoxide (DMSO) on the aggregation behaviour were studied. Our scattering data analysis demonstrates that small oligomeric fibrils aggregate to form networks of supramolecular assemblies with fractal dimensions. The choice of anion in small amounts of added salt has a significant impact on the size of the fibrils as well as on the fractal dimensions of supramolecular clusters. In DMSO the fractal dimension decreased with increasing DMSO concentration, indicating the formation of a less compact structure of the supramolecular assemblies.
Collapse
Affiliation(s)
- Ellen Brunzell
- Department of Medicinal Chemistry, Pharmaceutical Physical Chemistry, Uppsala University, Uppsala 751 23, Sweden.
| | - Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Lars Gedda
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 573, Uppsala 751 23, Sweden
| | - Katarina Edwards
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 573, Uppsala 751 23, Sweden
| | - L Magnus Bergström
- Department of Medicinal Chemistry, Pharmaceutical Physical Chemistry, Uppsala University, Uppsala 751 23, Sweden.
| |
Collapse
|
60
|
Kumar S, Sanap SN, Pandey P, Khopade A, Sawant KK. Glucagon: Delivery advancements for hypoglycemia management. Int J Pharm 2024; 652:123785. [PMID: 38224759 DOI: 10.1016/j.ijpharm.2024.123785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
As the 100th anniversary of glucagon's discovery approaches, we reflect on the remarkable journey of understanding its pivotal role in glucose regulation. Advancements in glucagon delivery systems for managing hypoglycemia are unfolding with promise, albeit accompanied by formulation and implementation challenges. Recent developments include non-injectable methods like BAQSIMI® (Nasal glucagon) offers a user-friendly option, but stability, bioavailability, and rapid onset remain formulation hurdles. Closed-loop systems, combining glucagon with insulin, aim to automate glucose control, demanding stable and precise formulations compatible with complex algorithms. However, achieving co-delivery harmony and effective dual-hormone responses poses substantial challenges. Ogluo® and Gvoke HypoPen® are auto-injector pens, a ready-to-use solution that can rapidly control hypoglycemia and eliminate the need for mixing powder and liquid. GlucaGen® Hypokit® and Glucagon Emergency Kits are traditional deliveries that possess complexity during administration and are still widely used in clinical practice. In addition to this advancement, we have covered the recent patents and clinical trials of glucagon delivery. The synergy of patent innovation and clinical validation offers a glimpse into the transformative potential of glucagon delivery yet underscores the intricate path toward widespread adoption and improved diabetes care. Finally, this review will help the formulation scientist, clinicians, healthcare providers, and patient to manage hypoglycemia using glucagon.
Collapse
Affiliation(s)
- Samarth Kumar
- Formulation Research & Development-Non Orals, Sun Pharmaceutical Industries Ltd, Vadodara 390020, Gujrat, India; Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| | - Sachin N Sanap
- Formulation Research & Development-Non Orals, Sun Pharmaceutical Industries Ltd, Vadodara 390020, Gujrat, India
| | - Prachi Pandey
- Krishna School of Pharmacy & Research, KPGU, Vadodara, Gujarat, India
| | - Ajay Khopade
- Formulation Research & Development-Non Orals, Sun Pharmaceutical Industries Ltd, Vadodara 390020, Gujrat, India
| | - Krutika K Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
61
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
62
|
Pranav, Bajpai A, Dwivedi PK, Sivakumar S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: current status and future opportunities. J Mater Chem B 2024; 12:1991-2005. [PMID: 38333942 DOI: 10.1039/d3tb02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein misfolding and its aggregation, known as amyloid aggregates (Aβ), are some of the major causes of more than 20 diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. The process of Aβ formation involves an energy-driven oligomerization of Aβ monomers, leading to polymerization and eventual aggregation into fibrils. Aβ fibrils exhibit multilevel chirality arising from its amino acid residues and the arrangement of folded polypeptide chains; thus, a chirality-driven approach can be utilized for the detection and inhibition of Aβ fibrils. In this regard, chiral nanomaterials have recently opened new possibilities for various biomedical applications owing to their stereoselective interaction with biological systems. Leveraging this chirality-driven approach with chiral nanomaterials against protein-aggregated diseases could yield promising results, particularly in the early detection of Aβ forms and the inhibition of Aβ aggregate formation via specific and strong "chiral-chiral interaction." Despite the advantages, the development of advanced theranostic systems using chiral nanomaterials against protein-aggregated diseases has received limited attention so far because of considerably limited formulations for chiral nanomaterials and lack of information of their chiroptical behavior. This review aims to present the current status of chiral nanomaterials explored for detecting and inhibiting Aβ forms. This review covers the origin of chirality in amyloid fibrils and nanomaterials and different chiral detection methods; furthermore, different chiral nanosystems such as chiral plasmonic nanomaterials, chiral carbon-based nanomaterials, and chiral nanosurfaces, which have been used so far for different therapeutic applications against protein-aggregated diseases, are discussed in detail. The findings from this review may pave the way for the development of novel approaches using chiral nanomaterials to combat diseases resulting from protein misfolding and can further be extended to other disease forms.
Collapse
Affiliation(s)
- Pranav
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Abhishek Bajpai
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Sri Sivakumar
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
- Materials Science Program, Indian Institute of Technology, Kanpur 208016, India
- Centre for Environmental Science and Engineering, India
| |
Collapse
|
63
|
Azimzadeh B, Nicholson LK, Martínez CE. In the presence of the other: How glyphosate and peptide molecules alter the dynamics of sorption on goethite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169264. [PMID: 38092207 DOI: 10.1016/j.scitotenv.2023.169264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The interactions with soil mineral surfaces are among the factors that determine the mobility and bioavailability of organic contaminants and of nutrients present in dissolved organic matter (DOM) in soil and aquatic environments. While most studies focus on high molar mass organic matter fractions (e.g., humic and fulvic acids), very few studies investigate the impact of DOM constituents in competitive sorption. Here we assess the sorption behavior of a heavily used herbicide (i.e., glyphosate) and a component of DOM (i.e., a peptide) at the water/goethite interface, inclusive of potential glyphosate-peptide interactions. We used in-situ ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy to study sorption kinetics and mechanisms of interaction as well as conformational changes to the secondary structure of the peptide. NMR (nuclear magnetic resonance) spectroscopy was used to assess the level of interaction between glyphosate and the peptide and changes to the peptide' secondary structure in solution. For the first time, we illustrate competition for sorption sites results in co-sorption of glyphosate and peptide molecules that affects the extent, kinetics, and mechanism of interaction of each with the surface. In the presence of the peptide, the formation of outer-sphere glyphosate-goethite complexes is favored albeit inner-sphere glyphosate-goethite bonds (i.e., POFe) are still formed. The presence of glyphosate induces secondary structural shifts of the sorbed peptide that maximizes the formation of H-bonds with the goethite surface. However, glyphosate and the peptide do not seem to interact with one another in solution nor at the goethite surface upon sorption. The results of this work highlight potential consequences of competition for sorption sites, for example the transport of organic contaminants and nutrient-rich (i.e., nitrogen) DOM components in relevant environmental systems. Predicting the rate and extent with which organic pollutants are removed from solution by a given solid is also one of the most critical factors for the design of effective sorption systems in engineering applications.
Collapse
Affiliation(s)
- Behrooz Azimzadeh
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
64
|
Kowalski A. Sequence-based prediction of the effects of histones H1 post-translational modifications: impact on the features related to the function. J Biomol Struct Dyn 2024:1-10. [PMID: 38353488 DOI: 10.1080/07391102.2024.2316773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/04/2024] [Indexed: 03/11/2025]
Abstract
Post-translational modifications modulate histones H1 activity but their impact on proteins features was not studied so far. Therefore, this work was intended to answer how the most common modifications, i.e. acetylation, methylation, phosphorylation and ubiquitination, can influence on histones H1 to alter their physicochemical and molecular properties. Investigations were done with the use of sequence-based predictors trained on various protein features. Because a full set of histones H1 modifications is not included in the databases of histone proteins, the survey was performed on the human, animals, plants, fungi and protist sequences selected from UniProtKB/Swiss-Prot database. Quantitative proportions of modifications were similar between the groups of organisms (CV = 0.11) but different within the group (p < 0.05). The effects of modifications were evaluated with the use of mutated sequences obtained through the substitution of modified residue of Lys, Ser and Thr by a neutral residue of the Ala. An advantage of deleterious mutations at the sites of acetylation, methylation and ubiquitination over the sites of phosphorylation (p < 0.05) indicate that this modification have more redundant character. Modifications evoke an increase of protein solubility and stability as well as acceleration of folding kinetics and a weaken of binding affinity. Besides, they also maintain a higher extent of intrinsic structural disorder. The obtained results prove that modifications should be perceived as relevant factors influencing physicochemical features determining molecular properties. Thus, histones H1 functioning is strictly correlated with the status of modifications.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
65
|
Li Q, Tangry V, Allen DP, Seibert KD, Qian KK, Wagner NJ. Surface-mediated spontaneous emulsification of the acylated peptide, semaglutide. Proc Natl Acad Sci U S A 2024; 121:e2305770121. [PMID: 38227645 PMCID: PMC10835113 DOI: 10.1073/pnas.2305770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/19/2023] [Indexed: 01/18/2024] Open
Abstract
Acylated peptides composed of glucagon-like peptide-1 receptor agonists modified with a fatty acid side chain are an important class of therapeutics for type 2 diabetes and obesity but are susceptible to an unusual physical instability in the presence of hydrophobic surfaces, i.e., spontaneous emulsification, also known as ouzo formation in practice. In this work, light scattering, small-angle X-ray scattering, and circular dichroism measurements are used to characterize the physical properties of the semaglutide colloidal phase, including size distribution, shape, secondary structure, internal structure, and internal composition, as a function of solution physico-chemical conditions. The existence and size of the colloids formed are successfully predicted by a classical Rayleigh model, which identifies the parameters controlling their size and formation. Colloid formation is found to be catalyzed by hydrophobic surfaces, and formation rates are modeled as an autocatalytic reaction, enabling the formation of a master curve for various surfaces that elucidates the mechanism. Surfaces differ due to differences in surface wettability, which can be correlated with Hansen solubility parameters. This work provides insights into this unusual colloidal phenomenon and guides the peptide synthesis process and drug product formulation in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical and Biomolecular Engineering, Center for Neutron Science, University of Delaware, Newark, DE19716
| | - Vasudev Tangry
- Department of Chemical and Biomolecular Engineering, Center for Neutron Science, University of Delaware, Newark, DE19716
| | | | | | - Ken K. Qian
- Eli Lilly and Company, Indianapolis, IN46225
| | - Norman J. Wagner
- Department of Chemical and Biomolecular Engineering, Center for Neutron Science, University of Delaware, Newark, DE19716
| |
Collapse
|
66
|
Gamna F, Cochis A, Mojsoska B, Kumar A, Rimondini L, Spriano S. Nano-topography and functionalization with the synthetic peptoid GN2-Npm 9 as a strategy for antibacterial and biocompatible titanium implants. Heliyon 2024; 10:e24246. [PMID: 38293435 PMCID: PMC10825347 DOI: 10.1016/j.heliyon.2024.e24246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
In recent years, antimicrobial peptides (AMPs) have attracted great interest in scientific research, especially for biomedical applications such as drug delivery and orthopedic applications. Since they are readily degradable in the physiological environment, scientific research has recently been trying to make AMPs more stable. Peptoids are synthetic N-substituted glycine oligomers that mimic the structure of peptides. They have a structure that does not allow proteolytic degradation, which makes them more stable while maintaining microbial activity. This structure also brings many advantages to the molecule, such as greater diversity and specificity, making it more suitable for biological applications. For the first time, a synthesized peptoid (GN2-Npm9) was used to functionalize a nanometric chemically pre-treated (CT) titanium surface for bone-contact implant applications. A preliminary characterization of the functionalized surfaces was performed using the contact angle measurements and zeta potential titration curves. These preliminary analyses confirmed the presence of the peptoid and its adsorption on CT. The functionalized surface had a hydrophilic behaviour (contact angle = 30°) but the hydrophobic tryptophan-like residues were also exposed. An electrostatic interaction between the lysine residue of GN2-Npm9 and the surface allowed a chemisorption mechanism. The biological characterization of the CT_GN2-Nmp9 surfaces demonstrated the ability to prevent surface colonization and biofilm formation by the pathogens Escherichia coli and Staphylococcus epidermidis thus showing a broad-range activity. The cytocompatibility was confirmed by human mesenchymal stem cells. Finally, a bacteria-cells co-culture model was applied to demonstrate the selective bioactivity of the CT_GN2-Nmp9 surface that was able to preserve colonizing cells adhered to the device surface from bacterial infection.
Collapse
Affiliation(s)
| | - Andrea Cochis
- Università del Piemonte Orientale UPO, Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Novara, Italy
| | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ajay Kumar
- Università del Piemonte Orientale UPO, Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Novara, Italy
| | - Lia Rimondini
- Università del Piemonte Orientale UPO, Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Novara, Italy
| | | |
Collapse
|
67
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
68
|
Hu C, Zang N, Tam YT, Dizon D, Lee K, Pang J, Torres E, Cui Y, Yen CW, Leung DH. A New Approach for Preparing Stable High-Concentration Peptide Nanoparticle Formulations. Pharmaceuticals (Basel) 2023; 17:15. [PMID: 38276000 PMCID: PMC10821397 DOI: 10.3390/ph17010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The subcutaneous administration of therapeutic peptides would provide significant benefits to patients. However, subcutaneous injections are limited in dosing volume, potentially resulting in high peptide concentrations that can incur significant challenges with solubility limitations, high viscosity, and stability liabilities. Herein, we report on the discovery that low-shear resonant acoustic mixing can be used as a general method to prepare stable nanoparticles of a number of peptides of diverse molecular weights and structures in water without the need for extensive amounts of organic solvents or lipid excipients. This approach avoids the stability issues observed with typical high-shear, high-intensity milling methods. The resultant peptide nanosuspensions exhibit low viscosity even at high concentrations of >100 mg/mL while remaining chemically and physically stable. An example nanosuspension of cyclosporine nanoparticles was dosed in rats via a subcutaneous injection and exhibited sustained release behavior. This suggests that peptide nanosuspension formulations can be one approach to overcome the challenges with high-concentration peptide formulations.
Collapse
Affiliation(s)
- Chloe Hu
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| | - Nanzhi Zang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| | - Yu Tong Tam
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 940802, USA;
| | - Desmond Dizon
- Device Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Kaylee Lee
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (K.L.); (J.P.); (Y.C.)
| | - Jodie Pang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (K.L.); (J.P.); (Y.C.)
| | - Elizabeth Torres
- Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Yusi Cui
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (K.L.); (J.P.); (Y.C.)
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| | - Dennis H. Leung
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| |
Collapse
|
69
|
Rahban M, Ahmad F, Piatyszek MA, Haertlé T, Saso L, Saboury AA. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Adv 2023; 13:35947-35963. [PMID: 38090079 PMCID: PMC10711991 DOI: 10.1039/d3ra06476j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 04/26/2024] Open
Abstract
Protein-based therapeutics have revolutionized the pharmaceutical industry and become vital components in the development of future therapeutics. They offer several advantages over traditional small molecule drugs, including high affinity, potency and specificity, while demonstrating low toxicity and minimal adverse effects. However, the development and manufacturing processes of protein-based therapeutics presents challenges related to protein folding, purification, stability and immunogenicity that should be addressed. These proteins, like other biological molecules, are prone to chemical and physical instabilities. The stability of protein-based drugs throughout the entire manufacturing, storage and delivery process is essential. The occurrence of structural instability resulting from misfolding, unfolding, and modifications, as well as aggregation, poses a significant risk to the efficacy of these drugs, overshadowing their promising attributes. Gaining insight into structural alterations caused by aggregation and their impact on immunogenicity is vital for the advancement and refinement of protein therapeutics. Hence, in this review, we have discussed some features of protein aggregation during production, formulation and storage as well as stabilization strategies in protein engineering and computational methods to prevent aggregation.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard New Delhi-110062 India
| | | | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University Rome Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran Tehran 1417614335 Iran +9821 66404680 +9821 66956984
| |
Collapse
|
70
|
Hanaee-Ahvaz H, Cserjan-Puschmann M, Mayer F, Tauer C, Albrecht B, Furtmüller PG, Wiltschi B, Hahn R, Striedner G. Antibody fragments functionalized with non-canonical amino acids preserving structure and functionality - A door opener for new biological and therapeutic applications. Heliyon 2023; 9:e22463. [PMID: 38046162 PMCID: PMC10686840 DOI: 10.1016/j.heliyon.2023.e22463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like μ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.
Collapse
Affiliation(s)
- Hana Hanaee-Ahvaz
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Florian Mayer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Biopharma Austria, Process Science, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1121, Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Birgit Wiltschi
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
71
|
Oeller M, Kang RJD, Bolt HL, Gomes Dos Santos AL, Weinmann AL, Nikitidis A, Zlatoidsky P, Su W, Czechtizky W, De Maria L, Sormanni P, Vendruscolo M. Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids. Nat Commun 2023; 14:7475. [PMID: 37978172 PMCID: PMC10656490 DOI: 10.1038/s41467-023-42940-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Non-natural amino acids are increasingly used as building blocks in the development of peptide-based drugs as they expand the available chemical space to tailor function, half-life and other key properties. However, while the chemical space of modified amino acids (mAAs) such as residues containing post-translational modifications (PTMs) is potentially vast, experimental methods for measuring the developability properties of mAA-containing peptides are expensive and time consuming. To facilitate developability programs through computational methods, we present CamSol-PTM, a method that enables the fast and reliable sequence-based prediction of the intrinsic solubility of mAA-containing peptides in aqueous solution at room temperature. From a computational screening of 50,000 mAA-containing variants of three peptides, we selected five different small-size mAAs for a total number of 37 peptide variants for experimental validation. We demonstrate the accuracy of the predictions by comparing the calculated and experimental solubility values. Our results indicate that the computational screening of mAA-containing peptides can extend by over four orders of magnitude the ability to explore the solubility chemical space of peptides and confirm that our method can accurately assess the solubility of peptides containing mAAs. This method is available as a web server at https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolptm .
Collapse
Affiliation(s)
- Marc Oeller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ryan J D Kang
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Bolt
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ana L Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Annika Langborg Weinmann
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Antonios Nikitidis
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pavol Zlatoidsky
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Wu Su
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leonardo De Maria
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
72
|
Rauch-Wirth L, Renner A, Kaygisiz K, Weil T, Zimmermann L, Rodriguez-Alfonso AA, Schütz D, Wiese S, Ständker L, Weil T, Schmiedel D, Münch J. Optimized peptide nanofibrils as efficient transduction enhancers for in vitro and ex vivo gene transfer. Front Immunol 2023; 14:1270243. [PMID: 38022685 PMCID: PMC10666768 DOI: 10.3389/fimmu.2023.1270243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a groundbreaking immunotherapy for cancer. However, the intricate and costly manufacturing process remains a hurdle. Improving the transduction rate is a potential avenue to cut down costs and boost therapeutic efficiency. Peptide nanofibrils (PNFs) serve as one such class of transduction enhancers. PNFs bind to negatively charged virions, facilitating their active engagement by cellular protrusions, which enhances virion attachment to cells, leading to increased cellular entry and gene transfer rates. While first-generation PNFs had issues with aggregate formation and potential immunogenicity, our study utilized in silico screening to identify short, endogenous, and non-immunogenic peptides capable of enhancing transduction. This led to the discovery of an 8-mer peptide, RM-8, which forms PNFs that effectively boost T cell transduction rates by various retroviral vectors. A subsequent structure-activity relationship (SAR) analysis refined RM-8, resulting in the D4 derivative. D4 peptide is stable and assembles into smaller PNFs, avoiding large aggregate formation, and demonstrates superior transduction rates in primary T and NK cells. In essence, D4 PNFs present an economical and straightforward nanotechnological tool, ideal for refining ex vivo gene transfer in CAR-T cell production and potentially other advanced therapeutic applications.
Collapse
Affiliation(s)
- Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Renner
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Zimmermann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Armando A. Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dominik Schmiedel
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
73
|
Zürcher D, Caduff S, Aurand L, Capasso Palmiero U, Wuchner K, Arosio P. Comparison of the Protective Effect of Polysorbates, Poloxamer and Brij on Antibody Stability Against Different Interfaces. J Pharm Sci 2023; 112:2853-2862. [PMID: 37295604 DOI: 10.1016/j.xphs.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Therapeutic proteins and antibodies are exposed to a variety of interfaces during their lifecycle, which can compromise their stability. Formulations, including surfactants, must be carefully optimized to improve interfacial stability against all types of surfaces. Here we apply a nanoparticle-based approach to evaluate the instability of four antibody drugs against different solid-liquid interfaces characterized by different degrees of hydrophobicity. We considered a model hydrophobic material as well as cycloolefin-copolymer (COC) and cellulose, which represent some of the common solid-liquid interfaces encountered during drug production, storage, and delivery. We assess the protective effect of polysorbate 20, polysorbate 80, Poloxamer 188 and Brij 35 in our assay and in a traditional agitation study. While all nonionic surfactants stabilize antibodies against the air-water interface, none of them can protect against hydrophilic charged cellulose. Polysorbates and Brij increase antibody stability in the presence of COC and the model hydrophobic interface, although to a lesser extent compared to the air-water interface, while Poloxamer 188 has a negligible stabilizing effect against these interfaces. These results highlight the challenge of fully protecting antibodies against all types of solid-liquid interfaces with traditional surfactants. In this context, our high-throughput nanoparticle-based approach can complement traditional shaking assays and assist in formulation design to ensure protein stability not only at air-water interfaces, but also at relevant solid-liquid interfaces encountered during the product lifecycle.
Collapse
Affiliation(s)
- Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Severin Caduff
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Laetitia Aurand
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | - Klaus Wuchner
- Janssen R&D, BTDS Analytical Development, Schaffhausen, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
74
|
Perez R, Li X, Giannakoulias S, Petersson EJ. AggBERT: Best in Class Prediction of Hexapeptide Amyloidogenesis with a Semi-Supervised ProtBERT Model. J Chem Inf Model 2023; 63:5727-5733. [PMID: 37552230 PMCID: PMC10777593 DOI: 10.1021/acs.jcim.3c00817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The prediction of peptide amyloidogenesis is a challenging problem in the field of protein folding. Large language models, such as the ProtBERT model, have recently emerged as powerful tools in analyzing protein sequences for applications, such as predicting protein structure and function. In this article, we describe the use of a semisupervised and fine-tuned ProtBERT model to predict peptide amyloidogenesis from sequences alone. Our approach, which we call AggBERT, achieved state-of-the-art performance, demonstrating the potential for large language models to improve the accuracy and speed of amyloid fibril prediction over simple heuristics or structure-based approaches. This work highlights the transformative potential of machine learning and large language models in the fields of chemical biology and biomedicine.
Collapse
Affiliation(s)
- Ryann Perez
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinning Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
75
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
76
|
Amarh MA, Laryea MK, Borquaye LS. De novo peptides as potential antimicrobial agents. Heliyon 2023; 9:e19641. [PMID: 37809653 PMCID: PMC10558864 DOI: 10.1016/j.heliyon.2023.e19641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
The phenomenon of antimicrobial resistance threatens our ability to treat common infections. The clinical pipeline for new antimicrobials is pretty much dry and hence, there is a need for the development of new antimicrobial agents with low toxicities to help fight resistant microorganisms. This work aimed to design antimicrobial peptides with low toxicities using a database filtering technology and evaluate their bioactivities. The physicochemical properties of the designed peptides were explored with molecular dynamics (MD) simulations. Microbroth dilution and hemolytic assays were used to assess the peptides' antimicrobial activity and toxicity. The activity of combinations of the peptides and some standard antibiotics was tested by the checkerboard method. In general, the designed peptides had a charge of +2, chain length of 13, and hydrophobicity of 61%. The predicted secondary structures of the peptides were either extended conformations or alpha-helices, and these structures were found to fluctuate during the MD simulations, where coils, bends, and helices dominated. , of the peptides, BRG003, BRG004 and BRG002 had the greatest aggregation propensities, whereas BRG001, BRG005, and BRG006 exhibited lower aggregation propensities. The minimum inhibitory concentration (MIC) of the peptides ranged from 0.015 to >1.879 μM, with BRGP-001 exhibiting high activity against MRSA with an MIC of 15 nM. BRGP-005 and BRGP-006 exhibited synergistic effects against Escherichia coliR when used in combination with erythromycin. At the minimum hemolytic concentration, the percentage of lysed erythrocytes was lower for all the peptides in comparison to the reference peptide, indicating low hemolytic activity. The study revealed the importance of peptide self-association in the antimicrobial activity of the peptides. These peptides provide a basis for the design of potent antimicrobial peptides that can further be developed for use in antimicrobial therapy.
Collapse
Affiliation(s)
- Margaret Amerley Amarh
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
77
|
Bana AA, Sajeev N, Halder S, Abbas Masi H, Patel S, Mehta P. Comparative stability study and aggregate analysis of Bevacizumab marketed formulations using advanced analytical techniques. Heliyon 2023; 9:e19478. [PMID: 37810070 PMCID: PMC10558615 DOI: 10.1016/j.heliyon.2023.e19478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Bevacizumab (Bvz) is the most preferred recombinant humanized monoclonal antibody in biosimilar development due to its prominence as a standard treatment in the oncology space. Therapeutic monoclonal antibodies are typically more complex and unlikely to produce a replica. As a result, regulatory agencies allow approval of biosimilars that differ structurally and functionally from their reference product, but these differences should not have any clinical significance. To identify these significant discrepancies, it is essential to perform a thorough characterization of critical product attributes both in real-time and after storage until the product's expiration. In the present study, two Bvz biosimilar brands (Bio-1 and Bio-2) marketed in India were evaluated and compared with the reference product Avastin® to assess their degree of similarity. A comprehensive physicochemical characterization of biosimilars and reference product was performed using orthogonal techniques including LC-ESI-QTOF, MALDI-TOF, FTIR-ATR, iCIEF, rCE, nrCE, UV280, and RP-HPLC. Furthermore, Bvz formulations under study were subjected to various stress conditions of thermal (elevated temperature 50 ± 2 °C), chemical (acidic pH 3.0 ± 0.2, neutral pH 7.0 ± 0.2, and basic pH 10.0 ± 0.2), and mechanical (agitation 200 rpm) for comparative stability evaluation. Any alteration in the secondary structure of the native protein was detected and quantified using far-UV circular dichroism (CD), indicating an average of 15% and 11% loss in native antiparallel β-sheet conformation respectively in Bio-1 and Bio-2 upon exposure to elevated temperature and high pH. Additionally, covalent or non-covalent aggregates formed as a function of elevated temperature and agitation were quantified using SEC-MALS.
Collapse
Affiliation(s)
- Arpit Arunkumar Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nithin Sajeev
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Sabyasachi Halder
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Haidar Abbas Masi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, 382011, Gujarat, India
| | - Shikha Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
78
|
Maurer J, Grouzmann E, Eugster PJ. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123904. [PMID: 37832388 DOI: 10.1016/j.jchromb.2023.123904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
79
|
Kuncewicz K, Bojko M, Battin C, Karczyńska A, Sieradzan A, Sikorska E, Węgrzyn K, Wojciechowicz K, Wardowska A, Steinberger P, Rodziewicz-Motowidło S, Spodzieja M. BTLA-derived peptides as inhibitors of BTLA/HVEM complex formation - design, synthesis and biological evaluation. Biomed Pharmacother 2023; 165:115161. [PMID: 37473684 DOI: 10.1016/j.biopha.2023.115161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoints can be divided into co-stimulatory and co-inhibitory molecules that regulate the activation and effector functions of T cells. The co-inhibitory pathways mediated by ICPs are used by cancer cells to escape from immune surveillance, and therefore the blockade of these receptor/ligand interactions is one of the strategies used in the treatment of cancer. The two main pathways currently under investigation are CTLA-4/CD80/CD86 and PD-1/PD-L1, and the monoclonal Abs targeting them have shown potent immunomodulatory effects and activity in clinical environments. Another interesting target in cancer treatment is the BTLA/HVEM complex. Binding of BTLA protein on T cells to HVEM on cancer cells leads to inhibition of T cell proliferation and cytokine production. In the presented work, we focused on blocking the HVEM protein using BTLA-derived peptides. Based on the crystal structure of the BTLA/HVEM complex and MM/GBSA analysis performed here, we designed and synthesized peptides, specifically fragments of BTLA protein. We subsequently checked the inhibitory capacities of these compounds using ELISA and a cellular reporter platform. Two of these peptides, namely BTLA(35-43) and BTLA(33-64)C58Abu displayed the most promising properties, and we therefore performed further studies to evaluate their affinity to HVEM protein, their stability in plasma and their effect on viability of human PBMCs. In addition, the 3D structure for the peptide BTLA(33-64)C58Abu was determined using NMR. Obtained data confirmed that the BTLA-derived peptides could be the basis for future drugs and their immunomodulatory potential merits further examination.
Collapse
Affiliation(s)
- Katarzyna Kuncewicz
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Bojko
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Claire Battin
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, Lazarettgasse 19, 1090 Vienna, Austria
| | - Agnieszka Karczyńska
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Sieradzan
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Emilia Sikorska
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Węgrzyn
- University of Gdańsk, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Karolina Wojciechowicz
- Medical University of Gdańsk, Department of Physiopathology, Dębinki 7, 80-210 Gdańsk, Poland
| | - Anna Wardowska
- Medical University of Gdańsk, Department of Physiopathology, Dębinki 7, 80-210 Gdańsk, Poland
| | - Peter Steinberger
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, Lazarettgasse 19, 1090 Vienna, Austria
| | | | - Marta Spodzieja
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
80
|
Chi-Uluac LA, Asgharpour S, Blanco-Rodríguez RG, Martínez-Archundia M. Atomistic Molecular Insights into Angiotensin-(1-7) Interpeptide Interactions. J Chem Inf Model 2023; 63:5331-5340. [PMID: 37589289 DOI: 10.1021/acs.jcim.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Angiotensin-(1-7) is an endogenous peptide known for its vasoprotective, antioxidant, and anti-inflammatory effects, making it a promising therapeutic candidate for various clinical conditions. However, the peptide exhibits pH-dependent physical instability in aqueous solutions, and a comprehensive atomistic study elucidating this behavior and its implications is currently lacking. Therefore, we performed all-atom molecular dynamics simulations to investigate the early formation of angiotensin-(1-7) oligomeric aggregates under different conditions: acidic and neutral pH-like conditions, physiological and high ionic strength, and high and low peptide concentrations. Our results are as follows: (1) under acidic pH-like conditions, angiotensin-(1-7) showed minimal clustering, (2) under neutral pH-like conditions, the peptides aggregated into a single cluster, consistent with the reported physical instability, and (3) increasing salt concentration under acidic pH-like conditions resulted in aggregation similar to that observed under neutral pH-like conditions. These results suggest that a combination of salt concentration and pH conditions can modulate angiotensin-(1-7) aggregation. Our protocol (molecular dynamics + cluster analysis + amino acid interaction map analysis) is general and could be applied to other peptides to study interpeptide interaction mechanisms.
Collapse
Affiliation(s)
- Luz América Chi-Uluac
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho 83844-1103, United States
| | - Somayeh Asgharpour
- IAS-5/INM-9, Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Rodolfo Guadalupe Blanco-Rodríguez
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho 83844-1103, United States
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho 83844-1103, United States
| | - Marlet Martínez-Archundia
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico
| |
Collapse
|
81
|
Kaygisiz K, Rauch-Wirth L, Dutta A, Yu X, Nagata Y, Bereau T, Münch J, Synatschke CV, Weil T. Data-mining unveils structure-property-activity correlation of viral infectivity enhancing self-assembling peptides. Nat Commun 2023; 14:5121. [PMID: 37612273 PMCID: PMC10447463 DOI: 10.1038/s41467-023-40663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Gene therapy via retroviral vectors holds great promise for treating a variety of serious diseases. It requires the use of additives to boost infectivity. Amyloid-like peptide nanofibers (PNFs) were shown to efficiently enhance retroviral gene transfer. However, the underlying mode of action of these peptides remains largely unknown. Data-mining is an efficient method to systematically study structure-function relationship and unveil patterns in a database. This data-mining study elucidates the multi-scale structure-property-activity relationship of transduction enhancing peptides for retroviral gene transfer. In contrast to previous reports, we find that not the amyloid fibrils themselves, but rather µm-sized β-sheet rich aggregates enhance infectivity. Specifically, microscopic aggregation of β-sheet rich amyloid structures with a hydrophobic surface pattern and positive surface charge are identified as key material properties. We validate the reliability of the amphiphilic sequence pattern and the general applicability of the key properties by rationally creating new active sequences and identifying short amyloidal peptides from various pathogenic and functional origin. Data-mining-even for small datasets-enables the development of new efficient retroviral transduction enhancers and provides important insights into the diverse bioactivity of the functional material class of amyloids.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Arghya Dutta
- Department Polymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Xiaoqing Yu
- Department Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Department Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tristan Bereau
- Department Polymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
82
|
Trejos M, Aristizabal Y, Aragón-Muriel A, Oñate-Garzón J, Liscano Y. Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). Int J Mol Sci 2023; 24:13091. [PMID: 37685896 PMCID: PMC10487549 DOI: 10.3390/ijms241713091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The growing challenge of chronic wounds and antibiotic resistance has spotlighted the potential of dual-function peptides (antimicrobial and wound healing) as novel therapeutic strategies. The investigation aimed to characterize and correlate in silico the physicochemical attributes of these peptides with their biological activity. We sourced a dataset of 207 such peptides from various peptide databases, followed by a detailed analysis of their physicochemical properties using bioinformatic tools. Utilizing statistical tools like clustering, correlation, and principal component analysis (PCA), patterns and relationships were discerned among these properties. Furthermore, we analyzed the peptides' functional domains for insights into their potential mechanisms of action. Our findings spotlight peptides in Cluster 2 as efficacious in wound healing, whereas Cluster 1 peptides exhibited pronounced antimicrobial potential. In our study, we identified specific amino acid patterns and peptide families associated with their biological activities, such as the cecropin antimicrobial domain. Additionally, we found the presence of polar amino acids like arginine, cysteine, and lysine, as well as apolar amino acids like glycine, isoleucine, and leucine. These characteristics are crucial for interactions with bacterial membranes and receptors involved in migration, proliferation, angiogenesis, and immunomodulation. While this study provides a groundwork for therapeutic development, translating these findings into practical applications necessitates additional experimental and clinical research.
Collapse
Affiliation(s)
- María Trejos
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Yesid Aristizabal
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (J.O.-G.)
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
- Grupo de Investigación e Innovación en Biotecnología (BITI), Tecnoparque Nodo Valle, Servicio Nacional de Aprendizaje (SENA), Cali 760044, Colombia
| | - José Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (J.O.-G.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
83
|
Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 2023; 199:114904. [PMID: 37263542 PMCID: PMC10526705 DOI: 10.1016/j.addr.2023.114904] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The global pharmaceutical market has recently shifted its focus from small molecule drugs to peptide, protein, and nucleic acid drugs, which now comprise a majority of the top-selling pharmaceutical products on the market. Although these biologics often offer improved drug specificity, new mechanisms of action, and/or enhanced efficacy, they also present new challenges, including an increased potential for degradation and a need for frequent administration via more invasive administration routes, which can limit patient access, patient adherence, and ultimately the clinical impact of these drugs. Controlled-release systems have the potential to mitigate these challenges by offering superior control over in vivo drug levels, localizing these drugs to tissues of interest (e.g., tumors), and reducing administration frequency. Unfortunately, adapting controlled-release devices to release biologics has proven difficult due to the poor stability of biologics. In this review, we summarize the current state of controlled-release peptides and proteins, discuss existing techniques used to stabilize these drugs through encapsulation, storage, and in vivo release, and provide perspective on the most promising opportunities for the clinical translation of controlled-release peptides and proteins.
Collapse
Affiliation(s)
- Miusi Shi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
84
|
Boaro A, Ageitos L, Torres MDT, Blasco EB, Oztekin S, de la Fuente-Nunez C. Structure-function-guided design of synthetic peptides with anti-infective activity derived from wasp venom. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101459. [PMID: 38239869 PMCID: PMC10795512 DOI: 10.1016/j.xcrp.2023.101459] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Antimicrobial peptides (AMPs) derived from natural toxins and venoms offer a promising alternative source of antibiotics. Here, through structure-function-guided design, we convert two natural AMPs derived from the venom of the solitary eumenine wasp Eumenes micado into α-helical AMPs with reduced toxicity that kill Gram-negative bacteria in vitro and in a preclinical mouse model. To identify the sequence determinants conferring antimicrobial activity, an alanine scan screen and strategic single lysine substitutions are made to the amino acid sequence of these natural peptides. These efforts yield a total of 34 synthetic derivatives, including alanine substituted and lysine-substituted sequences with stabilized α-helical structures and increased net positive charge. The resulting lead synthetic peptides kill the Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa (PAO1 and PA14) by rapidly permeabilizing both their outer and cytoplasmic membranes, exhibit anti-infective efficacy in a mouse model by reducing bacterial loads by up to three orders of magnitude, and do not readily select for bacterial resistance.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
- These authors contributed equally
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15008 A Coruña, Spain
- These authors contributed equally
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esther Broset Blasco
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebahat Oztekin
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead contact
| |
Collapse
|
85
|
Martinez Morales M, van der Walle CF, Derrick JP. Modulation of the Fibrillation Kinetics and Morphology of a Therapeutic Peptide by Cucurbit[7]uril. Mol Pharm 2023. [PMID: 37327060 DOI: 10.1021/acs.molpharmaceut.3c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrillation is a challenge commonly encountered in the formulation and development of therapeutic peptides. Cucurbit[7]urils (CB[7]), a group of water soluble macrocycles, have been reported to suppress fibrillation in insulin and human calcitonin through association with Phe and Tyr residues which drive fibril formation. Here, we report the effect of CB[7] on the fibrillation behavior of the HIV fusion inhibitor enfuvirtide (ENF) that contains N-terminal Tyr and C-terminal Phe residues. Thioflavin T fluorescence, CD spectroscopy, and transmission electron microscopy were used to monitor fibrillation behavior. Fibrillation onset showed a strong pH dependency, with pH 6.5 identified as the condition most suitable to monitor the effects of CB[7]. Binding of CB[7] to wild-type ENF was measured by isothermal titration calorimetry and was consistent with a single site (Ka = 2.4 × 105 M-1). A weaker interaction (Ka = 2.8 × 103 M-1) was observed for an ENF mutant with the C-terminal Phe substituted for Ala (ENFm), suggesting that Phe was the specific site for CB[7] recognition. The onset of ENF fibrillation onset was delayed, rather than fully suppressed, in the presence of CB[7]. The ENFm mutant showed a greater delay in fibrillation onset but with no observable effect on fibrillation kinetics in the presence of CB[7]. Interestingly, ENF/CB[7] and ENFm fibrils exhibited comparable morphologies, differing from those observed for ENF alone. The results indicate that CB[7] is capable of modulating fibrillation onset and the resulting ENF fibrils by specifically binding to the C-terminal Phe residue. The work reinforces the potential of CB[7] as an inhibitor of fibrillation and highlights its role in determining fibril morphologies.
Collapse
Affiliation(s)
- Marcello Martinez Morales
- Dosage Form Design & Development, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| | | | - Jeremy P Derrick
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
86
|
Xie C, Rashed F, Sasaki Y, Khan M, Qi J, Kubo Y, Matsumoto Y, Sawada S, Sasaki Y, Ono T, Ikeda T, Akiyoshi K, Aoki K. Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model. Int J Mol Sci 2023; 24:ijms24119751. [PMID: 37298702 DOI: 10.3390/ijms24119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The receptor activator of NF-κB ligand (RANKL)-binding peptide is known to accelerate bone morphogenetic protein (BMP)-2-induced bone formation. Cholesterol-bearing pullulan (CHP)-OA nanogel-crosslinked PEG gel (CHP-OA nanogel-hydrogel) was shown to release the RANKL-binding peptide sustainably; however, an appropriate scaffold for peptide-accelerated bone formation is not determined yet. This study compares the osteoconductivity of CHP-OA hydrogel and another CHP nanogel, CHP-A nanogel-crosslinked PEG gel (CHP-A nanogel-hydrogel), in the bone formation induced by BMP-2 and the peptide. A calvarial defect model was performed in 5-week-old male mice, and scaffolds were placed in the defect. In vivo μCT was performed every week. Radiological and histological analyses after 4 weeks of scaffold placement revealed that the calcified bone area and the bone formation activity at the defect site in the CHP-OA hydrogel were significantly lower than those in the CHP-A hydrogel when the scaffolds were impregnated with both BMP-2 and the RANKL-binding peptide. The amount of induced bone was similar in both CHP-A and CHP-OA hydrogels when impregnated with BMP-2 alone. In conclusion, CHP-A hydrogel could be an appropriate scaffold compared to the CHP-OA hydrogel when the local bone formation was induced by the combination of RANKL-binding peptide and BMP-2, but not by BMP-2 alone.
Collapse
Affiliation(s)
- Cangyou Xie
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Fatma Rashed
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Oral Biology, Faculty of Dentistry, Damanhour University, Damanhour 22511, Egypt
| | - Yosuke Sasaki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Jia Qi
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yuri Kubo
- Department of AI Technology Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yoshiro Matsumoto
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
87
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
88
|
Mazzotta GM, Ceccato N, Conte C. Synucleinopathies Take Their Toll: Are TLRs a Way to Go? Cells 2023; 12:cells12091231. [PMID: 37174631 PMCID: PMC10177040 DOI: 10.3390/cells12091231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nadia Ceccato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
89
|
Lata M, Telang V, Gupta P, Pant G, Kalyan M, Arockiaraj J, Pasupuleti M. Evolutionary and in silico guided development of novel peptide analogues for antibacterial activity against ESKAPE pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100183. [PMID: 37032813 PMCID: PMC10073642 DOI: 10.1016/j.crmicr.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
According to WHO, to combat the resistant strains, new effective anti-microbial agents are needed on an urgent basis and global researchers should focus their efforts and discovery programs on developing them against antibiotic-resistant pathogens or priority pathogens like ESKAPE. In this context, Cationic antimicrobial peptides (AMPs) are being explored extensively as promising next-generation antimicrobials due to their broad range, fast kinetics and multifunctional role. Despite recent advances, it is still a daunting challenge to identify and design a potent AMP with no cytotoxicity, but with broad specific antimicrobial activity, stability and efficacy under in vivo conditions in a cost-effective and robust manner. In this work, as a proof of concept, we designed novel potent AMPs using artificial intelligence based in silico programs. Shortlisted peptide sequences were synthesized using the fmoc chemistry approach, assessed their antimicrobial activity, cell selectivity, mode of action and in vivo efficacy using a series of experiments. The synthesized peptide analogues demonstrated their antimicrobial activity (MIC in the range of 2.5-80 μM) against bacteria. The identified potential lead molecules showed antibacterial activity in physiological conditions with no signs of cytotoxicity. We further tested the antimicrobial activity of peptide analogues for treating wounds infected with Pseudomonas aeruginosa in the mice burn wound model. In drug-development programs, the identification of lead antimicrobial agents is always challenging and involves screening a large number of molecules which is time-consuming and expensive. This work demonstrates the utility of artificial intelligence based in silico analysis programs in discovering novel antimicrobial agents in an economical, robust way.
Collapse
Affiliation(s)
- Manjul Lata
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vrushti Telang
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Pooja Gupta
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Mitra Kalyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
90
|
Vreeke GJC, Meijers MGJ, Vincken JP, Wierenga PA. Towards absolute quantification of protein genetic variants in Pisum sativum extracts. Anal Biochem 2023; 665:115048. [PMID: 36657509 DOI: 10.1016/j.ab.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
In recent years, several studies have used proteomics approaches to characterize genetic variant profiles of agricultural raw materials. In such studies, the challenge is the quantification of the individual protein variants. In this study a novel UPLC-PDA-MS method with absolute and label-free UV-based peptide quantification was applied to quantify the genetic variants of legumin, vicilin and albumins in pea extracts. The aim was to investigate the applicability of this method and to identify challenges in determining protein concentration from the measured peptide concentrations. Analysis of the protein mass balance showed significant losses of proteins in extraction (37%) and of peptides in further sample preparation (69%). The challenge in calculating the extractable individual protein concentrations was how to deal with these insoluble peptides. The quantification approach using average amino acid concentrations in each position of the sequence showed most reproducible results and allowed comparison of the genetic protein composition of 8 different cultivars. The extractable protein composition (μM/μM) was remarkably similar for all cultivar extracts and consisted of legumins A1 (12.8 ± 1.2%), A2 (1.1 ± 0.4%), B (9.9 ± 1.6%), J (7.5 ± 1.0%) and K (10.3 ± 2.1%), vicilin (15.2 ± 1.7%), provicilin (15.7 ± 2.5%), convicilin (9.8 ± 0.8%), albumin A1 (7.4 ± 2.0%), albumin 2 (10.0 ± 1.5%) and protease inhibitor (0.4 ± 0.4%).
Collapse
Affiliation(s)
- Gijs J C Vreeke
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Maud G J Meijers
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Peter A Wierenga
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
91
|
Rajan R, Matsumura K. Design of self-assembled glycopolymeric zwitterionic micelles as removable protein stabilizing agents. NANOSCALE ADVANCES 2023; 5:1767-1775. [PMID: 36926568 PMCID: PMC10012880 DOI: 10.1039/d3na00002h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 06/15/2023]
Abstract
Developing stabilizers that protect proteins from denaturation under stress, and are easy to remove from solutions, is a challenge in protein therapeutics. In this study, micelles made of trehalose, a zwitterionic polymer (poly-sulfobetaine; poly-SPB), and polycaprolactone (PCL) were synthesized by a one-pot reversible addition-fragmentation chain-transfer (RAFT) polymerization reaction. The micelles protect lactate dehydrogenase (LDH) and human insulin from denaturation due to stresses like thermal incubation and freezing, and help them retain higher-order structures. Importantly, the protected proteins are readily isolated from the micelles by ultracentrifugation, with over 90% recovery, and almost all enzymatic activity is retained. This suggests the great potential of poly-SPB-based micelles for use in applications requiring protection and removal as required. The micelles may also be used to effectively stabilize protein-based vaccines and drugs.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology 1-1 Asahidai Nomi Ishikawa 923-1292 Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology 1-1 Asahidai Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
92
|
Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023; 15:pharmaceutics15030935. [PMID: 36986796 PMCID: PMC10056213 DOI: 10.3390/pharmaceutics15030935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past few decades, there has been a tremendous increase in the utilization of therapeutic peptides. Therapeutic peptides are usually administered via the parenteral route, requiring an aqueous formulation. Unfortunately, peptides are often unstable in aqueous solutions, affecting stability and bioactivity. Although a stable and dry formulation for reconstitution might be designed, from a pharmaco-economic and practical convenience point of view, a peptide formulation in an aqueous liquid form is preferred. Designing formulation strategies that optimize peptide stability may improve bioavailability and increase therapeutic efficacy. This literature review provides an overview of various degradation pathways and formulation strategies to stabilize therapeutic peptides in aqueous solutions. First, we introduce the major peptide stability issues in liquid formulations and the degradation mechanisms. Then, we present a variety of known strategies to inhibit or slow down peptide degradation. Overall, the most practical approaches to peptide stabilization are pH optimization and selecting the appropriate type of buffer. Other practical strategies to reduce peptide degradation rates in solution are the application of co-solvency, air exclusion, viscosity enhancement, PEGylation, and using polyol excipients.
Collapse
|
93
|
Pérez-Robles R, Salmerón-García A, Hermosilla J, Torrente-López A, Clemente-Bautista S, Jiménez-Lozano I, Cabañas-Poy MJ, Cabeza J, Navas N. Comprehensive physicochemical characterization of a peptide-based medicine: Teduglutide (Revestive®) structural description and stress testing. Eur J Pharm Biopharm 2023; 184:103-115. [PMID: 36669672 DOI: 10.1016/j.ejpb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Teduglutide (Revestive®) is a glucagon-like peptide-2 analogue used for the treatment of short bowel syndrome, a rare life-threatening condition in which the amount of functional gut is too short to enable proper absorption of nutrients and fluids. During handling prior to administration to the patient in hospital, it is possible that peptide-based medicines may be exposed to environmental stress conditions that could affect their quality. It is therefore essential to carry out stress testing studies to evaluate how such medicines respond to these stresses. For this reason, in this paper we present a strategy for a comprehensive analytical characterization of a peptide and a stress testing study in which it was subjected to various stress conditions: heating at 40 °C and 60 °C, light exposure and shaking. Several complementary analytical techniques were used throughout this study: Far UV circular dichroism, intrinsic protein fluorescence spectroscopy, dynamic light scattering, size-exclusion chromatography and intact and peptide mapping reverse-phase chromatography coupled to mass spectrometry. To the best of our knowledge, this is the first study to offer an in-depth description of the chemical structure of teduglutide peptide and its physicochemical characteristics after stress stimuli were applied to the reconstituted medicine Revestive®.
Collapse
Affiliation(s)
- Raquel Pérez-Robles
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain; Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero, Granada, Spain
| | - Antonio Salmerón-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | - Jesus Hermosilla
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
| | - Anabel Torrente-López
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
| | | | - Inés Jiménez-Lozano
- Maternal and Child Pharmacy Service, Vall d'Hebron Hospital, Pharmacy, Barcelona, Spain
| | | | - Jose Cabeza
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | - Natalia Navas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain.
| |
Collapse
|
94
|
Ferapontov A, Omer M, Baudrexel I, Nielsen JS, Dupont DM, Juul-Madsen K, Steen P, Eklund AS, Thiel S, Vorup-Jensen T, Jungmann R, Kjems J, Degn SE. Antigen footprint governs activation of the B cell receptor. Nat Commun 2023; 14:976. [PMID: 36813795 PMCID: PMC9947222 DOI: 10.1038/s41467-023-36672-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.
Collapse
Affiliation(s)
- Alexey Ferapontov
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | - Marjan Omer
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Isabelle Baudrexel
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jesper Sejrup Nielsen
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel Miotto Dupont
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Philipp Steen
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Alexandra S Eklund
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | | | - Ralf Jungmann
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Jørgen Kjems
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark. .,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
95
|
Moral R, Paul S. Influence of salt and temperature on the self-assembly of cyclic peptides in water: a molecular dynamics study. Phys Chem Chem Phys 2023; 25:5406-5422. [PMID: 36723368 DOI: 10.1039/d2cp05160e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is found in the literature that cyclic peptides (CPs) are able to self-assemble in water to form cyclic peptide nanotubes (CPNTs) and are used extensively in the field of nanotechnology. Several factors influence the formation and stability of these nanotubes in water. However, an extensive study of the contribution of several important factors is still lacking. The purpose of this study is to explore the effect of temperature and salt (NaCl) on the association tendency of CPs. Furthermore, the self-association behavior of CPs in aqueous solutions at various temperatures is also thoroughly discussed. Cyclo-[(Asp-D-Leu-Lys-D-Leu)2] is considered for this study and a series of classical molecular dynamics (MD) simulations at three different temperatures, viz. 280 K, 300 K, and 320 K, both in pure water and in NaCl solutions of different concentrations are carried out. The calculations of radial distribution functions, preferential interaction parameters, cluster formation and hydrogen bonding properties suggest a strong influence of NaCl concentration on the association propensity of CPs. Low NaCl concentration hinders CP association while high NaCl concentration facilitates the association of CPs. Besides this, the association of CPs is found to be enhanced at low temperature. Furthermore, the thermodynamics of CP association is predominantly found to be enthalpy driven in both the presence and absence of salt. No crossover between enthalpy and entropy in CP association is observed. In addition, the MM-GBSA method is used to investigate the binding free energies of the CP rings that self-assembled to form nanotube like structures at all three temperatures.
Collapse
Affiliation(s)
- Rimjhim Moral
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| |
Collapse
|
96
|
A Review on Forced Degradation Strategies to Establish the Stability of Therapeutic Peptide Formulations. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
97
|
Zhang B, Xu W, Yin C, Tang Y. Characterization of low-level D-amino acid isomeric impurities of Semaglutide using liquid chromatography-high resolution tandem mass spectrometry. J Pharm Biomed Anal 2023; 224:115164. [PMID: 36462248 DOI: 10.1016/j.jpba.2022.115164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Under the guideline issued by Food and Drug Administration (FDA), ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin Guidance for Industry, a synthetic Semaglutide that is intended to be a "generic" of the approved rDNA origin Semaglutide is under exploring. Thus, each peptide-related impurity that is 0.10% of the drug substance or greater need to be identified for Semaglutide covered by this guidance. Among others, characterization of the low-level D-amino acid (D form) isomeric impurities are always the most challenging ones. Reverse-phase high-performance liquid chromatography (RP-UPLC) was used to separate the impurities, followed by high resolution mass spectrometry (HRMS) to determine the molecular weight of the impurities that existed in both formulations. Following the targeted D form isomers off-line collection, the samples went through lyophilization, deuterated hydrochloric acid (D-HCl) hydrolyzation with low level D/L form shifting suppression substrates, chiral derivatization and RP-UPLC tandem mass spectrometry analysis of different amino acids by comparing with standards. Herein, we reported an accurate, straightforward characterization method with low limit of detection for the low-level D-Ser8, D-His1 and D-Asp9 Semaglutide impurities in Semaglutide formulations. The developed UPLC tandem HRMS method entails a valuable step forward in the detection of trace levels of the D-isomers of Semaglutide and other peptide products.
Collapse
Affiliation(s)
- Baole Zhang
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, P.R. China
| | - Wanglong Xu
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, P.R. China
| | - Chuanlong Yin
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, P.R. China
| | - Yangming Tang
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, P.R. China.
| |
Collapse
|
98
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
99
|
Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, Wuchner K, Arosio P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J Pharm Sci 2023; 112:377-385. [PMID: 36223809 DOI: 10.1016/j.xphs.2022.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023]
Abstract
Protein stability against aggregation is a major quality concern for the production of safe and effective biopharmaceuticals. Amongst the different drivers of protein aggregation, increasing evidence indicates that interactions between proteins and interfaces represent a major risk factor for the formation of protein aggregates in aqueous solutions. Potentially harmful surfaces relevant to biologics manufacturing and storage include air-water and silicone oil-water interfaces as well as materials from different processing units, storage containers, and delivery devices. The impact of some of these surfaces, for instance originating from impurities, can be difficult to predict and control. Moreover, aggregate formation may additionally be complicated by the simultaneous presence of interfacial, hydrodynamic and mechanical stresses, whose contributions may be difficult to deconvolute. As a consequence, it remains difficult to identify the key chemical and physical determinants and define appropriate analytical methods to monitor and predict protein instability at these interfaces. In this review, we first discuss the main mechanisms of surface-induced protein aggregation. We then review the types of contact materials identified as potentially harmful or detected as potential triggers of proteinaceous particle formation in formulations and discuss proposed mitigation strategies. Finally, we present current methods to probe surface-induced instabilities, which represent a starting point towards assays that can be implemented in early-stage screening and formulation development of biologics.
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
100
|
Zhang H, Qi L, Wang X, Guo Y, Liu J, Xu Y, Liu C, Zhang C, Richel A. Preparation of a cattle bone collagen peptide-calcium chelate by the ultrasound method and its structural characterization, stability analysis, and bioactivity on MC3T3-E1 cells. Food Funct 2023; 14:978-989. [PMID: 36541828 DOI: 10.1039/d2fo02146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study was designed to prepare a cattle bone-derived collagen peptide-calcium chelate by the ultrasound method (CP-Ca-US), and its structure, stability, and bioactivity on MC3T3-E1 cells were characterized. Single-factor experiments optimized the preparation conditions: ultrasound power 90 W, ultrasound time 40 min, CaCl2/peptides ratio 1/2, pH 7. Under these conditions, the calcium-chelating ability reached 39.48 μg mg-1. The result of Fourier transform-infrared spectroscopy indicated that carboxyl oxygen and amino nitrogen atoms were chelation sites. Morphological analysis indicated that CP-Ca-US was characterized by a porous surface and large particles. Stability analysis demonstrated that CP-Ca-US was stable in the thermal environment and under intestinal digestion. CP-Ca-US showed more stability in gastric juice than the chelate prepared by the hydrothermal method. Cell experiments indicated that CP-Ca-US increased osteoblast proliferation (proliferation rate 153% at a concentration of 300 μg mL-1) and altered the cell cycle. Significantly, CP-Ca-US enhanced calcium absorption by interacting with calcium-sensing receptors and promoted the mineralization of MC3T3-E1 cells. This study provides the scientific basis for applying the ultrasound method to prepare peptide-calcium chelates and clarifies the positive role of chelates in bone building.
Collapse
Affiliation(s)
- Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaodan Wang
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yang Xu
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Shengle Economic Park, Helinger County, Hohhot, Inner Mongolia, 010000, China
| | - Chengjiang Liu
- Institute of Agro-Products Processing Science, Technology Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|