51
|
Kaesler E, Kappeler PM, Brameier M, Demeler J, Kraus C, Rakotoniaina JH, Hämäläinen AM, Huchard E. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol Ecol 2017; 26:5629-5645. [PMID: 28833696 DOI: 10.1111/mec.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.
Collapse
Affiliation(s)
- Eva Kaesler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany
| | - Peter M Kappeler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markus Brameier
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Janina Demeler
- Institut für Parasitologie und Tropenveterinärmedizin, Berlin, Germany
| | - Cornelia Kraus
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Josué H Rakotoniaina
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anni M Hämäläinen
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elise Huchard
- Institute for Evolutionary Biology, Montpellier (ISEM, UMR 5554), CNRS, Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
52
|
Lukasch B, Westerdahl H, Strandh M, Winkler H, Moodley Y, Knauer F, Hoi H. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system. PeerJ 2017; 5:e3679. [PMID: 28875066 PMCID: PMC5581531 DOI: 10.7717/peerj.3679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/22/2017] [Indexed: 11/20/2022] Open
Abstract
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
Collapse
Affiliation(s)
- Barbara Lukasch
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Helena Westerdahl
- Department of Biology, Molecular Ecology & Evolution Lab, Lund University, Lund, Sweden
| | - Maria Strandh
- Department of Biology, Molecular Ecology & Evolution Lab, Lund University, Lund, Sweden
| | - Hans Winkler
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Yoshan Moodley
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.,Department of Zoology, University of Venda, Thohoyandou, Republic of South Africa
| | - Felix Knauer
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Hoi
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
53
|
Wang S, Liu C, Wilson AB, Zhao N, Li X, Zhu W, Gao X, Liu X, Li Y. Pathogen richness and abundance predict patterns of adaptive major histocompatibility complex variation in insular amphibians. Mol Ecol 2017; 26:4671-4685. [PMID: 28734069 DOI: 10.1111/mec.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
The identification of the factors responsible for genetic variation and differentiation at adaptive loci can provide important insights into the evolutionary process and is crucial for the effective management of threatened species. We studied the impact of environmental viral richness and abundance on functional diversity and differentiation of the MHC class Ia locus in populations of the black-spotted pond frog (Pelophylax nigromaculatus), an IUCN-listed species, on 24 land-bridge islands of the Zhoushan Archipelago and three nearby mainland sites. We found a high proportion of private MHC alleles in mainland and insular populations, corresponding to 32 distinct functional supertypes, and strong positive selection on MHC antigen-binding sites in all populations. Viral pathogen diversity and abundance were reduced at island sites relative to the mainland, and islands housed distinctive viral communities. Standardized MHC diversity at island sites exceeded that found at neutral microsatellites, and the representation of key functional supertypes was positively correlated with the abundance of specific viruses in the environment (Frog virus 3 and Ambystoma tigrinum virus). These results indicate that pathogen-driven diversifying selection can play an important role in maintaining functionally important MHC variation following island isolation, highlighting the importance of considering functionally important genetic variation and host-pathogen associations in conservation planning and management.
Collapse
Affiliation(s)
- Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Conghui Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anthony B Wilson
- Department of Biology, Brooklyn College and The Graduate Center, City University of New York, Brooklyn, NY, USA
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xianping Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Biedrzycka A, O'Connor E, Sebastian A, Migalska M, Radwan J, Zając T, Bielański W, Solarz W, Ćmiel A, Westerdahl H. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions. BMC Evol Biol 2017; 17:159. [PMID: 28679358 PMCID: PMC5497381 DOI: 10.1186/s12862-017-0997-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/14/2017] [Indexed: 11/23/2022] Open
Abstract
Background Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. Results The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Conclusions Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the putative function of different MHC genes in future studies of MHC in relation to disease resistance and fitness. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0997-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Emily O'Connor
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62, Lund, Sweden
| | - Alvaro Sebastian
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Magdalena Migalska
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Wojciech Bielański
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Wojciech Solarz
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Adam Ćmiel
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62, Lund, Sweden
| |
Collapse
|
55
|
Schmitt C, Garant D, Bélisle M, Pelletier F. Linking innate immunogenetic variation with phenotypic traits in a wild population of tree swallows, Tachycineta bicolor. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
56
|
Wells K, Hamede RK, Kerlin DH, Storfer A, Hohenlohe PA, Jones ME, McCallum HI. Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecol Lett 2017; 20:770-778. [PMID: 28489304 PMCID: PMC6759051 DOI: 10.1111/ele.12776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/18/2017] [Accepted: 04/02/2017] [Indexed: 12/15/2022]
Abstract
Emerging infectious diseases rarely affect all members of a population equally and determining how individuals' susceptibility to infection is related to other components of their fitness is critical to understanding disease impacts at a population level and for predicting evolutionary trajectories. We introduce a novel state-space model framework to investigate survival and fecundity of Tasmanian devils (Sarcophilus harrisii) affected by a transmissible cancer, devil facial tumour disease. We show that those devils that become host to tumours have otherwise greater fitness, with higher survival and fecundity rates prior to disease-induced death than non-host individuals that do not become infected, although high tumour loads lead to high mortality. Our finding that individuals with the greatest reproductive value are those most affected by the cancer demonstrates the need to quantify both survival and fecundity in context of disease progression for understanding the impact of disease on wildlife populations.
Collapse
Affiliation(s)
- Konstans Wells
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Rodrigo K. Hamede
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia
| | - Douglas H. Kerlin
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Paul A. Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Menna E. Jones
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
57
|
Didinger C, Eimes JA, Lillie M, Waldman B. Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:69-79. [PMID: 28027939 DOI: 10.1016/j.dci.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Amphibians, as the first terrestrial vertebrates, offer a window into early major histocompatibility complex (MHC) evolution. We characterized the MHC class I of two Korean amphibians, the Asiatic toad (Bufo gargarizans) and the Japanese tree frog (Hyla japonica). We found at least four transcribed MHC class I (MHC I) loci, the highest number confirmed in any anuran to date. Furthermore, we identified MHC I transcripts in terrestrial adults, and possibly in aquatic larvae, of both species. We conducted a phylogenetic analysis based on MHC I sequence data and found that B. gargarizans and H. japonica cluster together in the superfamily Nobleobatrachia. We further identified three supertypes shared by the two species. Our results reveal substantial variation in the number of MHC I loci in anurans and suggest that certain supertypes have particular physiochemical properties that may confer pathogen resistance.
Collapse
Affiliation(s)
- Chelsea Didinger
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - John A Eimes
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Mette Lillie
- Department of Medical Biochemistry and Microbiology (IMBIM), Genomics, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
58
|
Bourgeois Y, Roulin AC, Müller K, Ebert D. Parasitism drives host genome evolution: Insights from thePasteuria ramosa-Daphnia magnasystem. Evolution 2017; 71:1106-1113. [DOI: 10.1111/evo.13209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Yann Bourgeois
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
| | - Anne C. Roulin
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Institute of Plant and Microbial Biology; Zollikerstrasse 107 8008 Zürich Switzerland
| | - Kristina Müller
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
| | - Dieter Ebert
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
59
|
Hofmann MJ, Bracamonte SE, Eizaguirre C, Barluenga M. Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids. BMC Genet 2017; 18:15. [PMID: 28201988 PMCID: PMC5310070 DOI: 10.1186/s12863-017-0474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a key component of the adaptive immune system of all vertebrates and consists of the most polymorphic genes known to date. Due to this complexity, however, MHC remains to be characterized in many species including any Neotropical cichlid fish. Neotropical crater lake cichlids are ideal models to study evolutionary processes as they display one of the most convincing examples of sympatric and repeated parallel radiation events within and among isolated crater lakes. RESULTS Here, we characterized the genes of MHC class IIB chain of the Midas cichlid species complex (Amphilophus cf. citrinellus) including fish from five lakes in Nicaragua. We designed 19 new specific primers anchored in a stepwise fashion in order to detect all alleles present. We obtained 866 genomic DNA (gDNA) sequences from thirteen individuals and 756 additional sequences from complementary DNA (cDNA) of seven of those individuals. We identified 69 distinct alleles with up to 25 alleles per individual. We also found considerable intron length variation and mismatches of alleles detected in cDNA and gDNA suggesting that some loci have undergone pseudogenization. Lastly, we created a model of protein structure homology for each allele and identified their key structural components. CONCLUSIONS Overall, the Midas cichlid has one of the most diverse repertoires of MHC class IIB genes known, which could serve as a powerful tool to elucidate the process of divergent radiations, colonization and speciation in sympatry.
Collapse
Affiliation(s)
- Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Seraina E Bracamonte
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Christophe Eizaguirre
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| |
Collapse
|
60
|
Rico Y, Ethier DM, Davy CM, Sayers J, Weir RD, Swanson BJ, Nocera JJ, Kyle CJ. Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. Evol Appl 2016; 9:1271-1284. [PMID: 27877205 PMCID: PMC5108218 DOI: 10.1111/eva.12410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Small and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (Taxidea taxus), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations. Our results suggest that gene flow plays a prominent role in shaping MHC polymorphism across large spatial scales, while the interplay between gene flow and selection was stronger towards the northern peripheries. The similarity of MHC alleles within subspecies relative to their neutral genetic differentiation suggests that adaptive divergence among subspecies can be maintained despite ongoing gene flow along subspecies boundaries. Neutral genetic diversity was low in small relative to large populations, but MHC diversity within individuals was high in small populations. Despite reduced neutral genetic variation, small and isolated populations harbour functional variation that likely contribute to the species evolutionary potential at the northern range. Our findings suggest that conservation approaches should focus on managing adaptive variation across the species range rather than protecting subspecies per se.
Collapse
Affiliation(s)
- Yessica Rico
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
- Present address: CONACYTInstituto de Ecología A.C.Centro Regional del BajíoAvenida Lázaro Cárdenas 253PátzcuaroMichoacán61600México
| | - Danielle M. Ethier
- Ontario Badger ProjectGuelphONCanada
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Christina M. Davy
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| | | | - Richard D. Weir
- Ecosystems Protection & Sustainability BranchMinistry of EnvironmentVictoriaBCCanada
| | | | - Joseph J. Nocera
- Wildlife Research and Monitoring SectionMinistry of Natural Resources & ForestryPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| |
Collapse
|
61
|
Niskanen AK, Kennedy LJ, Lohi H, Aspi J, Pyhäjärvi T. No evidence of prenatal diversifying selection at locus or supertype levels in the dog MHC class II loci. Canine Genet Epidemiol 2016; 3:9. [PMID: 27891241 PMCID: PMC5116190 DOI: 10.1186/s40575-016-0038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite decades of studying, the mechanisms maintaining high diversity in the genes of the Major Histocompatibility Complex (MHC) are still puzzling scientists. In addition to pathogen recognition and other functions, MHC molecules may act prenatally in mate choice and in maternal-foetal interactions. These interactions are potential selective mechanisms that increase genetic diversity in the MHC. During pregnancy, immune response has a dual role: the foetus represents foreign tissue compared to mother, but histo-incompatibility is required for successful pregnancy. We have studied the prenatal selection in MHC class II loci (DLA-DQA1, DLA-DQB1 and DLA-DRB1) in domestic dogs by comparing the observed and expected offspring genotype proportions in 110 dog families. Several potential selection targets were addressed, including the peptide-binding site, the MHC locus, three-locus haplotype and supertype levels. For the supertype analysis, the first canine supertype classification was created based on in silico analysis of peptide-binding amino-acid polymorphism. RESULTS In most loci and levels, no deviation from the expected genotype frequencies was observed. However, one peptide-binding site in DLA-DRB1 had an excess of heterozygotes among the offspring. In addition, if the father shared a DLA-DRB1 allele with the mother, that allele was inherited by the offspring more frequently than expected, suggesting the selective advantage of a histo-compatible foetus, in contrast to our expectations. CONCLUSIONS We conclude that there is some evidence of post-copulatory selection at nucleotide site level in the MHC loci of pet dogs. But due to no indication of selection at locus, three-locus, or supertype levels, we estimated that the prenatal selection coefficient is less than 0.3 in domestic dogs and very likely other factors are more important in maintaining the genetic diversity in MHC loci.
Collapse
Affiliation(s)
- Alina K Niskanen
- Department of Genetics and Physiology, University of Oulu, PO Box 3000, Oulu, FIN-90014 Finland ; Present address: Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO -7491, Trondheim, Norway
| | - Lorna J Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT UK
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Institute of Genetics, Biomedicum Helsinki, PO Box 63, FIN-00014 Helsinki, Finland
| | - Jouni Aspi
- Department of Genetics and Physiology, University of Oulu, PO Box 3000, Oulu, FIN-90014 Finland
| | - Tanja Pyhäjärvi
- Department of Genetics and Physiology, University of Oulu, PO Box 3000, Oulu, FIN-90014 Finland
| |
Collapse
|
62
|
Vlček J, Hoeck PEA, Keller LF, Wayhart JP, Dolinová I, Štefka J. Balancing selection and genetic drift create unusual patterns of MHCIIβ variation in Galápagos mockingbirds. Mol Ecol 2016; 25:4757-72. [PMID: 27545344 DOI: 10.1111/mec.13807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The extracellular subunit of the major histocompatibility complex MHCIIβ plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIβ, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIβ diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIβ loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIβ diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIβ alleles present in a population. However, the number of MHCIIβ alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIβ diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection.
Collapse
Affiliation(s)
- Jakub Vlček
- Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1670, České Budějovice, Czech Republic
| | - Paquita E A Hoeck
- Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jessica P Wayhart
- Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, Czech Republic
| | - Jan Štefka
- Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1670, České Budějovice, Czech Republic.
| |
Collapse
|
63
|
Dearborn DC, Gager AB, McArthur AG, Gilmour ME, Mandzhukova E, Mauck RA. Gene duplication and divergence produce divergent MHC genotypes without disassortative mating. Mol Ecol 2016; 25:4355-67. [PMID: 27376487 DOI: 10.1111/mec.13747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023]
Abstract
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC-disassortative mate choice. However, many species lack this expected pattern of MHC-disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus-specific primers for high-throughput sequencing of two expressed MHC Class II B genes in Leach's storm-petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene-specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC-dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.
Collapse
Affiliation(s)
- Donald C Dearborn
- Department of Biology, Bates College, Lewiston, ME, 04240, USA.,School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Andrea B Gager
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Morgan E Gilmour
- Ocean Sciences Department, University of California, Santa Cruz, CA, 95064, USA
| | | | - Robert A Mauck
- Department of Biology, Kenyon College, Gambier, OH, 43022, USA
| |
Collapse
|
64
|
Blanchong JA, Robinson SJ, Samuel MD, Foster JT. Application of genetics and genomics to wildlife epidemiology. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Blanchong
- Department of Natural Resource Ecology and Management; Iowa State University; 339 Science II Ames IA 50011 USA
| | | | - Michael D. Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; 204 Russell Labs, 1630 Linden Dr. Madison WI 53706 USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences; University of New Hampshire; 291 Rudman Hall Durham NH 03824 USA
| |
Collapse
|
65
|
Buczek M, Okarma H, Demiaszkiewicz AW, Radwan J. MHC, parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis. J Evol Biol 2016; 29:617-32. [PMID: 26687843 DOI: 10.1111/jeb.12811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
The Hamilton-Zuk hypothesis proposes that the genetic benefits of preferences for elaborated secondary sexual traits have their origins in the arms race between hosts and parasites, which maintains genetic variance in parasite resistance. Infection, in turn, can be reflected in the expression of costly sexual ornaments. However, the link between immune genes, infection and the expression of secondary sexual traits has rarely been investigated. Here, we explored whether the presence and identity of functional variants (supertypes) of the highly polymorphic major histocompatibility complex (MHC), which is responsible for the recognition of parasites, predict the load of lung and gut parasites and antler development in the red deer (Cervus elaphus). While we found MHC supertypes to be associated with infection by a number of parasite species, including debilitating lung nematodes, we did not find support for the Hamilton-Zuk hypothesis. On the contrary, we found that lung nematode load was positively associated with antler development. We also found that the supertypes that were associated with resistance to certain parasites at the same time cause susceptibility to others. Such trade-offs may undermine the potential genetic benefits of mate choice for resistant partners.
Collapse
Affiliation(s)
- M Buczek
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - H Okarma
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | | | - J Radwan
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.,Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
66
|
Jenkins T, Delhaye J, Christe P. Testing Local Adaptation in a Natural Great Tit-Malaria System: An Experimental Approach. PLoS One 2015; 10:e0141391. [PMID: 26555892 PMCID: PMC4640884 DOI: 10.1371/journal.pone.0141391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 12/03/2022] Open
Abstract
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.
Collapse
Affiliation(s)
- Tania Jenkins
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jessica Delhaye
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
67
|
Lillie M, Grueber CE, Sutton JT, Howitt R, Bishop PJ, Gleeson D, Belov K. Selection on MHC class II supertypes in the New Zealand endemic Hochstetter's frog. BMC Evol Biol 2015; 15:63. [PMID: 25886729 PMCID: PMC4415247 DOI: 10.1186/s12862-015-0342-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/27/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The New Zealand native frogs, family Leiopelmatidae, are among the most archaic in the world. Leiopelma hochstetteri (Hochstetter's frog) is a small, semi-aquatic frog with numerous, fragmented populations scattered across New Zealand's North Island. We characterized a major histocompatibility complex (MHC) class II B gene (DAB) in L. hochstetteri from a spleen transcriptome, and then compared its diversity to neutral microsatellite markers to assess the adaptive genetic diversity of five populations ("evolutionarily significant units", ESUs). RESULTS L. hochstetteri possessed very high MHC diversity, with 74 DAB alleles characterized. Extremely high differentiation was observed at the DAB locus, with only two alleles shared between populations, a pattern that was not reflected in the microsatellites. Clustering analysis on putative peptide binding residues of the DAB alleles indicated four functional supertypes, all of which were represented in 4 of 5 populations, albeit at different frequencies. Otawa was an exception to these observations, with only two DAB alleles present. CONCLUSIONS This study of MHC diversity highlights extreme population differentiation at this functional locus. Supertype differentiation was high among populations, suggesting spatial and/or temporal variation in selection pressures. Low DAB diversity in Otawa may limit this population's adaptive potential to future pathogenic challenges.
Collapse
Affiliation(s)
- Mette Lillie
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| | - Catherine E Grueber
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
- San Diego Zoo Global, San Diego, USA.
| | - Jolene T Sutton
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, USA.
| | | | - Phillip J Bishop
- Department of Biology, University of Otago, Dunedin, New Zealand.
| | - Dianne Gleeson
- Landcare Research, Auckland, New Zealand.
- Institute for Applied Ecology, University of Canberra, Bruce, Australia.
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
68
|
Eimes JA, Townsend AK, Sepil I, Nishiumi I, Satta Y. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism. PeerJ 2015; 3:e853. [PMID: 25802816 PMCID: PMC4369332 DOI: 10.7717/peerj.853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of positively selected amino acids by supertyping revealed a single supertype shared by only jungle and carrion crows, a pattern consistent with convergence, the overall phylogenetic patterns we observed suggest that TSP, rather than convergence, explains the interspecific allelic similarity of MHC IIB genes in these species of crows.
Collapse
Affiliation(s)
- John A Eimes
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| | | | - Irem Sepil
- Department of Zoology, University of Oxford , Oxford , UK
| | - Isao Nishiumi
- Department of Zoology, National Museum of Nature and Science , Tsukuba , Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| |
Collapse
|
69
|
Whittingham LA, Freeman-Gallant CR, Taff CC, Dunn PO. Different ornaments signal male health and MHC variation in two populations of a warbler. Mol Ecol 2015; 24:1584-95. [PMID: 25728470 DOI: 10.1111/mec.13130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Male traits that signal health and vigour are used by females to choose better quality mates, but in some cases the male trait selected by females differs among populations. Multiple male traits can be maintained through female mate choice if both traits are equally honest indicators of male quality, but tests of this prediction are rare. By choosing males based on such traits, females could gain direct benefits from males (assistance with parental care), but when females choose extra-pair mates based on these traits, females gain only male sperm, and potentially indirect genetic benefits for their offspring. In common yellowthroats (Geothylpis trichas), female choice of extra-pair mates targets two different plumage ornaments: the black mask in a Wisconsin population and the yellow bib in a New York population. Previously, we found that the black mask in Wisconsin is related to greater major histocompatibility complex (MHC) class II variation, which in turn signals better survival and disease resistance. In this study, we examined the signalling function of the yellow bib in New York to test whether it signals the same aspects of male quality as the black mask in Wisconsin. As predicted, we found that the yellow bib in New York is most closely associated with MHC variation, which also signals survival and resistance to blood parasites. Thus, the ornament preferred by females differs between the two populations, but the different ornaments signal similar aspects of male health and genetic quality, specifically information regarding MHC variation and potential indirect genetic benefits to females.
Collapse
Affiliation(s)
- Linda A Whittingham
- Department of Biological Sciences, Behavioral and Molecular Ecology Group, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | | | | |
Collapse
|
70
|
Pechouskova E, Dammhahn M, Brameier M, Fichtel C, Kappeler PM, Huchard E. MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener. Immunogenetics 2015; 67:229-45. [PMID: 25687337 PMCID: PMC4357647 DOI: 10.1007/s00251-015-0827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe’s mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Collapse
Affiliation(s)
- Eva Pechouskova
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
71
|
Jones MR, Cheviron ZA, Carling MD. Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine. Ecol Evol 2015; 5:1045-60. [PMID: 25798222 PMCID: PMC4364819 DOI: 10.1002/ece3.1391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
The environment shapes host-parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ∽26% decrease in infection probability at middle elevations (1501-3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Zoology and Physiology, Berry Biodiversity Conservation Center, University of Wyoming 1000 E. University Ave., Dept. 4304, Laramie, Wyoming, 82071
| | - Zachary A Cheviron
- Department of Animal Biology, School of Integrative Biology, University of Illinois Urbana-Champaign 505 South Goodwin Ave., Urbana, Illinois, 61801
| | - Matthew D Carling
- Department of Zoology and Physiology, Berry Biodiversity Conservation Center, University of Wyoming 1000 E. University Ave., Dept. 4304, Laramie, Wyoming, 82071
| |
Collapse
|
72
|
454 screening of individual MHC variation in an endemic island passerine. Immunogenetics 2014; 67:149-62. [PMID: 25515684 PMCID: PMC4325181 DOI: 10.1007/s00251-014-0822-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 11/03/2022]
Abstract
Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot's pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot's pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot's pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot's pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC.
Collapse
|
73
|
Effects of heterozygosity and MHC diversity on patterns of extra-pair paternity in the socially monogamous scarlet rosefinch. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1858-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Svensson-Coelho M, Ellis VA, Loiselle BA, Blake JG, Ricklefs RE. Reciprocal Specialization in Multihost Malaria Parasite Communities of Birds: A Temperate-Tropical Comparison. Am Nat 2014; 184:624-35. [DOI: 10.1086/678126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
75
|
Lauron EJ, Oakgrove KS, Tell LA, Biskar K, Roy SW, Sehgal RNM. Transcriptome sequencing and analysis of Plasmodium gallinaceum reveals polymorphisms and selection on the apical membrane antigen-1. Malar J 2014; 13:382. [PMID: 25261185 PMCID: PMC4182871 DOI: 10.1186/1475-2875-13-382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium erythrocyte invasion genes play a key role in malaria parasite transmission, host-specificity and immuno-evasion. However, the evolution of the genes responsible remains understudied. Investigating these genes in avian malaria parasites, where diversity is particularly high, offers new insights into the processes that confer malaria pathogenesis. These parasites can pose a significant threat to birds and since birds play crucial ecological roles they serve as important models for disease dynamics. Comprehensive knowledge of the genetic factors involved in avian malaria parasite invasion is lacking and has been hampered by difficulties in obtaining nuclear data from avian malaria parasites. Thus the first Illumina-based de novo transcriptome sequencing and analysis of the chicken parasite Plasmodium gallinaceum was performed to assess the evolution of essential Plasmodium genes. Methods White leghorn chickens were inoculated intravenously with erythrocytes containing P. gallinaceum. cDNA libraries were prepared from RNA extracts collected from infected chick blood and sequencing was run on the HiSeq2000 platform. Orthologues identified by transcriptome sequencing were characterized using phylogenetic, ab initio protein modelling and comparative and population-based methods. Results Analysis of the transcriptome identified several orthologues required for intra-erythrocytic survival and erythrocyte invasion, including the rhoptry neck protein 2 (RON2) and the apical membrane antigen-1 (AMA-1). Ama-1 of avian malaria parasites exhibits high levels of genetic diversity and evolves under positive diversifying selection, ostensibly due to protective host immune responses. Conclusion Erythrocyte invasion by Plasmodium parasites require AMA-1 and RON2 interactions. AMA-1 and RON2 of P. gallinaceum are evolutionarily and structurally conserved, suggesting that these proteins may play essential roles for avian malaria parasites to invade host erythrocytes. In addition, host-driven selection presumably results in the high levels of genetic variation found in ama-1 of avian Plasmodium species. These findings have implications for investigating avian malaria epidemiology and population dynamics. Moreover, this work highlights the P. gallinaceum transcriptome as an important public resource for investigating the diversity and evolution of essential Plasmodium genes. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-382) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elvin J Lauron
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Rodríguez A, Broggi J, Alcaide M, Negro JJ, Figuerola J. Determinants and short-term physiological consequences of PHA immune response in lesser kestrel nestlings. ACTA ACUST UNITED AC 2014; 321:376-86. [PMID: 24807828 DOI: 10.1002/jez.1868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 02/03/2023]
Abstract
Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis.
Collapse
Affiliation(s)
- Airam Rodríguez
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain; Department of Research, Phillip Island Nature Parks, Cowes, Victoria, Australia
| | | | | | | | | |
Collapse
|
77
|
Atkinson CT, Saili KS, Utzurrum RB, Jarvi SI. Experimental evidence for evolved tolerance to avian malaria in a wild population of low elevation Hawai'i 'Amakihi (Hemignathus virens). ECOHEALTH 2013; 10:366-75. [PMID: 24430825 DOI: 10.1007/s10393-013-0899-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 05/11/2023]
Abstract
Introduced vector-borne diseases, particularly avian malaria (Plasmodium relictum) and avian pox virus (Avipoxvirus spp.), continue to play significant roles in the decline and extinction of native forest birds in the Hawaiian Islands. Hawaiian honeycreepers are particularly susceptible to avian malaria and have survived into this century largely because of persistence of high elevation refugia on Kaua'i, Maui, and Hawai'i Islands, where transmission is limited by cool temperatures. The long term stability of these refugia is increasingly threatened by warming trends associated with global climate change. Since cost effective and practical methods of vector control in many of these remote, rugged areas are lacking, adaptation through processes of natural selection may be the best long-term hope for recovery of many of these species. We document emergence of tolerance rather than resistance to avian malaria in a recent, rapidly expanding low elevation population of Hawai'i 'Amakihi (Hemignathus virens) on the island of Hawai'i. Experimentally infected low elevation birds had lower mortality, lower reticulocyte counts during recovery from acute infection, lower weight loss, and no declines in food consumption relative to experimentally infected high elevation Hawai'i 'Amakihi in spite of similar intensities of infection. Emergence of this population provides an exceptional opportunity for determining physiological mechanisms and genetic markers associated with malaria tolerance that can be used to evaluate whether other, more threatened species have the capacity to adapt to this disease.
Collapse
Affiliation(s)
- Carter T Atkinson
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, P.O. Box 44, Hawaii, HI, 96718, USA,
| | | | | | | |
Collapse
|
78
|
Knowles SCL, Wood MJ, Alves R, Sheldon BC. Dispersal in a patchy landscape reveals contrasting determinants of infection in a wild avian malaria system. J Anim Ecol 2013; 83:429-39. [DOI: 10.1111/1365-2656.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 09/14/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah C. L. Knowles
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
- Department of Infectious Disease Epidemiology; Imperial College London; St Mary's Campus, Norfolk Place London W2 1PG UK
| | - Matthew J. Wood
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
- Department of Natural and Social Sciences; University of Gloucestershire; Francis Close Hall Cheltenham GL50 4AZ UK
| | - Ricardo Alves
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Ben C. Sheldon
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| |
Collapse
|
79
|
Westerdahl H, Stjernman M, Råberg L, Lannefors M, Nilsson JÅ. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits. PLoS One 2013; 8:e72647. [PMID: 24023631 PMCID: PMC3758318 DOI: 10.1371/journal.pone.0072647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|