51
|
Control of XPR1-dependent cellular phosphate efflux by InsP 8 is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc Natl Acad Sci U S A 2020; 117:3568-3574. [PMID: 32019887 DOI: 10.1073/pnas.1908830117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (K d = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
Collapse
|
52
|
Low phytic acid Crops: Observations Based On Four Decades of Research. PLANTS 2020; 9:plants9020140. [PMID: 31979164 PMCID: PMC7076677 DOI: 10.3390/plants9020140] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
The low phytic acid (lpa), or "low-phytate" seed trait can provide numerous potential benefits to the nutritional quality of foods and feeds and to the sustainability of agricultural production. Major benefits include enhanced phosphorus (P) management contributing to enhanced sustainability in non-ruminant (poultry, swine, and fish) production; reduced environmental impact due to reduced waste P in non-ruminant production; enhanced "global" bioavailability of minerals (iron, zinc, calcium, magnesium) for both humans and non-ruminant animals; enhancement of animal health, productivity and the quality of animal products; development of "low seed total P" crops which also can enhance management of P in agricultural production and contribute to its sustainability. Evaluations of this trait by industry and by advocates of biofortification via breeding for enhanced mineral density have been too short term and too narrowly focused. Arguments against breeding for the low-phytate trait overstate the negatives such as potentially reduced yields and field performance or possible reductions in phytic acid's health benefits. Progress in breeding or genetically-engineering high-yielding stress-tolerant low-phytate crops continues. Perhaps due to the potential benefits of the low-phytate trait, the challenge of developing high-yielding, stress-tolerant low-phytate crops has become something of a holy grail for crop genetic engineering. While there are widely available and efficacious alternative approaches to deal with the problems posed by seed-derived dietary phytic acid, such as use of the enzyme phytase as a feed additive, or biofortification breeding, if there were an interest in developing low-phytate crops with good field performance and good seed quality, it could be accomplished given adequate time and support. Even with a moderate reduction in yield, in light of the numerous benefits of low-phytate types as human foods or animal feeds, should one not grow a nutritionally-enhanced crop variant that perhaps has 5% to 10% less yield than a standard variant but one that is substantially more nutritious? Such crops would be a benefit to human nutrition especially in populations at risk for iron and zinc deficiency, and a benefit to the sustainability of agricultural production.
Collapse
|
53
|
Puschmann R, Harmel RK, Fiedler D. Analysis of metabolically labeled inositol phosphate messengers by NMR. Methods Enzymol 2020; 641:35-52. [DOI: 10.1016/bs.mie.2020.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Ganguli S, Shah A, Hamid A, Singh A, Palakurti R, Bhandari R. A high energy phosphate jump - From pyrophospho-inositol to pyrophospho-serine. Adv Biol Regul 2020; 75:100662. [PMID: 31668836 DOI: 10.1016/j.jbior.2019.100662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy rich metabolites present in all eukaryotic cells. The hydroxyl groups on these water soluble derivatives of inositol are substituted with diphosphate and monophosphate moieties. Since the discovery of PP-IPs in the early 1990s, enormous progress has been made in uncovering pleiotropic roles for these small molecules in cellular physiology. PP-IPs exert their effect on proteins in two ways - allosteric regulation by direct binding, or post-translational regulation by serine pyrophosphorylation, a modification unique to PP-IPs. Serine pyrophosphorylation is achieved by Mg2+-dependent, but enzyme independent transfer of a β-phosphate from a PP-IP to a pre-phosphorylated serine residue located in an acidic motif, within an intrinsically disordered protein sequence. This distinctive post-translational modification has been shown to regulate diverse cellular processes, including rRNA synthesis, glycolysis, and vesicle transport. However, our understanding of the molecular details of this phosphotransfer from pyrophospho-inositol to generate pyrophospho-serine, is still nascent. This review discusses our current knowledge of protein pyrophosphorylation, and recent advances in understanding the mechanism of this important yet overlooked post-translational modification.
Collapse
Affiliation(s)
- Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aisha Hamid
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Ravichand Palakurti
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India.
| |
Collapse
|
55
|
Chanduri M, Bhandari R. Back-Pyrophosphorylation Assay to Detect In Vivo InsP 7-Dependent Protein Pyrophosphorylation in Mammalian Cells. Methods Mol Biol 2020; 2091:93-105. [PMID: 31773573 DOI: 10.1007/978-1-0716-0167-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein pyrophosphorylation involves the transfer of a high-energy β-phosphate from inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (InsP7) to phosphorylated serine residues. Over a decade of research has established several proteins, involved in diverse physiological processes, as substrates of InsP7-mediated pyrophosphorylation. However, the need for detection of this posttranslational modification on endogenous proteins is paramount. "Back-pyrophosphorylation" is a simple technique to test whether a native protein undergoes InsP7-mediated pyrophosphorylation inside cells. The basis of this technique relies on the fact that a target protein isolated from cells with lower InsP7 levels exists in a hypo-pyrophosphorylated form as compared to the same protein isolated from cells with normal InsP7 levels. Hence, when radiolabeled InsP7 is added to a target protein immunoprecipitated from both these cell types, the hypopyrophosphorylated protein accepts a higher amount of radiolabeled phosphate when compared to the protein isolated from wild-type cells. This chapter provides detailed methods to identify an InsP7 target protein and conduct a back-pyrophosphorylation assay on a target protein immunoprecipitated from cells with normal versus reduced InsP7 levels, to confirm its endogenous pyrophosphorylation status.
Collapse
Affiliation(s)
- Manasa Chanduri
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.
| |
Collapse
|
56
|
Abstract
The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
57
|
Mallery DL, Faysal KMR, Kleinpeter A, Wilson MSC, Vaysburd M, Fletcher AJ, Novikova M, Böcking T, Freed EO, Saiardi A, James LC. Cellular IP 6 Levels Limit HIV Production while Viruses that Cannot Efficiently Package IP 6 Are Attenuated for Infection and Replication. Cell Rep 2019; 29:3983-3996.e4. [PMID: 31851928 PMCID: PMC6931105 DOI: 10.1016/j.celrep.2019.11.050] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
HIV-1 hijacks host proteins to promote infection. Here we show that HIV is also dependent upon the host metabolite inositol hexakisphosphate (IP6) for viral production and primary cell replication. HIV-1 recruits IP6 into virions using two lysine rings in its immature hexamers. Mutation of either ring inhibits IP6 packaging and reduces viral production. Loss of IP6 also results in virions with highly unstable capsids, leading to a profound loss of reverse transcription and cell infection. Replacement of one ring with a hydrophobic isoleucine core restores viral production, but IP6 incorporation and infection remain impaired, consistent with an independent role for IP6 in stable capsid assembly. Genetic knockout of biosynthetic kinases IPMK and IPPK reveals that cellular IP6 availability limits the production of diverse lentiviruses, but in the absence of IP6, HIV-1 packages IP5 without loss of infectivity. Together, these data suggest that IP6 is a critical cofactor for HIV-1 replication.
Collapse
Affiliation(s)
- Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney NSW, Australia
| | - Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Miranda S C Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Adam J Fletcher
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney NSW, Australia
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
58
|
ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proc Natl Acad Sci U S A 2019; 116:24551-24561. [PMID: 31754032 PMCID: PMC6900528 DOI: 10.1073/pnas.1911431116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inositol phosphates (IPs) are a class of signaling molecules regulating cell physiology. The best-characterized IP, the calcium release factor IP3, is generated by phospholipase C hydrolysis of phosphoinositides lipids. For historical and technical reasons, IPs synthesis is believed to originate from the lipid-generated IP3. While this is true in yeast, our work has demonstrated that other organisms use a “soluble” (nonlipid) route to synthesize IPs. This soluble pathway depends on the metabolic status of the cells, and is under the control of the kinase ITPK1, which phosphorylates inositol monophosphate likely generated from glucose. The data shed light on the evolutionary origin of IPs, signaling and tightening the link between these small molecules and basic metabolism. Inositol phosphates (IPs) comprise a network of phosphorylated molecules that play multiple signaling roles in eukaryotes. IPs synthesis is believed to originate with IP3 generated from PIP2 by phospholipase C (PLC). Here, we report that in mammalian cells PLC-generated IPs are rapidly recycled to inositol, and uncover the enzymology behind an alternative “soluble” route to synthesis of IPs. Inositol tetrakisphosphate 1-kinase 1 (ITPK1)—found in Asgard archaea, social amoeba, plants, and animals—phosphorylates I(3)P1 originating from glucose-6-phosphate, and I(1)P1 generated from sphingolipids, to enable synthesis of IP6. We also found using PAGE mass assay that metabolic blockage by phosphate starvation surprisingly increased IP6 levels in a ITPK1-dependent manner, establishing a route to IP6 controlled by cellular metabolic status, that is not detectable by traditional [3H]-inositol labeling. The presence of ITPK1 in archaeal clades thought to define eukaryogenesis indicates that IPs had functional roles before the appearance of the eukaryote.
Collapse
|
59
|
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang TE, Wittwer C, Jessen HJ, Zhang H, An GY, Chao DY, Liu D, Lei M. Inositol Pyrophosphate InsP 8 Acts as an Intracellular Phosphate Signal in Arabidopsis. MOLECULAR PLANT 2019; 12:1463-1473. [PMID: 31419530 DOI: 10.1016/j.molp.2019.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
The maintenance of cellular phosphate (Pi) homeostasis is of great importance in living organisms. The SPX domain-containing protein 1 (SPX1) proteins from both Arabidopsis and rice have been proposed to act as sensors of Pi status. The molecular signal indicating the cellular Pi status and regulating Pi homeostasis in plants, however, remains to be identified, as Pi itself does not bind to the SPX domain. Here, we report the identification of the inositol pyrophosphate InsP8 as a signaling molecule that regulates Pi homeostasis in Arabidopsis. Polyacrylamide gel electrophoresis profiling of InsPs revealed that InsP8 level positively correlates with cellular Pi concentration. We demonstrated that the homologs of diphosphoinositol pentakisphosphate kinase (PPIP5K), VIH1 and VIH2, function redundantly to synthesize InsP8, and that the vih1 vih2 double mutant overaccumulates Pi. SPX1 directly interacts with PHR1, the central regulator of Pi starvation responses, to inhibit its function under Pi-replete conditions. However, this interaction is compromised in the vih1 vih2 double mutant, resulting in the constitutive induction of Pi starvation-induced genes, indicating that plant cells cannot sense cellular Pi status without InsP8. Furthermore, we showed that InsP8 could directly bind to the SPX domain of SPX1 and is essential for the interaction between SPX1 and PHR1. Collectively, our study suggests that InsP8 is the intracellular Pi signaling molecule serving as the ligand of SPX1 for controlling Pi homeostasis in plants.
Collapse
Affiliation(s)
- Jinsong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guojie Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academic of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqian Sui
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengwei Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruyue Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghong Ge
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-En Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christopher Wittwer
- Institute of Organic Chemistry, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academic of Sciences, Shanghai 200032, China
| | - Dong Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
60
|
Intake of myo-inositol hexaphosphate and urinary excretion of inositol phosphates in Wistar rats: Gavage vs. oral administration with sugar. PLoS One 2019; 14:e0223959. [PMID: 31626632 PMCID: PMC6799915 DOI: 10.1371/journal.pone.0223959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/02/2019] [Indexed: 11/19/2022] Open
Abstract
Objective To evaluate the urinary levels of inositol phosphates (InsPs) in rats that received different salts of myo-inositol hexaphosphate (InsP6) by gavage or by oral administration. Methods Thirty rats received AIN-76A diet (in which InsPs are undetectable) for 15 days. Then, 12 rats received InsP6 by gavage as a Na salt or a Ca/Mg salt; after 4 days, the Na or Ca/Mg InsP6 was administered with water containing 15 g/L sucrose and urine samples were collected. The other 18 rats received oral InsP6, in which 0.5 g of sugar was combined with InsP6 as a Na salt, a Ca/Mg salt, or a Na salt with CaCO3; daily urine samples were collected. Urine levels of InsPs were determined using a nonspecific method and a specific method (polyacrylamide gel electrophoresis, PAGE), and different InsPs were identified by mass spectroscopy (MS). Results After 15 days of the InsP6-free diet, the non-specific method detected no urinary InsPs, and MS detected only InsP2. After administration of Na-InsP6 by gavage, the non-specific method indicated more urinary InsPs than the amount of InsP6 determined by PAGE. MS indicated the presence of urinary InsP2, InsP3, InsP4, InsP5, and InsP6 in these rats, with notable variations among animals. Use of the same treatment to administer Ca/Mg-InsP6 led to a lower overall content of urinary InsPs and a lower level of InsP6. Oral administration of InsP6 as a sugar pill led to lower urinary levels of InsPs than administration of InsP6 by gavage, and administration as a Ca/Mg pill or a Ca/Mg pill with CaCO3 led to lower levels than administration as a Na pill. Conclusion Administration of InsP6 to rats leads to the excretion of a mixture of different InsPs. Rats more effectively absorb InsP6 when supplied without dietary components that interfere with its uptake, such as the Ca ion and sugar.
Collapse
|
61
|
Laha D, Parvin N, Hofer A, Giehl RFH, Fernandez-Rebollo N, von Wirén N, Saiardi A, Jessen HJ, Schaaf G. Arabidopsis ITPK1 and ITPK2 Have an Evolutionarily Conserved Phytic Acid Kinase Activity. ACS Chem Biol 2019; 14:2127-2133. [PMID: 31525024 DOI: 10.1021/acschembio.9b00423] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphospho-myo-inositol polyphosphates, also termed inositol pyrophosphates, are molecular messengers containing at least one high-energy phosphoanhydride bond and regulate a wide range of cellular processes in eukaryotes. While inositol pyrophosphates InsP7 and InsP8 are present in different plant species, both the identity of enzymes responsible for InsP7 synthesis and the isomer identity of plant InsP7 remain unknown. This study demonstrates that Arabidopsis ITPK1 and ITPK2 catalyze the phosphorylation of phytic acid (InsP6) to the symmetric InsP7 isomer 5-InsP7 and that the InsP6 kinase activity of ITPK enzymes is evolutionarily conserved from humans to plants. We also show by 31P nuclear magnetic resonance that plant InsP7 is structurally identical to the in vitro InsP6 kinase products of ITPK1 and ITPK2. Our findings lay the biochemical and genetic basis for uncovering physiological processes regulated by 5-InsP7 in plants.
Collapse
Affiliation(s)
- Debabrata Laha
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, United Kingdom
| | - Nargis Parvin
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| | - Alexandre Hofer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ricardo F. H. Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nicolas Fernandez-Rebollo
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Nicolaus von Wirén
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, United Kingdom
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| |
Collapse
|
62
|
|
63
|
Wilson MS, Jessen HJ, Saiardi A. The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export. J Biol Chem 2019; 294:11597-11608. [PMID: 31186349 PMCID: PMC6663863 DOI: 10.1074/jbc.ra119.007848] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
Phosphate's central role in most biochemical reactions in a living organism requires carefully maintained homeostasis. Although phosphate homeostasis in mammals has long been studied at the organismal level, the intracellular mechanisms controlling phosphate metabolism are not well-understood. Inositol pyrophosphates have emerged as important regulatory elements controlling yeast phosphate homeostasis. To verify whether inositol pyrophosphates also regulate mammalian cellular phosphate homeostasis, here we knocked out inositol hexakisphosphate kinase (IP6K) 1 and IP6K2 to generate human HCT116 cells devoid of any inositol pyrophosphates. Using PAGE and HPLC analysis, we observed that the IP6K1/2-knockout cells have nondetectable levels of the IP6-derived IP7 and IP8 and also exhibit reduced synthesis of the IP5-derived PP-IP4. Nucleotide analysis showed that the knockout cells contain increased amounts of ATP, whereas the Malachite green assay found elevated levels of free intracellular phosphate. Furthermore, [32Pi] pulse labeling experiments uncovered alterations in phosphate flux, with both import and export of phosphate being decreased in the knockout cells. Functional analysis of the phosphate exporter xenotropic and polytropic retrovirus receptor 1 (XPR1) revealed that it is regulated by inositol pyrophosphates, which can bind to its SPX domain. We conclude that IP6K1 and -2 together control inositol pyrophosphate metabolism and thereby physiologically regulate phosphate export and other aspects of mammalian cellular phosphate homeostasis.
Collapse
Affiliation(s)
- Miranda S Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
64
|
Harmel RK, Puschmann R, Nguyen Trung M, Saiardi A, Schmieder P, Fiedler D. Harnessing 13C-labeled myo-inositol to interrogate inositol phosphate messengers by NMR. Chem Sci 2019; 10:5267-5274. [PMID: 31191882 PMCID: PMC6540952 DOI: 10.1039/c9sc00151d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The analysis of inositol poly- and pyrophosphates, an important group of eukaryotic messengers, is enabled by applying 13C-labeled inositol.
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are an important group of metabolites and mediate a wide range of processes in eukaryotic cells. To elucidate the functions of these molecules, robust techniques for the characterization of inositol phosphate metabolism are required, both at the biochemical and the cellular level. Here, a new tool-set is reported, which employs uniformly 13C-labeled compounds ([13C6]myo-inositol, [13C6]InsP5, [13C6]InsP6, and [13C6]5PP-InsP5), in combination with commonly accessible NMR technology. This approach permitted the detection and quantification of InsPs and PP-InsPs within complex mixtures and at physiological concentrations. Specifically, the enzymatic activity of IP6K1 could be monitored in vitro in real time. Metabolic labeling of mammalian cells with [13C6]myo-inositol enabled the analysis of cellular pools of InsPs and PP-InsPs, and uncovered high concentrations of 5PP-InsP5 in HCT116 cells, especially in response to genetic and pharmacological perturbation. The reported method greatly facilitates the analysis of this otherwise spectroscopically silent group of molecules, and holds great promise to comprehensively analyze inositol-based signaling molecules under normal and pathological conditions.
Collapse
Affiliation(s)
- Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology , University College London , London , UK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany .
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| |
Collapse
|
65
|
Haas TM, Ebensperger P, Eisenbeis VB, Nopper C, Dürr T, Jork N, Steck N, Jessen-Trefzer C, Jessen HJ. Magic spot nucleotides: tunable target-specific chemoenzymatic synthesis. Chem Commun (Camb) 2019; 55:5339-5342. [PMID: 30973558 DOI: 10.1039/c9cc01688k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A tunable chemoenzymatic strategy provides access to the entire class of magic spot nucleotides and modified analogues. The approach combines chemoselective bisphosphorylations using phosphoramidites with regioselective ribonuclease T2 cyclo-phosphate hydrolysis, leading to flexible and simple gram-scale operations.
Collapse
Affiliation(s)
- Thomas M Haas
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Paul Ebensperger
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Verena B Eisenbeis
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph Nopper
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Dürr
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Jork
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Steck
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | | | - Henning J Jessen
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. and Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
66
|
Brehm MA, Windhorst S. New options of cancer treatment employing InsP 6. Biochem Pharmacol 2019; 163:206-214. [PMID: 30797871 DOI: 10.1016/j.bcp.2019.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
Many mechanistic studies have been performed to analyze the cellular functions of the highly phosphorylated molecule inositol hexakisphosphate (InsP6) in health and disease. While the physiological intracellular functions are well described, the mechanism of potential pharmacological effects on cancer cell proliferation is still controversial. There are numerous studies demonstrating that a high InsP6 concentration (≥75 µM) inhibits growth of cancer cells in vitro and in vivo. Thus, there is no doubt that InsP6 exhibits anticancer activity but the mechanism underlying the cellular effects of extracellular InsP6 on cancer cells is far from being understood. In addition, studies on the inhibitory effect of InsP6 on cancer progression in animal models ignore aspects of its bioavailability. Here, we review and critically discuss the uptake mechanism and the intracellular involvement in signaling pathways of InsP6 in cancer cells. We take into account the controversial findings on InsP6 plasma concentration, which is a critical aspect of pharmacological accessibility of InsP6 for cancer treatment. Further, we discuss novel findings with respect to the effect of InsP6 on normal and immune cells as well as on platelet aggregate size. Our goal is to stimulate further mechanistic studies into novel directions considering previously disregarded aspects of InsP6. Only when we fully understand the mechanism underlying the anticancer activity of InsP6 novel and more efficient treatment options can be developed.
Collapse
Affiliation(s)
- Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
67
|
Hauke S, Dutta AK, Eisenbeis VB, Bezold D, Bittner T, Wittwer C, Thakor D, Pavlovic I, Schultz C, Jessen HJ. Photolysis of cell-permeant caged inositol pyrophosphates controls oscillations of cytosolic calcium in a β-cell line. Chem Sci 2019; 10:2687-2692. [PMID: 30996985 PMCID: PMC6419925 DOI: 10.1039/c8sc03479f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
β-Cells respond directly to the intracellular photochemical release of caged inositol pyrophosphate isomers with modulations of oscillations in cytosolic Ca2+.
Among many cellular functions, inositol pyrophosphates (PP-InsPs) are metabolic messengers involved in the regulation of glucose uptake, insulin sensitivity, and weight gain. However, their mechanisms of action are still poorly understood. So far, the influence of PP-InsPs on cellular metabolism has been studied by overexpression or knockout/inhibition of relevant metabolizing kinases (IP6Ks, PPIP5Ks). These approaches are, inter alia, limited by time-resolution and potential compensation mechanisms. Here, we describe the synthesis of cell-permeant caged PP-InsPs as tools to rapidly modulate intracellular levels of defined isomers of PP-InsPs in a genetically non-perturbed cellular environment. We show that caged prometabolites readily enter live cells where they are enzymatically converted into still inactive, metabolically stable, photocaged PP-InsPs. Upon light-triggered release of 5-PP-InsP5, the major cellular inositol pyrophosphate, oscillations of intracellular Ca2+ levels in MIN6 cells were transiently reduced to spontaneously recover again. In contrast, uncaging of 1-PP-InsP5, a minor cellular isomer, was without effect. These results provide evidence that PP-InsPs play an active role in regulating [Ca2+]i oscillations, a key element in triggering exocytosis and secretion in β-cells.
Collapse
Affiliation(s)
- S Hauke
- EMBL, Heidelberg , 69117 Heidelberg , Germany .
| | - A K Dutta
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - V B Eisenbeis
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - D Bezold
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - T Bittner
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - C Wittwer
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - D Thakor
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - I Pavlovic
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - C Schultz
- EMBL, Heidelberg , 69117 Heidelberg , Germany . .,OHSU , Dept. Physiology & Pharmacology , Portland , OR , USA .
| | - H J Jessen
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| |
Collapse
|
68
|
Ito M, Fujii N, Wittwer C, Sasaki A, Tanaka M, Bittner T, Jessen HJ, Saiardi A, Takizawa S, Nagata E. Hydrophilic interaction liquid chromatography-tandem mass spectrometry for the quantitative analysis of mammalian-derived inositol poly/pyrophosphates. J Chromatogr A 2018; 1573:87-97. [PMID: 30220429 DOI: 10.1016/j.chroma.2018.08.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Although myo-inositol pyrophosphates such as diphosphoinositol pentakisphosphate (InsP7) are important in biology, little quantitative information is available regarding their presence in mammalian organisms owing to the technical difficulties associated with accurately detecting these materials in biological samples. We have developed an analytical method whereby InsP7 and its precursor inositol hexakisphosphate (InsP6) are determined directly and sensitively using tandem mass spectrometry coupled with hydrophilic interaction liquid chromatography (HILIC). InsP6 and InsP7 peak symmetry is influenced greatly by the buffer salt composition and pH of the mobile phase used in HILIC analysis. The use of 300 mM ammonium carbonate (pH 10.5) as an aqueous mobile phase resolves InsP6 and InsP7 on a polymer-based amino HILIC column with minimal peak tailing. Method validation shows that InsP6 and InsP7 can be quantitated from 20-500 pmol with minimal intra-day/inter-day variance in peak area and retention time. The concentration of InsP6 in C57BL/6J mouse brain (40.68 ± 3.84 pmol/mg wet weight) is successfully determined. HILIC‒MS/MS analysis using HEK293 culture cells confirms previous observations that InsP7 is induced by NaF treatment and ectopic expression of InsP6K2, a primary kinase for InsP7 synthesis. Furthermore, this analysis reveals the abundance of InsP6 (50.46 ± 18.57 pmol/106 cells) and scarcity of InsP7 in human blood cells. The results demonstrate that HILIC‒MS/MS analysis can quantitate endogenous InsP6 and InsP7 in mouse and human samples, and we expect that the method will contribute to further understanding of InsP7 functions in mammalian pathobiology.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ayumi Sasaki
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Tamara Bittner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan.
| |
Collapse
|
69
|
Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function? Br J Nutr 2018; 120:301-316. [PMID: 29859544 DOI: 10.1017/s0007114518000946] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review attempts to explain why consuming extra myoinositol (Ins), an essential component of membrane phospholipids, is often beneficial for patients with conditions characterised by insulin resistance, non-alcoholic fatty liver disease and endoplasmic reticulum (ER) stress. For decades we assumed that most human diets provide an adequate Ins supply, but newer evidence suggests that increasing Ins intake ameliorates several disorders, including polycystic ovary syndrome, gestational diabetes, metabolic syndrome, poor sperm development and retinopathy of prematurity. Proposed explanations often suggest functional enhancement of minor facets of Ins Biology such as insulin signalling through putative inositol-containing 'mediators', but offer no explanation for this selectivity. It is more likely that eating extra Ins corrects a deficiency of an abundant Ins-containing cell constituent, probably phosphatidylinositol (PtdIns). Much of a cell's PtdIns is in ER membranes, and an increase in ER membrane synthesis, enhancing the ER's functional capacity, is often an important part of cell responses to ER stress. This review: (a) reinterprets historical information on Ins deficiency as describing a set of events involving a failure of cells adequately to adapt to ER stress; (b) proposes that in the conditions that respond to dietary Ins there is an overstretching of Ins reserves that limits the stressed ER's ability to make the 'extra' PtdIns needed for ER membrane expansion; and (c) suggests that eating Ins supplements increases the Ins supply to Ins-deficient and ER-stressed cells, allowing them to make more PtdIns and to expand the ER membrane system and sustain ER functions.
Collapse
|
70
|
Mallery DL, Márquez CL, McEwan WA, Dickson CF, Jacques DA, Anandapadamanaban M, Bichel K, Towers GJ, Saiardi A, Böcking T, James LC. IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. eLife 2018; 7:e35335. [PMID: 29848441 PMCID: PMC6039178 DOI: 10.7554/elife.35335] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.
Collapse
Affiliation(s)
- Donna L Mallery
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node, Single Molecule Science, School of Medical SciencesUniversity of New South WalesSydneyAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - William A McEwan
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Claire F Dickson
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node, Single Molecule Science, School of Medical SciencesUniversity of New South WalesSydneyAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | | | - Katsiaryna Bichel
- Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Gregory J Towers
- Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell BiologyUniversity College LondonLondonUnited Kingdom
| | - Till Böcking
- EMBL Australia Node, Single Molecule Science, School of Medical SciencesUniversity of New South WalesSydneyAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - Leo C James
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
71
|
Wang H, Gu C, Rolfes RJ, Jessen HJ, Shears SB. Structural and biochemical characterization of Siw14: A protein-tyrosine phosphatase fold that metabolizes inositol pyrophosphates. J Biol Chem 2018; 293:6905-6914. [PMID: 29540476 PMCID: PMC5936820 DOI: 10.1074/jbc.ra117.001670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/26/2018] [Indexed: 01/09/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are "energetic" intracellular signals that are ubiquitous in animals, plants, and fungi; structural and biochemical characterization of PP-InsP metabolic enzymes provides insight into their evolution, reaction mechanisms, and regulation. Here, we describe the 2.35-Å-resolution structure of the catalytic core of Siw14, a 5-PP-InsP phosphatase from Saccharomyces cerevisiae and a member of the protein tyrosine-phosphatase (PTP) superfamily. Conclusions that we derive from structural data are supported by extensive site-directed mutagenesis and kinetic analyses, thereby attributing new functional significance to several key residues. We demonstrate the high activity and exquisite specificity of Siw14 for the 5-diphosphate group of PP-InsPs. The three structural elements that demarcate a 9.2-Å-deep substrate-binding pocket each have spatial equivalents in PTPs, but we identify how these are specialized for Siw14 to bind and hydrolyze the intensely negatively charged PP-InsPs. (a) The catalytic P-loop with the CX5R(S/T) PTP motif contains additional, positively charged residues. (b) A loop between the α5 and α6 helices, corresponding to the Q-loop in PTPs, contains a lysine and an arginine that extend into the catalytic pocket due to displacement of the α5 helix orientation through intramolecular crowding caused by three bulky, hydrophobic residues. (c) The general-acid loop in PTPs is replaced in Siw14 with a flexible loop that does not use an aspartate or glutamate as a general acid. We propose that an acidic residue is not required for phosphoanhydride hydrolysis.
Collapse
Affiliation(s)
- Huanchen Wang
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, , To whom correspondence should be addressed:
Signal Transduction Laboratory, NIEHS, National Institutes of Health, 111 T. W. Alexander Dr., Research Triangle Park, NC 27709. E-mail:
| | - Chunfang Gu
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Ronda J. Rolfes
- Department of Biology, Georgetown University, Washington, D. C. 20057, and
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert Ludwigs University, Freiburg, 79104 Freiburg, Germany
| | - Stephen B. Shears
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
72
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
73
|
Brown NW, Marmelstein AM, Fiedler D. Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 2018; 45:6311-6326. [PMID: 27462803 DOI: 10.1039/c6cs00193a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Alan M Marmelstein
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Dorothea Fiedler
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| |
Collapse
|
74
|
Wei H, Landgraf D, Wang G, McCarthy MJ. Inositol polyphosphates contribute to cellular circadian rhythms: Implications for understanding lithium's molecular mechanism. Cell Signal 2018; 44:82-91. [PMID: 29331582 DOI: 10.1016/j.cellsig.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/08/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022]
Abstract
Most living organisms maintain cell autonomous circadian clocks that synchronize critical biological functions with daily environmental cycles. In mammals, the circadian clock is regulated by inputs from signaling pathways including glycogen synthase kinase 3 (GSK3). The drug lithium has actions on GSK3, and also on inositol metabolism. While it is suspected that lithium's inhibition of GSK3 causes rhythm changes, it is not known if inositol polyphosphates can also affect the circadian clock. We examined whether the signaling molecule inositol hexaphosphate (IP6) has effects on circadian rhythms. Using a bioluminescent reporter (Per2::luc) to measure circadian rhythms, we determined that IP6 increased rhythm amplitude and shortened period in NIH3T3 cells. The IP6 effect on amplitude was attenuated by selective siRNA knockdown of GSK3B and pharmacological blockade of AKT kinase. However, unlike lithium, IP6 did not induce serine-9 phosphorylation of GSK3B. The synthesis of IP6 involves the enzymes inositol polyphosphate multikinase (IPMK) and inositol pentakisphosphate 2-kinase (IPPK). Knockdown of Ippk had effects opposite to those of IP6, decreasing rhythm amplitude and lengthening period. Ipmk knockdown had few effects on rhythm alone, but attenuated the effects of lithium on rhythms. However, lithium did not change the intracellular content of IP6 in NIH3T3 cells or neurons. Pharmacological inhibition of the IP6 kinases (IP6K) increased rhythm amplitude and shortened period, suggesting secondary effects of inositol pyrophosphates may underlie the period shortening effect, but not the amplitude increasing effect of IP6. Overall, we conclude that inositol phosphates, in particular IP6 have effects on circadian rhythms. Manipulations affecting IP6 and related inositol phosphates may offer a novel means through which circadian rhythms can be regulated.
Collapse
Affiliation(s)
- Heather Wei
- Research and Psychiatry Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161, United States; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, 9500 Gilman Dr La Jolla, CA 92093, United States
| | - Dominic Landgraf
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, 9500 Gilman Dr La Jolla, CA 92093, United States
| | - George Wang
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, 9500 Gilman Dr La Jolla, CA 92093, United States
| | - Michael J McCarthy
- Research and Psychiatry Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161, United States; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, 9500 Gilman Dr La Jolla, CA 92093, United States.
| |
Collapse
|
75
|
Abstract
Inositol phosphates (IPs) comprise a family of ubiquitous eukaryotic signaling molecules. They have been linked to the regulation of a pleiotropy of important cellular activities, but low abundance and detection difficulties have hampered our understanding. Here we present a method to purify and enrich IPs or other phosphate-rich metabolites from mammalian cells or other sample types. Acid-extracted IPs from cells bind selectively via their phosphate groups to titanium dioxide beads. After washing, the IPs are easily eluted from the beads by increasing the pH. This technique, in combination with downstream analytical methods such as PAGE or SAX-HPLC, opens unprecedented investigative possibilities, allowing appropriate analysis of IPs from virtually any biological or non-biological source.
Collapse
Affiliation(s)
- Miranda Sc Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
76
|
Blüher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Wörner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U. A 1-phytase type III effector interferes with plant hormone signaling. Nat Commun 2017; 8:2159. [PMID: 29255246 PMCID: PMC5735085 DOI: 10.1038/s41467-017-02195-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
Most Gram-negative phytopathogenic bacteria inject type III effector (T3E) proteins into plant cells to manipulate signaling pathways to the pathogen's benefit. In resistant plants, specialized immune receptors recognize single T3Es or their biochemical activities, thus halting pathogen ingress. However, molecular function and mode of recognition for most T3Es remains elusive. Here, we show that the Xanthomonas T3E XopH possesses phytase activity, i.e., dephosphorylates phytate (myo-inositol-hexakisphosphate, InsP6), the major phosphate storage compound in plants, which is also involved in pathogen defense. A combination of biochemical approaches, including a new NMR-based method to discriminate inositol polyphosphate enantiomers, identifies XopH as a naturally occurring 1-phytase that dephosphorylates InsP6 at C1. Infection of Nicotiana benthamiana and pepper by Xanthomonas results in a XopH-dependent conversion of InsP6 to InsP5. 1-phytase activity is required for XopH-mediated immunity of plants carrying the Bs7 resistance gene, and for induction of jasmonate- and ethylene-responsive genes in N. benthamiana.
Collapse
Affiliation(s)
- Doreen Blüher
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Debabrata Laha
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Sabine Thieme
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Alexandre Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Antonia Masch
- Institute for Biochemistry and Biotechnology, Department of Enzymology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle (Saale), Germany
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Igor Pavlovic
- Institute of Organic Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Oliver Nagel
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Antje Schonsky
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Rahel Hinkelmann
- Institute of Organic Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Jakob Wörner
- Institute of Physical Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Nargis Parvin
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max-Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Mike Schutkowski
- Institute for Biochemistry and Biotechnology, Department of Enzymology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle (Saale), Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Henning Jessen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Organic Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany.
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ulla Bonas
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany.
| |
Collapse
|
77
|
Park SJ, Lee S, Park SE, Kim S. Inositol pyrophosphates as multifaceted metabolites in the regulation of mammalian signaling networks. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1408684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Eun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
78
|
Grases F, Costa-Bauzá A, Berga F, Rodríguez A, Gomila RM, Martorell G, Martínez-Cignoni MR. Evaluation of inositol phosphates in urine after topical administration of myo-inositol hexaphosphate to female Wistar rats. Life Sci 2017; 192:33-37. [PMID: 29155299 DOI: 10.1016/j.lfs.2017.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
AIMS Previous studies demonstrated a remarkable increase of urinary InsP6 by topical administration. However, the methodology used for InsP6 analysis was not specific. The aim of this paper is to measure urinary inositol phosphates InsPs using more advanced methodologies and to compare the results with those obtained by the non-specific method. MATERIALS AND METHODS We fed 12 female rats with a diet without InsP6 for 16days. Then, we administered a topical InsP6 gel at high doses for 7days (50mgInsP6/day) or at low doses for 28days (20mgInsP6/day). We measured urine levels InsPs using a nonspecific method (based on the ability of InsPs to complex Al3+) and levels of InsP6 by a specific method (using polyacrylamide gel electrophoresis). Identification of different InsPs was performed by MS. KEY FINDINGS At baseline, after dietary deprivation of InsP6, rats only excreted InsP2 in their urine, and there was no detectable InsP6 or other InsPs. Rats given the high dose treatment for 7days had abundant urinary InsP6, but also had other InsPs in their urine; cessation of InsP6 administration led to decreased levels of urinary InsPs. Rats given the low dose treatment for 28days had increasing levels of urinary InsPs over time. The maximum urinary InsP6 was at 21days, after which InsPs excretion decreased. SIGNIFICANCE We conclude that the skin can absorb InsP6 from a topical gel, and that InsP6 is excreted in the urine, along with other InsPs (InsP5, InsP4, InsP3, and InsP2).
Collapse
Affiliation(s)
- F Grases
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain.
| | - A Costa-Bauzá
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - F Berga
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - A Rodríguez
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - R M Gomila
- Serveis Cientificotècnics, University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - G Martorell
- Serveis Cientificotècnics, University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - M R Martínez-Cignoni
- Grup de Metabolisme Energètic i Nutrició, Dept. Biologia Fonamental i Ciències de la Salut, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
79
|
Dinicola S, Minini M, Unfer V, Verna R, Cucina A, Bizzarri M. Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. Int J Mol Sci 2017; 18:E2187. [PMID: 29053604 PMCID: PMC5666868 DOI: 10.3390/ijms18102187] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023] Open
Abstract
Communities eating a western-like diet, rich in fat, sugar and significantly deprived of fibers, share a relevant increased risk of both metabolic and cancerous diseases. Even more remarkable is that a low-fiber diet lacks some key components-as phytates and inositols-for which a mechanistic link has been clearly established in the pathogenesis of both cancer and metabolic illness. Reduced bioavailability of inositol in living organisms could arise from reduced food supply or from metabolism deregulation. Inositol deregulation has been found in a number of conditions mechanistically and epidemiologically associated to high-glucose diets or altered glucose metabolism. Indeed, high glucose levels hinder inositol availability by increasing its degradation and by inhibiting both myo-Ins biosynthesis and absorption. These underappreciated mechanisms may likely account for acquired, metabolic deficiency in inositol bioavailability.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
| | - Mirko Minini
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
| | - Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, 5250 Chiasso, Switzerland.
| | - Roberto Verna
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
- Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
80
|
Saiardi A, Azevedo C, Desfougères Y, Portela-Torres P, Wilson MSC. Microbial inositol polyphosphate metabolic pathway as drug development target. Adv Biol Regul 2017; 67:74-83. [PMID: 28964726 DOI: 10.1016/j.jbior.2017.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022]
Abstract
Inositol polyphosphates are a diverse and multifaceted class of intracellular messengers omnipresent in eukaryotic cells. These water-soluble molecules regulate many aspects of fundamental cell physiology. Removing this metabolic pathway is deleterious: inositol phosphate kinase null mutations can result in lethality or substantial growth phenotypes. Inositol polyphosphate synthesis occurs through the actions of a set of kinases that phosphorylate phospholipase-generated IP3 to higher phosphorylated forms, such as the fully phosphorylated IP6 and the inositol pyrophosphates IP7 and IP8. Unicellular organisms have a reduced array of the kinases for synthesis of higher phosphorylated inositol polyphosphates, while human cells possess two metabolic routes to IP6. The enzymes responsible for inositol polyphosphate synthesis have been identified in all eukaryote genomes, although their amino acid sequence homology is often barely detectable by common search algorithms. Homology between human and microbial inositol phosphate kinases is restricted to a few catalytically important residues. Recent studies of the inositol phosphate metabolic pathways in pathogenic fungi (Cryptococcus neoformans) and protozoa (Trypanosome brucei) have revealed the importance of the highly phosphorylated inositol polyphosphates to the fitness and thus virulence of these pathogens. Given this, identification of inositol kinase inhibitors specifically targeting the kinases of pathogenic microorganisms is desirable and achievable.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Yann Desfougères
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paloma Portela-Torres
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Miranda S C Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
81
|
Perryman KR, Masey O'Neill HV, Bedford MR, Dozier WA. Methodology affects measures of phosphorus availability in growing broilers. 2. Effects of calcium feeding strategy and dietary adaptation period length on phytate hydrolysis at different locations in the gastrointestinal tract1. Poult Sci 2017; 96:622-633. [PMID: 27601686 DOI: 10.3382/ps/pew292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/07/2016] [Indexed: 11/20/2022] Open
Abstract
An experiment was conducted to determine the effects of dietary adaptation period length (DAPL; 0, 24, and 48 h) and Ca feeding strategy (0.35% or 1.4:1 Ca:P ratio) on apparent phytate P (myo-inositol 1,2,3,4,5,6 hexakis dihydrogen phosphate; IP6) hydrolysis (AIP6H) and apparent digestibility (AΣIPD) of the sum of all inositol phosphate esters (ΣIP) of corn-titration diets at 3 locations (proventriculus/gizzard [Pro/Giz], jejunum, and distal ileum) in the gastrointestinal tract (GIT). Four hundred thirty-two Ross × Ross 708 male broilers were placed into 36 battery cages and fed a common starter diet until 18 d of age. Eight semipurified diets and a control diet for DAPL were fed from 19 to 21 d of age. Digesta were collected at each location from 4 birds per pen after each DAPL. Diets formulated with a 1.4:1 Ca:P ratio had higher (P < 0.001) AIP6H and AΣIPD when measured in the jejunum and ileum, but no differences were observed in the Pro/Giz. No interaction effects between DAPL and sampling location were observed for AIP6H and AΣIPD of the control diet. Conversely, interactive effects (P < 0.05) were measured for AIP6H and AΣIPD of the corn-titration diets. The highest values for both AIP6H (73.9%) and AΣIPD (80.7%) were measured in the Pro/Giz after 24 h. Phytate hydrolysis and AΣIPD were similar regardless of DAPL when sampled from the distal ileum. Concentrations of TiO2, IP6 and ΣIP also varied (P < 0.05) in response to DAPL and sampling location. Variability was likely due to inconsistencies in the flow of inositol phosphate esters and TiO2 through the GIT, specifically the Pro/Giz. Therefore, the use of TiO2 as an inert marker may have limitations when determining the hydrolysis and digestibility of phytate esters.
Collapse
Affiliation(s)
- K R Perryman
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - H V Masey O'Neill
- AB Vista Feed Ingredients, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - M R Bedford
- AB Vista Feed Ingredients, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - W A Dozier
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| |
Collapse
|
82
|
Cordeiro CD, Saiardi A, Docampo R. The inositol pyrophosphate synthesis pathway in Trypanosoma brucei is linked to polyphosphate synthesis in acidocalcisomes. Mol Microbiol 2017; 106:319-333. [PMID: 28792096 DOI: 10.1111/mmi.13766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
Inositol pyrophosphates are novel signaling molecules possessing high-energy pyrophosphate bonds and involved in a number of biological functions. Here, we report the correct identification and characterization of the kinases involved in the inositol pyrophosphate biosynthetic pathway in Trypanosoma brucei: inositol polyphosphate multikinase (TbIPMK), inositol pentakisphosphate 2-kinase (TbIP5K) and inositol hexakisphosphate kinase (TbIP6K). TbIP5K and TbIP6K were not identifiable by sequence alone and their activities were validated by enzymatic assays with the recombinant proteins or by their complementation of yeast mutants. We also analyzed T. brucei extracts for the presence of inositol phosphates using polyacrylamide gel electrophoresis and high-performance liquid chromatography. Interestingly, we could detect inositol phosphate (IP), inositol 4,5-bisphosphate (IP2 ), inositol 1,4,5-trisphosphate (IP3 ), and inositol hexakisphosphate (IP6 ) in T. brucei different stages. Bloodstream forms unable to produce inositol pyrophosphates, due to downregulation of TbIPMK expression by conditional knockout, have reduced levels of polyphosphate and altered acidocalcisomes. Our study links the inositol pyrophosphate pathway to the synthesis of polyphosphate in acidocalcisomes, and may lead to better understanding of these organisms and provide new targets for drug discovery.
Collapse
Affiliation(s)
- Ciro D Cordeiro
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, Gower Street, London, UK
| | - Roberto Docampo
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
83
|
Shah A, Ganguli S, Sen J, Bhandari R. Inositol Pyrophosphates: Energetic, Omnipresent and Versatile Signalling Molecules. J Indian Inst Sci 2017; 97:23-40. [PMID: 32214696 PMCID: PMC7081659 DOI: 10.1007/s41745-016-0011-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the β-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein’s activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights
many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
| |
Collapse
|
84
|
Greene NDE, Leung KY, Copp AJ. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res 2017; 109:68-80. [PMID: 27324558 PMCID: PMC5353661 DOI: 10.1002/bdra.23533] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD-affected pregnancy, but does not prevent all NTDs, and "folic acid non-responsive" NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate-deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol-containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo-inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD-affected pregnancies. In nonrandomized cohorts and a randomized double-blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger-scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68-80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
85
|
Wilson MSC, Saiardi A. Importance of Radioactive Labelling to Elucidate Inositol Polyphosphate Signalling. Top Curr Chem (Cham) 2017; 375:14. [PMID: 28101851 PMCID: PMC5396384 DOI: 10.1007/s41061-016-0099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
Inositol polyphosphates, in their water-soluble or lipid-bound forms, represent a large and multifaceted family of signalling molecules. Some inositol polyphosphates are well recognised as defining important signal transduction pathways, as in the case of the calcium release factor Ins(1,4,5)P3, generated by receptor activation-induced hydrolysis of the lipid PtdIns(4,5)P2 by phospholipase C. The birth of inositol polyphosphate research would not have occurred without the use of radioactive phosphate tracers that enabled the discovery of the “PI response”. Radioactive labels, mainly of phosphorus but also carbon and hydrogen (tritium), have been instrumental in the development of this research field and the establishment of the inositol polyphosphates as one of the most important networks of regulatory molecules present in eukaryotic cells. Advancements in microscopy and mass spectrometry and the development of colorimetric assays have facilitated inositol polyphosphate research, but have not eliminated the need for radioactive experimental approaches. In fact, such experiments have become easier with the cloning of the inositol polyphosphate kinases, enabling the systematic labelling of specific positions of the inositol ring with radioactive phosphate. This approach has been valuable for elucidating their metabolic pathways and identifying specific and novel functions for inositol polyphosphates. For example, the synthesis of radiolabelled inositol pyrophosphates has allowed the discovery of a new protein post-translational modification. Therefore, radioactive tracers have played and will continue to play an important role in dissecting the many complex aspects of inositol polyphosphate physiology. In this review we aim to highlight the historical importance of radioactivity in inositol polyphosphate research, as well as its modern usage.
Collapse
Affiliation(s)
- Miranda S C Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
86
|
Foster SR, Omoruyi FO, Bustamante J, Lindo RLA, Dilworth LL. The effect of combined inositol hexakisphosphate and inositol supplement in streptozotocin-induced type 2 diabetic rats. Int J Exp Pathol 2016; 97:397-407. [PMID: 27921351 DOI: 10.1111/iep.12210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022] Open
Abstract
Inositol hexakisphosphate (IP6) and inositol both regulate insulin secretion, but their combined use in the management of diabetes deserves investigation. The combined effects of IP6 and inositol supplementation were investigated in streptozotocin-induced type 2 diabetic rats. The following groups of rats were studied for 8 weeks: non-diabetic control, non-diabetic high-fat diet control, diabetic untreated, diabetic rats treated with the combination of IP6 and inositol (650 mg/kg bw) and diabetic rats treated with glibenclamide (10 mg/kg bw). High-fat diet and streptozotocin were used to induce type 2 diabetes mellitus in Sprague-Dawley rats. Body weight, blood glucose, glycated haemoglobin, insulin, serum leptin, HOMA-insulin resistance scores, intestinal amylase activity, serum and faecal lipids and food and fluid consumption were measured. Treatment with the combination significantly reduced blood glucose (306 ± 53 mg/dl) and insulin resistance score (1.93 ± 0.45) compared with diabetic controls (522 ± 24 mg/dl and 5.1 ± 0.69 respectively). Serum leptin (2.8 ± 0.6 ng/dl) and faecal triglycerides (108 ± 8 mg/dl) were significantly increased in rats treated with the combination compared with the diabetic control (1.8 ± 0.06 ng/dl and 86 ± 4 mg/dl). Serum triglyceride (47 ± 5.1 mg/dl), total cholesterol (98 ± 3.2 mg/dl) and food intake (26 ± 0.3 g) were significantly reduced by 45%, 25% and 25%, respectively, in rats treated with the combination compared with the diabetic control. Inositol and IP6 combined supplementation may be effective in the management of type 2 diabetes mellitus and related metabolic disorders by regulating some aspects of lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Shadae R Foster
- Biochemistry Section, Department of Basic Medical Sciences, The University of the West Indies, Mona, Jamaica
| | - Felix O Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, USA
| | - Juan Bustamante
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Ruby L A Lindo
- Biochemistry Section, Department of Basic Medical Sciences, The University of the West Indies, Mona, Jamaica
| | - Lowell L Dilworth
- Department of Pathology, the University of the West Indies, Mona, Jamaica
| |
Collapse
|
87
|
Abstract
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H(+)-PPase or VP1), the vacuolar proton ATPase (V-H(+)-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP to these organelles in several eukaryotes, such as yeast, trypanosomatids, Apicomplexan and algae. Studies in trypanosomatids have revealed the role of polyP and acidocalcisomes in osmoregulation and calcium signalling.
Collapse
|
88
|
Gu C, Wilson MSC, Jessen HJ, Saiardi A, Shears SB. Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels. PLoS One 2016; 11:e0165286. [PMID: 27788189 PMCID: PMC5082907 DOI: 10.1371/journal.pone.0165286] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields of cancer cell biology, intestinal immunity, and inflammation. In the current study, we describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant because InsP8 is one of a group of molecules collectively known as ‘inositol pyrophosphates’ (PP-InsPs)—highly ‘energetic’ and conserved regulators of cellular and organismal metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines could have impacted the phenotypic data obtained in previous studies. This difference in InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in any mammalian cell line); 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks), nor to a decrease in the capacity to dephosphorylate InsP8. We discuss how the divergent PP-InsP profiles of the newly-designated HCT116NIH and HCT116UCL lines should be considered an important research opportunity: future studies using these two lines may uncover new features that regulate InsP8 turnover, and may also yield new directions for studying InsP8 function.
Collapse
Affiliation(s)
- Chunfang Gu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, United States of America
| | - Miranda S. C. Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University, Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- * E-mail: (AS); (SS)
| | - Stephen B. Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, United States of America
- * E-mail: (AS); (SS)
| |
Collapse
|
89
|
Buades Fuster JM, Sanchís Cortés P, Perelló Bestard J, Grases Freixedas F. Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrologia 2016; 37:20-28. [PMID: 27697413 DOI: 10.1016/j.nefro.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 07/23/2016] [Indexed: 01/02/2023] Open
Abstract
Phytate, or myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate (InsP6), is a naturally occurring phosphorus compound that is present in many foods, mainly legumes, whole grains and nuts. Patients with chronic kidney disease (CKD) have cardiovascular disease mortality up to 30times higher than the general population. Vascular calcifications (VCs) directly contribute to overall morbidity and mortality, especially in CKD. In part, this high mortality is due to elevated levels of phosphorus in the blood. Therefore, control of dietary phosphorus is essential. Dietary phosphorus can be classified according to its structure in organic phosphorus (plant and animal) and inorganic (preservatives and additives). Plant-phosphorus (legumes and nuts), mainly associated with InsP6, is less absorbable by the human gastrointestinal tract as the bioavailability of phosphorous from plant-derived foods is very low. Recent data indicate that restriction of foods containing plant phosphates may compromise the adequate supply of nutrients that have a beneficial effect in preventing cardiovascular events, such as InsP6 or fibre found in legumes and nuts. Experimental studies in animals and observational studies in humans suggest that InsP6 can prevent lithiasis and VCs and protect from osteoporosis. In conclusion, we need prospective studies to elucidate the potential benefits and risks of phytate (InsP6) through the diet and as an intravenous drug in patients on haemodialysis.
Collapse
Affiliation(s)
| | - Pilar Sanchís Cortés
- Laboratorio de Investigación en Litiasis Renal, Instituto de Ciencias de la Salud Investigación (IUNICS-IdISPa), Departamento de Química, Universidad de las Islas Baleares, Palma de Mallorca, Islas Baleares, España
| | | | - Félix Grases Freixedas
- Laboratorio de Investigación en Litiasis Renal, Instituto de Ciencias de la Salud Investigación (IUNICS-IdISPa), Departamento de Química, Universidad de las Islas Baleares, Palma de Mallorca, Islas Baleares, España
| |
Collapse
|
90
|
Thota SG, Bhandari R. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 2016; 40:593-605. [PMID: 26333405 DOI: 10.1007/s12038-015-9549-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.
Collapse
Affiliation(s)
- Swarna Gowri Thota
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | |
Collapse
|
91
|
Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal 2016; 28:1124-36. [PMID: 27140681 PMCID: PMC4913618 DOI: 10.1016/j.cellsig.2016.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 11/21/2022]
Abstract
Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis. Gene-expression analysis of Ip6k1 knockout MEFs reveals down-regulation of cell surface-extracellular matrix signaling. Ip6k1 knockout MEFs show reduced adhesion-dependent signaling, cell spreading and migration. Cancer cells deficient in IP6K1 display reduced migration, invasion and anchorage independent growth. Mice lacking IP6K1 are resistant to progression from epithelial dysplasia to invasive carcinoma.
Collapse
|
92
|
Jones JP, Sima M, O’Hara RG, Stewart RJ. Water-Borne Endovascular Embolics Inspired by the Undersea Adhesive of Marine Sandcastle Worms. Adv Healthc Mater 2016; 5:795-801. [PMID: 26806763 PMCID: PMC5703062 DOI: 10.1002/adhm.201500825] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Transcatheter embolization is used to treat vascular malformations and defects, to control bleeding, and to selectively block blood supply to tissues. Liquid embolics are used for small vessel embolization that require distal penetration. Current liquid embolic agents have serious drawbacks, mostly centered around poor handling characteristics and toxicity. In this work, a water-borne in situ setting liquid embolic agent is described that is based on electrostatically condensed, oppositely charged polyelectrolytes-complex coacervates. At high ionic strengths, the embolic coacervates are injectable fluids that can be delivered through long narrow microcatheters. At physiological ionic strength, the embolic coacervates transition into a nonflowing solid morphology. Transcatheter embolization of rabbit renal arteries demonstrated capillary level penetration, homogeneous occlusion, and 100% devascularization of the kidney, without the embolic crossing into venous circulation. The benign water-borne composition and setting mechanism avoids many of the problems of current liquid embolics, and provides precise temporal and spatial control during endovascular embolization.
Collapse
Affiliation(s)
- Joshua P. Jones
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Monika Sima
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Ryan G. O’Hara
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Russell J. Stewart
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
93
|
Duliński R, Cielecka EK, Pierzchalska M, Byczyński Ł, Żyła K. Profile and bioavailability analysis of myo-inositol phosphates in rye bread supplemented with phytases: a study using an in vitro method and Caco-2 monolayers. Int J Food Sci Nutr 2016; 67:454-60. [PMID: 27019314 DOI: 10.3109/09637486.2016.1162769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Commercial preparations of 6-phytase A alone and in combination with phytase B were used in rye breadmaking. Determination of bioavailability of myo-inositol phosphates from bread was performed by an in vitro digestion method followed by the measurement of an uptake by Caco-2 cells in culture. In bread supplemented with a combination of 6-phytase A and phytase B, a significant reduction in phytate content was observed from 3.62 μmol/g in the control to 0.7 μmol/g. Bioavailability of phytate estimated by an in vitro method simulating digestion in the human alimentary tract was 9% in the bread supplemented with phytase B, 7% (6-phytase A) and 50% in the control bread. In cell culture, the bioaccessibilities of inositol triphosphates from bread baked with the addition of 6-phytase A was higher by 36% as compared to the samples baked with phytase B and by 32% in breads baked with combination of both phytases.
Collapse
Affiliation(s)
- R Duliński
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture in Krakow , ul. Balicka 122 , Kraków , Poland
| | - E K Cielecka
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture in Krakow , ul. Balicka 122 , Kraków , Poland
| | - M Pierzchalska
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture in Krakow , ul. Balicka 122 , Kraków , Poland
| | - Ł Byczyński
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture in Krakow , ul. Balicka 122 , Kraków , Poland
| | - K Żyła
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture in Krakow , ul. Balicka 122 , Kraków , Poland
| |
Collapse
|
94
|
Pavlovic I, Thakor DT, Vargas JR, McKinlay CJ, Hauke S, Anstaett P, Camuña RC, Bigler L, Gasser G, Schultz C, Wender PA, Jessen HJ. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nat Commun 2016; 7:10622. [PMID: 26842801 PMCID: PMC4743007 DOI: 10.1038/ncomms10622] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7. The caged molecule is stable and releases InsP7 only on irradiation. While photocaged InsP7 does not enter cells, its cellular uptake is achieved using nanoparticles formed by association with a guanidinium-rich molecular transporter. This novel synthesis and unprecedented polyphosphate delivery strategy enable the first studies required to understand InsP7 signalling in cells with controlled spatiotemporal resolution. It is shown herein that cytoplasmic photouncaging of InsP7 leads to translocation of the PH-domain of Akt, an important signalling-node kinase involved in glucose homeostasis, from the membrane into the cytoplasm. Photocaged inositol-pyrophosphates offer a tool to study cellular signalling, but their challenging synthesis has precluded any biological studies so far. Here, the authors report the synthesis and cellular delivery of a photocaged analogue, and show that it mediates protein translocation in cellulo.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Colin J McKinlay
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Rafael C Camuña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, Malaga 29071, Spain
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
95
|
Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2016; 113:996-1001. [PMID: 26755590 DOI: 10.1073/pnas.1519440113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP.
Collapse
|
96
|
Bizzarri M, Dinicola S, Bevilacqua A, Cucina A. Broad Spectrum Anticancer Activity of Myo-Inositol and Inositol Hexakisphosphate. Int J Endocrinol 2016; 2016:5616807. [PMID: 27795708 PMCID: PMC5067332 DOI: 10.1155/2016/5616807] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Inositols (myo-inositol and inositol hexakisphosphate) exert a wide range of critical activities in both physiological and pathological settings. Deregulated inositol metabolism has been recorded in a number of diseases, including cancer, where inositol modulates different critical pathways. Inositols inhibit pRB phosphorylation, fostering the pRB/E2F complexes formation and blocking progression along the cell cycle. Inositols reduce PI3K levels, thus counteracting the activation of the PKC/RAS/ERK pathway downstream of PI3K activation. Upstream of that pathway, inositols disrupt the ligand interaction between FGF and its receptor as well as with the EGF-transduction processes involving IGF-II receptor and AP-1 complexes. Additionally, Akt activation is severely impaired upon inositol addition. Downregulation of both Akt and ERK leads consequently to NF-kB inhibition and reduced expression of inflammatory markers (COX-2 and PGE2). Remarkably, inositol-induced downregulation of presenilin-1 interferes with the epithelial-mesenchymal transition and reduces Wnt-activation, β-catenin translocation, Notch-1, N-cadherin, and SNAI1 release. Inositols interfere also with the cytoskeleton by upregulating Focal Adhesion Kinase and E-cadherin and decreasing Fascin and Cofilin, two main components of pseudopodia, leading hence to invasiveness impairment. This effect is reinforced by the inositol-induced inhibition on metalloproteinases and ROCK1/2 release. Overall, these effects enable inositols to remodel the cytoskeleton architecture.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, Rome, Italy
- *Mariano Bizzarri:
| | - Simona Dinicola
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Arturo Bevilacqua
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
- Azienda Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
97
|
Abstract
Here are comments on the recent paper on the determination of inositol hexaphosphate (IP6) in human plasma and on its efficacy.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, 100 Penn Street, Baltimore, MD, USA
| |
Collapse
|
98
|
Irvine RF, Bulley SJ, Wilson MS, Saiardi A. There is no 'Conundrum' of InsP6. Open Biol 2015; 5:150181. [PMID: 26581573 PMCID: PMC4680572 DOI: 10.1098/rsob.150181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/19/2015] [Indexed: 11/12/2022] Open
Abstract
Indirect assays have claimed to quantify phytate (InsP6) levels in human biofluids, but these have been based on the initial assumption that InsP6 is there, an assumption that our more direct assays disprove. We have shown that InsP6 does not and cannot (because of the presence of an active InsP6 phosphatase in serum) exist in mammalian serum or urine. Therefore, any physiological effects of dietary InsP6 can only be due either to its actions in the gut as a polyvalent cation chelator, or to inositol generated by its dephosphorylation by gut microflora.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Simon J Bulley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK Department of Haematology, Cambridge University Hospitals NHS Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Miranda S Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
99
|
Wang H, Nair VS, Holland AA, Capolicchio S, Jessen HJ, Johnson MK, Shears SB. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity. Biochemistry 2015; 54:6462-74. [PMID: 26422458 DOI: 10.1021/acs.biochem.5b00532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity.
Collapse
Affiliation(s)
- Huanchen Wang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health , 101 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Vasudha S Nair
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health , 101 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ashley A Holland
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States
| | - Samanta Capolicchio
- Department of Chemistry, University of Zurich (UZH) , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Henning J Jessen
- Department of Chemistry, University of Zurich (UZH) , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States
| | - Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health , 101 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
100
|
Pavlovic I, Thakor DT, Bigler L, Wilson MSC, Laha D, Schaaf G, Saiardi A, Jessen HJ. Prometabolites of 5-Diphospho-myo-inositol Pentakisphosphate. Angew Chem Int Ed Engl 2015; 54:9622-6. [PMID: 26014370 DOI: 10.1002/anie.201503094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 11/10/2022]
Abstract
Diphospho-myo-inositol phosphates (PP-InsP(y)) are an important class of cellular messengers. Thus far, no method for the transport of PP-InsP(y) into living cells is available. Owing to their high negative charge density, PP-InsP(y) will not cross the cell membrane. A strategy to circumvent this issue involves the generation of precursors in which the negative charges are masked with biolabile groups. A PP-InsP(y) prometabolite would require twelve to thirteen biolabile groups, which need to be cleaved by cellular enzymes to release the parent molecules. Such densely modified prometabolites of phosphate esters and anhydrides have never been reported to date. This study discloses the synthesis of such agents and an analysis of their metabolism in tissue homogenates by gel electrophoresis. The acetoxybenzyl-protected system is capable of releasing 5-PP-InsP5 in mammalian cell/tissue homogenates within a few minutes and can be used to release 5-PP-InsP5 inside cells. These molecules will serve as a platform for the development of fundamental tools required to study PP-InsP(y) physiology.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Laurent Bigler
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | | | - Debabrata Laha
- Center for Plant Molecular Biology, University of Tübingen (Germany)
| | - Gabriel Schaaf
- Center for Plant Molecular Biology, University of Tübingen (Germany)
| | | | - Henning J Jessen
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland).
| |
Collapse
|