51
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
52
|
Li K, Liu Y, Xu Z, Zhang Y, Yao Y, Nair V, Liu C, Zhang Y, Gao Y, Qi X, Cui H, Gao L, Wang X. Prevention of Avian Retrovirus Infection in Chickens Using CRISPR-Cas9 Delivered by Marek's Disease Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:343-353. [PMID: 32650233 PMCID: PMC7340974 DOI: 10.1016/j.omtn.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Reticuloendotheliosis virus (REV) is an avian retrovirus that causes an oncogenic, immunosuppressive, and runting-stunting syndrome in avian hosts. The co-infection of REV and Marek’s disease virus (MDV), an oncogenic herpesvirus in chickens, further increases disease severity and reduces MDV vaccine efficacy. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has successfully been used against pathogens in mammalian cells. However, the large size of the CRISPR-Cas9 coding sequences makes its in vivo delivery challenging. Here, following the design of a panel of single-guided RNAs targeting REV, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the long terminal repeats of REV, resulting in the inhibition of viral protein expression. The CRISPR-Cas9 system disrupts the integrated proviral genome and provides defense against new viral infection and replication in chicken cells. Moreover, by constructing recombinant MDV carrying CRISPR-Cas9 components using an attenuated MDV vaccine strain as the vector, we efficiently delivered the CRISPR-Cas9 system into chickens, and the MDV-delivered CRISPR-Cas9 drastically reduced REV viral load and significantly diminished REV-associated symptoms. To our knowledge, this is the first study establishing avian retrovirus resistance in chickens utilizing herpesvirus-delivered CRISPR-Cas9, which provides a novel and effective strategy against viral infections.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zengkun Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
53
|
Mohammadzadeh I, Qujeq D, Yousefi T, Ferns GA, Maniati M, Vaghari-Tabari M. CRISPR/Cas9 gene editing: A new therapeutic approach in the treatment of infection and autoimmunity. IUBMB Life 2020; 72:1603-1621. [PMID: 32344465 DOI: 10.1002/iub.2296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) may be viewed as an adaptive bacterial immune system. When a virus infects a bacterium, a fragment of the virus genome is inserted into the CRISPR sequence of the bacterial genome as a memory. When the bacterium becomes infected again with the same virus, an RNA molecule that is a transcript of the memory sequence, directs Cas9, an endonuclease, to the complementary region of the virus genome, and Cas9 disables the virus by a double-strand break. In recent years, studies have shown that by designing synthetic RNA molecules and delivering them along with Cas9 into eukaryotic cells, different regions of the cell's genome can be targeted and manipulated. These findings have drawn much attention to this new technology and it has been shown that CRISPR/Cas9 gene editing can be used to treat some human diseases. These include infectious diseases and autoimmune diseases. In this review article, in addition to a brief overview of the biology of the CRISPR/Cas9 system, we collected the most recent findings on the applications of CRISPR/Cas9 technology for better investigation of the pathogenesis and treatment of viral infections (human immunodeficiency virus infection, hepatitis virus infections, and onco-virus infections), non-viral infections (parasitic, fungal, and bacterial infections), and autoimmune diseases.
Collapse
Affiliation(s)
- Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
54
|
Luo J, Teng M, Zai X, Tang N, Zhang Y, Mandviwala A, Reddy VRAP, Baigent S, Yao Y, Nair V. Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System. Viruses 2020; 12:E466. [PMID: 32325942 PMCID: PMC7232411 DOI: 10.3390/v12040466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
The virus-encoded microRNAs (miRNAs) have been demonstrated to have important regulatory roles in herpesvirus biology, including virus replication, latency, pathogenesis and/or tumorigenesis. As an emerging efficient tool for gene editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been successfully applied in manipulating the genomes of large DNA viruses. Herein, utilizing the CRISPR/Cas9 system with a double-guide RNAs transfection/virus infection strategy, we have established a new platform for mutagenesis of viral miRNAs encoded by the Marek's disease virus serotype 1 (MDV-1), an oncogenic alphaherpesvirus that can induce rapid-onset T-cell lymphomas in chickens. A series of miRNA-knocked out (miR-KO) mutants with deletions of the Meq- or the mid-clustered miRNAs, namely RB-1B∆Meq-miRs, RB-1B∆M9-M2, RB-1B∆M4, RB-1B∆M9 and RB-1B∆M11, were generated from vvMDV strain RB-1B virus. Interestingly, mutagenesis of the targeted miRNAs showed changes in the in vitro virus growth kinetics, which is consistent with that of the in vivo proliferation curves of our previously reported GX0101 mutants produced by the bacterial artificial chromosome (BAC) clone and Rec E/T homologous recombination techniques. Our data demonstrate that the CRISPR/Cas9-based gene editing is a simple, efficient and relatively nondisruptive approach for manipulating the small non-coding genes from the genome of herpesvirus and will undoubtedly contribute significantly to the future progress in herpesvirus biology.
Collapse
Affiliation(s)
- Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xusheng Zai
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ahmedali Mandviwala
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Vishwanatha R. A. P. Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| |
Collapse
|
55
|
Generation of A Triple Insert Live Avian Herpesvirus Vectored Vaccine Using CRISPR/Cas9-Based Gene Editing. Vaccines (Basel) 2020; 8:vaccines8010097. [PMID: 32098149 PMCID: PMC7157232 DOI: 10.3390/vaccines8010097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
Herpesvirus of turkeys (HVT), used originally as a vaccine against Marek’s disease (MD), has recently been shown to be a highly effective viral vector for generation of recombinant vaccines that deliver protective antigens of other avian pathogens. Until the recent launch of commercial HVT-vectored dual insert vaccines, most of the HVT-vectored vaccines in the market carry a single foreign gene and are usually developed with slow and less efficient conventional recombination methods. There is immense value in developing multivalent HVT-vectored vaccines capable of inducing simultaneous protection against multiple avian pathogens, particularly to overcome the interference between individual recombinant HVT vaccines. Here we demonstrate the use of a previously developed CRISPR/Cas9 gene editing protocol for the insertion of ILTV gD-gI and the H9N2 AIV hemagglutinin expression cassettes into the distinct locations of the recombinant HVT-IBDV VP2 viral genome, to generate the triple insert HVT-VP2-gDgI-HA recombinant vaccine. The insertion, protein expression, and stability of each insert were then evaluated by PCR, immunostaining and Western blot analyses. The successful generation of the first triple insert recombinant HVT vaccine with the potential for the simultaneous protection against three major avian viral diseases in addition to MD is a major innovation in vaccination-based control of major poultry diseases.
Collapse
|
56
|
CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1460-1469. [PMID: 32160714 PMCID: PMC7056623 DOI: 10.1016/j.omtn.2020.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The CRISPR-Cas9 system has been applied to DNA editing with precision in eukaryotic and prokaryotic systems, but it is unable to edit RNA directly. A recently developed CRISPR-Cas13a system has been shown to be capable of effectively knocking down RNA expression in mammalian and plant cells. In this study, we employ the CRISPR-Cas13a system to achieve reprogrammable inactivation of dengue virus in mammalian cells. Quantitative reverse transcription PCR (qRT-PCR), fluorescence-activated cell sorting (FACS), and plaque assays showed that CRISPR RNA (crRNA) targeting the NS3 region led to the greatest viral inhibition among 10 crRNAs targeting different regions along the dengue viral genomic RNA. Deletions and insertions had also been found adjacent to the NS3 region after NS3-crRNA/Cas13a complex transfection. Our results demonstrate that the CRISPR-Cas13a system is a novel and effective technology to inhibit dengue viral replication, suggesting that such a programmable method may be further developed into a novel therapeutic strategy for dengue and other RNA viruses.
Collapse
|
57
|
BeltCappellino A, Majerciak V, Lobanov A, Lack J, Cam M, Zheng ZM. CRISPR/Cas9-Mediated Knockout and In Situ Inversion of the ORF57 Gene from All Copies of the Kaposi's Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. J Virol 2019; 93:e00628-19. [PMID: 31413125 PMCID: PMC6803266 DOI: 10.1128/jvi.00628-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed primary effusion lymphoma cell lines contain ∼70 to 150 copies of episomal KSHV genomes per cell and have been widely used for studying the mechanisms of KSHV latency and lytic reactivation. Here, we report the first complete knockout (KO) of viral ORF57 gene from all ∼100 copies of KSHV genome per cell in BCBL-1 cells. This was achieved by a modified CRISPR/Cas9 technology to simultaneously express two guide RNAs (gRNAs) and Cas9 from a single expression vector in transfected cells in combination with multiple rounds of cell selection and single-cell cloning. CRISPR/Cas9-mediated genome engineering induces the targeted gene deletion and inversion in situ We found the inverted ORF57 gene in the targeted site in the KSHV genome in one of two characterized single cell clones. Knockout of ORF57 from the KSHV genome led to viral genome instability, thereby reducing viral genome copies and expression of viral lytic genes in BCBL-1-derived single-cell clones. The modified CRISPR/Cas9 technology was very efficient in knocking out the ORF57 gene in iSLK/Bac16 and HEK293/Bac36 cells, where each cell contains only a few copies of the KSHV genome. The ORF57 KO genome was stable in iSLK/Bac16 cells, and, upon lytic induction, was partially rescued by ectopic ORF57 to express viral lytic gene ORF59 and produce infectious virions. Together, the technology developed in this study has paved the way to express two separate gRNAs and the Cas9 enzyme simultaneously in the same cell and could be efficiently applied to any genetic alterations from various genomes, including those in extreme high copy numbers.IMPORTANCE This study provides the first evidence that CRISPR/Cas9 technology can be applied to knock out the ORF57 gene from all ∼100 copies of the KSHV genome in primary effusion lymphoma (PEL) cells by coexpressing two guide RNAs (gRNAs) and Cas9 from a single expression vector in combination with single-cell cloning. The gene knockout efficiency in this system was evaluated rapidly using a direct cell PCR screening. The current CRISPR/Cas9 technology also mediated ORF57 inversion in situ in the targeted site of the KSHV genome. The successful rescue of viral lytic gene expression and infectious virion production from the ORF57 knockout (KO) genome further reiterates the essential role of ORF57 in KSHV infection and multiplication. This modified technology should be useful for knocking out any viral genes from a genome to dissect functions of individual viral genes in the context of the virus genome and to understand their contributions to viral genetics and the virus life cycle.
Collapse
Affiliation(s)
- Andrew BeltCappellino
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
58
|
Pazmiño-Ibarra V, Mengual-Martí A, Targovnik AM, Herrero S. Improvement of baculovirus as protein expression vector and as biopesticide by CRISPR/Cas9 editing. Biotechnol Bioeng 2019; 116:2823-2833. [PMID: 31403180 DOI: 10.1002/bit.27139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system-associated Cas9 endonuclease is a molecular tool that enables specific sequence editing with high efficiency. In this study, we have explored the use of CRISPR/Cas9 system for the engineering of baculovirus. We have shown that the delivering of Cas9-single guide RNA ribonucleoprotein (RNP) complex with or without DNA repair template into Sf21 insect cells through lipofection might be efficient to produce knockouts as well as knock-ins into the baculovirus. To evaluate potential application of our CRISPR/Cas9 method to improve baculovirus as protein expression vector and as biopesticide, we attempted to knockout several genes from a recombinant AcMNPV form used in the baculovirus expression system as well as in a natural occurring viral isolate from the same virus. We have additionally confirmed the adaptation of this methodology for the generation of viral knock-ins in specific regions of the viral genome. Analysis of the generated mutants revealed that the editing efficiency and the type of changes was variable but relatively high. Depending on the targeted gene, the editing rate ranged from 10% to 40%. This study established the first report revealing the potential of CRISPR/Cas9 for genome editing in baculovirus, contributing to the engineering of baculovirus as a protein expression vector as well as a biological control agent.
Collapse
Affiliation(s)
- Verónica Pazmiño-Ibarra
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Adrià Mengual-Martí
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Alexandra Marisa Targovnik
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Salvador Herrero
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
59
|
Siu KL, Yuen KS, Castaño-Rodriguez C, Ye ZW, Yeung ML, Fung SY, Yuan S, Chan CP, Yuen KY, Enjuanes L, Jin DY. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33:8865-8877. [PMID: 31034780 DOI: 10.1096/fj.201802418r] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1β gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro-IL-1β transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1β secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV-infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.-Siu, K.-L., Yuen, K.-S., Castaño-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC.
Collapse
Affiliation(s)
- Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Lung Yeung
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| |
Collapse
|
60
|
CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge. Molecules 2019; 24:molecules24071349. [PMID: 30959782 PMCID: PMC6480260 DOI: 10.3390/molecules24071349] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
From its unexpected discovery as a bacterial adaptive immune system to its countless applications as one of the most versatile gene-editing tools, the CRISPR/Cas9 system has revolutionized every field of life science. Virology is no exception to this ever-growing list of CRISPR/Cas9-based applications. Direct manipulation of a virus genome by CRISPR/Cas9 has enabled a systematic study of cis-elements and trans-elements encoded in a virus genome. In addition, this virus genome-specific mutagenesis by CRISPR/Cas9 was further funneled into the development of a novel class of antiviral therapy targeting many incurable chronic viral infections. In this review, a general concept on the CRISPR/Cas9-based antiviral strategy will be described first. To understand the current status of the CRISPR/Cas9-based antiviral approach, a series of recently published antiviral studies involving CRISPR/Cas9-mediated control of several clinically-relevant viruses including human immunodeficiency virus, hepatitis B virus, herpesviruses, human papillomavirus, and other viruses will be presented. Lastly, the potential challenge and future prospect for successful clinical translation of this CRISPR/Cas9-based antiviral method will be discussed.
Collapse
|
61
|
Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 2019; 447:48-55. [DOI: 10.1016/j.canlet.2019.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022]
|
62
|
Tso FY, West JT, Wood C. Reduction of Kaposi's Sarcoma-Associated Herpesvirus Latency Using CRISPR-Cas9 To Edit the Latency-Associated Nuclear Antigen Gene. J Virol 2019; 93:e02183-18. [PMID: 30651362 PMCID: PMC6430552 DOI: 10.1128/jvi.02183-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), an AIDS-defining cancer in HIV-1-infected individuals or immune-suppressed transplant patients. The prevalence for both KSHV and KS are highest in sub-Saharan Africa where HIV-1 infection is also epidemic. There is no effective treatment for advanced KS; therefore, the survival rate is low. Similar to other herpesviruses, KSHV's ability to establish latent infection in the host presents a major challenge to KS treatment or prevention. Strategies to reduce KSHV episomal persistence in latently infected cells might lead to approaches to prevent KS development. The CRISPR-Cas9 system is a gene editing technique that has been used to specifically manipulate the HIV-1 genome but also Epstein-Barr virus (EBV) which, similar to KSHV, belongs to the Gammaherpesvirus family. Among KSHV gene products, the latency-associated nuclear antigen (LANA) is absolutely required in the maintenance, replication, and segregation of KSHV episomes during mitosis, which makes LANA an ideal target for CRISPR-Cas9 editing. In this study, we designed a replication-incompetent adenovirus type 5 to deliver a LANA-specific Cas9 system (Ad-CC9-LANA) into various KSHV latent target cells. We showed that KSHV latently infected epithelial and endothelial cells transduced with Ad-CC9-LANA underwent significant reductions in the KSHV episome burden, LANA RNA and protein expression over time, but this effect is less profound in BC3 cells due to the low infection efficiency of adenovirus type 5 for B cells. The use of an adenovirus vector might confer potential in vivo applications of LANA-specific Cas9 against KSHV infection and KS.IMPORTANCE The ability for Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma (KS), to establish and maintain latency has been a major challenge to clearing infection and preventing KS development. This is the first study to demonstrate the feasibility of using a KSHV LANA-targeted CRISPR-Cas9 and adenoviral delivery system to disrupt KSHV latency in infected epithelial and endothelial cell lines. Our system significantly reduced the KSHV episomal burden over time. Given the safety record of adenovirus as vaccine or delivery vectors, this approach to limit KSHV latency may also represent a viable strategy against other tumorigenic viruses and may have potential benefits in developing countries where the viral cancer burden is high.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - John T West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
63
|
Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez MDL, Barrera-Saldaña HA. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med 2019; 43:1559-1574. [PMID: 30816503 PMCID: PMC6414166 DOI: 10.3892/ijmm.2019.4112] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Genome editing reemerged in 2012 with the development of CRISPR/Cas9 technology, which is a genetic manipulation tool derived from the defense system of certain bacteria against viruses and plasmids. This method is easy to apply and has been used in a wide variety of experimental models, including cell lines, laboratory animals, plants, and even in human clinical trials. The CRISPR/Cas9 system consists of directing the Cas9 nuclease to create a site-directed double-strand DNA break using a small RNA molecule as a guide. A process that allows a permanent modification of the genomic target sequence can repair the damage caused to DNA. In the present study, the basic principles of the CRISPR/Cas9 system are reviewed, as well as the strategies and modifications of the enzyme Cas9 to eliminate the off-target cuts, and the different applications of CRISPR/Cas9 as a system for visualization and gene expression activation or suppression. In addition, the review emphasizes on the potential application of this system in the treatment of different diseases, such as pulmonary, gastrointestinal, hematologic, immune system, viral, autoimmune and inflammatory diseases, and cancer.
Collapse
Affiliation(s)
- Diana Raquel Rodríguez-Rodríguez
- Universidad Autónoma de Nuevo León, Department of Biochemistry and Molecular Medicine, School of Medicine and University Hospital 'Dr. José E. González', Monterrey, Nuevo León 64460, México
| | - Ramiro Ramírez-Solís
- Institutional Core Laboratories, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mario Alberto Garza-Elizondo
- Universidad Autónoma de Nuevo León, Service of Rheumatology, School of Medicine and University Hospital 'Dr. José E. González', Monterrey, Nuevo León 64460, México
| | - María De Lourdes Garza-Rodríguez
- Universidad Autónoma de Nuevo León, Department of Biochemistry and Molecular Medicine, School of Medicine and University Hospital 'Dr. José E. González', Monterrey, Nuevo León 64460, México
| | - Hugo Alberto Barrera-Saldaña
- Universidad Autónoma de Nuevo León, Department of Biochemistry and Molecular Medicine, School of Medicine and University Hospital 'Dr. José E. González', Monterrey, Nuevo León 64460, México
| |
Collapse
|
64
|
Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2019; 2:46. [PMID: 30729184 PMCID: PMC6355771 DOI: 10.1038/s42003-019-0288-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Presence of the integrated endogenous banana streak virus (eBSV) in the B genome of plantain (AAB) is a major challenge for breeding and dissemination of hybrids. As the eBSV activates into infectious viral particles under stress, the progenitor Musa balbisiana and its derivants, having at least one B genome, cannot be used as parents for crop improvement. Here, we report a strategy to inactivate the eBSV by editing the virus sequences. The regenerated genome-edited events of Gonja Manjaya showed mutations in the targeted sites with the potential to prevent proper transcription or/and translational into functional viral proteins. Seventy-five percent of the edited events remained asymptomatic in comparison to the non-edited control plants under water stress conditions, confirming inactivation of eBSV into infectious viral particles. This study paves the way for the improvement of B genome germplasm and its use in breeding programs to produce hybrids that can be globally disseminated.
Collapse
Affiliation(s)
| | - Valentine O. Ntui
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Mily Ron
- Department of Plant Biology, University of California, Davis, CA USA
| | - Samwel K. Muiruri
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Anne Britt
- Department of Plant Biology, University of California, Davis, CA USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
65
|
Dong M, Chen JN, Huang JT, Gong LP, Shao CK. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol 2019; 135:30-38. [PMID: 30819444 DOI: 10.1016/j.critrevonc.2019.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is believed to be a pathogen causing a number of human cancers, but the pathogenic mechanisms remain unclear. An increasing number of studies have indicated that EBV-encoded microRNAs (EBV miRNAs) are expressed in a latency type- and tumor type-dependent manner, playing important roles in the development and progression of EBV-associated tumors. By targeting one or more genes of the virus and the host, EBV miRNAs are responsible for the deregulation of a variety of viral and host cell biological processes, including viral replication, latency maintenance, immune evasion, cell apoptosis and metabolism, and tumor proliferation and metastasis. In addition, some EBV miRNAs can be used as excellent diagnostic, prognostic and treatment efficacy predictive biomarkers for EBV-associated tumors. More importantly, EBV miRNA-targeting therapeutics have emerged and have been developing rapidly, which may open a new era in the treatment of EBV-associated tumors in the near future.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
66
|
Yin L, Hu S, Mei S, Sun H, Xu F, Li J, Zhu W, Liu X, Zhao F, Zhang D, Cen S, Liang C, Guo F. CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection. Hum Gene Ther 2018; 29:1264-1276. [PMID: 29644868 DOI: 10.1089/hum.2018.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas9 is an adaptive immune system where bacteria and archaea have evolved to resist the invading viruses and plasmid DNA by creating site-specific double-strand breaks in DNA. This study tested this gene editing system in inhibiting human immunodeficiency virus type 1 (HIV-1) infection by targeting the viral long terminal repeat and the gene coding sequences. Strong inhibition of HIV-1 infection by Cas9/gRNA was observed, which resulted not only from insertions and deletions (indels) that were introduced into viral DNA due to Cas9 cleavage, but also from the marked decrease in the levels of the late viral DNA products and the integrated viral DNA. This latter defect might have reflected the degradation of viral DNA that has not been immediately repaired after Cas9 cleavage. It was further observed that Cas9, when solely located in the cytoplasm, inhibits HIV-1 as strongly as the nuclear Cas9, except that the cytoplasmic Cas9 does not act on the integrated HIV-1 DNA and thus cannot be used to excise the latent provirus. Together, the results suggest that Cas9/gRNA is able to target and edit HIV-1 DNA both in the cytoplasm and in the nucleus. The inhibitory effect of Cas9 on HIV-1 is attributed to both the indels in viral DNA and the reduction in the levels of viral DNA.
Collapse
Affiliation(s)
- Lijuan Yin
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Siqi Hu
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shan Mei
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Hong Sun
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fengwen Xu
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jian Li
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Weijun Zhu
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoman Liu
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fei Zhao
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Di Zhang
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shan Cen
- 2 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Liang
- 3 McGill University AIDS Centre , Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Fei Guo
- 1 MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
67
|
Wang Z, Wang W, Cui YC, Pan Q, Zhu W, Gendron P, Guo F, Cen S, Witcher M, Liang C. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site. J Virol 2018; 92:e01135-18. [PMID: 30068653 PMCID: PMC6158435 DOI: 10.1128/jvi.01135-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology has been used to inactivate viral DNA as a new strategy to eliminate chronic viral infections, including HIV-1. This utility of CRISPR-Cas9 is challenged by the high heterogeneity of HIV-1 sequences, which requires the design of the single guide RNA (sgRNA; utilized by the CRISPR-Cas9 system to recognize the target DNA) to match a specific HIV-1 strain in an HIV patient. One solution to this challenge is to target the viral primer binding site (PBS), which HIV-1 copies from cellular tRNA3 Lys in each round of reverse transcription and is thus conserved in almost all HIV-1 strains. In this study, we demonstrate that PBS-targeting sgRNA directs Cas9 to cleave the PBS DNA, which evokes deletions or insertions (indels) and strongly diminishes the production of infectious HIV-1. While HIV-1 escapes from PBS-targeting Cas9/sgRNA, unique resistance mechanisms are observed that are dependent on whether the plus or the minus strand of the PBS DNA is bound by sgRNA. Characterization of these viral escape mechanisms will inform future engineering of Cas9 variants that can more potently and persistently inhibit HIV-1 infection.IMPORTANCE The results of this study demonstrate that the gene-editing complex Cas9/sgRNA can be programmed to target and cleave HIV-1 PBS DNA, and thus, inhibit HIV-1 infection. Given that almost all HIV-1 strains have the same PBS, which is copied from the cellular tRNA3 Lys during reverse transcription, PBS-targeting sgRNA can be used to inactivate HIV-1 DNA of different strains. We also discovered that HIV-1 uses different mechanisms to resist Cas9/sgRNAs, depending on whether they target the plus or the minus strand of PBS DNA. These findings allow us to predict that a Cas9 variant that uses the CCA sequence as the protospacer adjacent motif (PAM) should more strongly and persistently suppress HIV-1 replication. Together, these data have identified the PBS as the target DNA of Cas9/sgRNA and have predicted how to improve Cas9/sgRNA to achieve more efficient and sustainable suppression of HIV-1 infection, therefore improving the capacity of Cas9/sgRNA in curing HIV-1 infection.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Wenzhou Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, Canada
| | - Ya Cheng Cui
- Department of Medicine, McGill University, Montreal, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Weijun Zhu
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Michael Witcher
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, Canada
| |
Collapse
|
68
|
Ebrahimi S, Teimoori A, Khanbabaei H, Tabasi M. Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome. Rev Med Virol 2018; 29:e2009. [PMID: 30260068 DOI: 10.1002/rmv.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
The recent development of the Clustered Regularly Interspaced Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a genome editing system, has many potential applications in virology. The possibility of introducing site specific breaks has provided new possibilities to precisely manipulate viral genomics. Here, we provide diagrams to summarize the steps involved in the process. We also systematically review recent applications of the CRISPR/Cas9 system for manipulation of DNA virus genomics and discuss the therapeutic potential of the system to treat viral diseases.
Collapse
Affiliation(s)
- Saeedeh Ebrahimi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tabasi
- Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
69
|
Gilani U, Shaukat M, Rasheed A, Shahid M, Tasneem F, Arshad M, Rashid N, Shahzad N. The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses. J Med Virol 2018; 91:1-13. [PMID: 30133783 DOI: 10.1002/jmv.25292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
It is evidenced that 20% of all tumors in humans are caused by oncoviruses, including human papilloma viruses, Epstein-Barr virus, Kaposi sarcoma virus, human polyomaviruses, human T-lymphotrophic virus-1, and hepatitis B and C viruses. Human immunodeficiency virus is also involved in carcinogenesis, although not directly, but by facilitating the infection of many oncoviruses through compromising the immune system. Being intracellular parasites with the property of establishing latency and integrating into the host genome, these viruses are a therapeutic challenge for biomedical researchers. Therefore, strategies able to target nucleotide sequences within episomal or integrated viral genomes are of prime importance in antiviral or anticancerous armamentarium. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a powerful genome editing tool. Standing out as a precise and efficient oncoviruses method, it has been extensively applied in recent experimental ventures in the field of molecular medicine, particularly in combating infections including tumor inducing viruses. This review is aimed at collating the experimental and clinical advances in CRISPR/Cas9 technology in terms of its applications against oncoviruses. Primarily, it will focus on the application of CRISPR/Cas9 in combating tumor viruses, types of mechanisms targeted, and the significant outcomes till date. The technical pitfalls of the CRISPR/Cas9 and the comparative approaches in evaluating this technique with respect to other available alternatives are also described briefly. Furthermore, the review also discussed the clinical aspects and the ethical, legal, and social issues associated with the use of CRISPR/Cas9.
Collapse
Affiliation(s)
- Usman Gilani
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Memoona Shaukat
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Arisha Rasheed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehak Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
70
|
Hwang IY, Lee HL, Huang JG, Lim YY, Yew WS, Lee YS, Chang MW. Engineering microbes for targeted strikes against human pathogens. Cell Mol Life Sci 2018; 75:2719-2733. [PMID: 29736607 PMCID: PMC11105496 DOI: 10.1007/s00018-018-2827-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022]
Abstract
Lack of pathogen specificity in antimicrobial therapy causes non-discriminant microbial cell killing that disrupts the microflora present. As a result, potentially helpful microbial cells are killed along with the pathogen, altering the biodiversity and dynamic interactions within the population. Moreover, the unwarranted exposure of antibiotics to microbes increases the likelihood of developing resistance and perpetuates the emergence of multidrug resistance. Synthetic biology offers an alternative solution where specificity can be conferred to reduce the non-specific, non-targeted activity of currently available antibiotics, and instead provides targeted therapy against specific pathogens and minimising collateral damage to the host's inherent microbiota. With a greater understanding of the microbiome and the available genetic engineering tools for microbial cells, it is possible to devise antimicrobial strategies for novel antimicrobial therapy that are able to precisely and selectively remove infectious pathogens. Herein, we review the strategies developed by unlocking some of the natural mechanisms used by the microbes and how these may be utilised in targeted antimicrobial therapy, with the promise of reducing the current global bane of multidrug antimicrobial resistance.
Collapse
Affiliation(s)
- In Young Hwang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Hui Ling Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - James Guoxian Huang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Yvonne Yijuan Lim
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
71
|
Tang YD, Guo JC, Wang TY, Zhao K, Liu JT, Gao JC, Tian ZJ, An TQ, Cai XH. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing. FASEB J 2018; 32:4293-4301. [PMID: 29509513 DOI: 10.1096/fj.201701129r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Several groups have used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) for DNA virus editing. In most cases, one single-guide RNA (sgRNA) is used, which produces inconsistencies in gene editing. In this study, we used a swine herpesvirus, pseudorabies virus, as a model to systematically explore the application of CRISPR/Cas9 in DNA virus editing. In our current report, we demonstrated that cotransfection of 2 sgRNAs and a viral genome resulted in significantly better knockout efficiency than the transfection-infection-based approach. This method could result in 100% knockout of ≤3500 bp of viral nonessential large fragments. Furthermore, knockin efficiency was significantly improved by using 2 sgRNAs and was also correlated with the number of background viruses. We also demonstrated that the background viruses were all 2-sgRNA-mediated knockout mutants. Finally, this study demonstrated that the efficacy of gene knockin is determined by the replicative kinetics of background viruses. We propose that CRISPR/Cas9 coupled with 2 sgRNAs creates a powerful tool for DNA virus editing and offers great potential for future applications.-Tang, Y.-D., Guo, J.-C., Wang, T.-Y., Zhao, K., Liu, J.-T., Gao, J.-C., Tian, Z.-J., An, T.-Q., Cai, X.-H. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jin-Chao Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kuan Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ji-Ting Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jia-Cong Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
72
|
Zhang Y, Tang N, Sadigh Y, Baigent S, Shen Z, Nair V, Yao Y. Application of CRISPR/Cas9 Gene Editing System on MDV-1 Genome for the Study of Gene Function. Viruses 2018; 10:v10060279. [PMID: 29794970 PMCID: PMC6024840 DOI: 10.3390/v10060279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Marek’s disease virus (MDV) is a member of alphaherpesviruses associated with Marek’s disease, a highly contagious neoplastic disease in chickens. Complete sequencing of the viral genome and recombineering techniques using infectious bacterial artificial chromosome (BAC) clones of Marek’s disease virus genome have identified major genes that are associated with pathogenicity. Recent advances in CRISPR/Cas9-based gene editing have given opportunities for precise editing of the viral genome for identifying pathogenic determinants. Here we describe the application of CRISPR/Cas9 gene editing approaches to delete the Meq and pp38 genes from the CVI988 vaccine strain of MDV. This powerful technology will speed up the MDV gene function studies significantly, leading to a better understanding of the molecular mechanisms of MDV pathogenesis.
Collapse
Affiliation(s)
- Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Yashar Sadigh
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| |
Collapse
|
73
|
Yu L, Tian X, Gao C, Wu P, Wang L, Feng B, Li X, Wang H, Ma D, Hu Z. Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas. Front Med 2018; 12:497-508. [PMID: 29651774 PMCID: PMC7088620 DOI: 10.1007/s11684-017-0572-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
Viral infections cause at least 10%-15% of all human carcinomas. Over the last century, the elucidation of viral oncogenic roles in many cancer types has provided fundamental knowledge on carcinogenetic mechanisms and established a basis for the early intervention of virus-related cancers. Meanwhile, rapidly evolving genome-editing techniques targeting viral DNA/RNA have emerged as novel therapeutic strategies for treating virus-related carcinogenesis and have begun showing promising results. This review discusses the recent advances of genome-editing tools for treating tumorigenic viruses and their corresponding cancers, the challenges that must be overcome before clinically applying such genome-editing technologies, and more importantly, the potential solutions to these challenges.
Collapse
Affiliation(s)
- Lan Yu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xun Tian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chun Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Feng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Gynecological Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
74
|
Yajima M, Ikuta K, Kanda T. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells. Viruses 2018; 10:v10040171. [PMID: 29614006 PMCID: PMC5923465 DOI: 10.3390/v10040171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.
Collapse
Affiliation(s)
- Misako Yajima
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
| |
Collapse
|
75
|
Cheng YX, Chen GT, Yang X, Wang YQ, Hong L. Effects of HPV Pseudotype Virus in Cutting E6 Gene Selectively in SiHa Cells. Curr Med Sci 2018; 38:212-221. [PMID: 30074178 DOI: 10.1007/s11596-018-1868-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/23/2018] [Indexed: 12/18/2022]
Abstract
The objectives of this study were to investigate the effects of the CRISPR/Cas9 system mediated by the HPV pseudotype virus on SiHa cytobiology behavior by cutting the HPV16 E6 gene selectively and to explore the role of this system in the treatment of cervical cancer. After designing specific gRNA sequences targeting HPV16 E6, generating hCas9-EGFP and E6-gRNA-RFP plasmids, and preparing the pseudovirus of HPV16 carrying E6-gRNA and Cas9 plasmids, we determined the titer of the pseudotype virus using the TCID50 method. We obtained the pseudotype virus of HPV16 carrying E6-gRNA and Cas9 plasmids to transfect cervical cancer SiHa cells. Experimental subjects were divided into control group, empty virus group, E6-gRNA transfected group, Cas9 transfected group and Cas9+E6-gRNA transfected group. The molecular size of the cutting sequence was detected using the T7E1 enzyme digestion method and agarose gel electrophoresis, and the cleavage function of CRISPR/Cas9 on the E6 gene was determined at the same time. RT-PCR and Western blotting were performed to detect the mRNA and protein expression levels of E6 in all the groups; the Transwell cell migration assay was performed to detect the cell migration ability and metastasis in all groups. Heterotopic transplantation tumors were incorporated into mice and were used to investigate the effects of the CRISPR/Cas9 system mediated by the HPV pseudovirus on the tumorigenic ability of SiHa cells by selectively cutting HPV16 E6. The HPV16 pseudotype virus carrying E6-gRNA and Cas9 plasmids could successfully infect SiHa cells, and there were two cutting zones in the Cas9+E6-gRNA transfected group. However, the empty virus group, E6-gRNA transfected group and Cas9 transfected group had no corresponding zone. Compared with those in the control group, the empty virus group, E6-gRNA transfected group and Cas9 transfected group, the mRNA and protein expression levels of E6 in SiHa cells were downregulated in the Cas9+E6-gRNA transfected group (P<0.01). In addition, the proliferation and migration abilities of SiHa cells were significantly inhibited (P<0.01). There were no significant differences among the other groups. In contrast to the control group, the HPV pseudotype virus carrying E6-gRNA and Cas9 plasmids could significantly delay the growth of tumor cells of the ectopic tumor transplantation model (P<0.01). The CRISPR/Cas9 system mediated by the HPV pseudotype virus to knockout E6 gene expression exhibited a clear inhibitory effect on the biological function of SiHa cells, which indicated that knocking out the E6 gene using the CRISPR/Cas9 system mediated by the HPV pseudotype virus had a potential effect of eliminating HPV infection and inhibiting the growth of HPV-related tumors. Taken together, these findings provide insight into a new treatment strategy for the prevention and treatment of hr-HPV infected disease, particularly in HPV-related tumors.
Collapse
Affiliation(s)
- Yan-Xiang Cheng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430062, China
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430062, China
- Department of Gastroenterology, The Third Renmin Hospital of Xiantao City, Xiantao, 433000, China
| | - Xiao Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430062, China
| | - Yan-Qing Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430062, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430062, China.
| |
Collapse
|
76
|
Abstract
Advances in Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated system (CRISPR/Cas9) has dramatically reshaped our ability to edit genomes. The scientific community is using CRISPR/Cas9 for various biotechnological and medical purposes. One of its most important uses is developing potential therapeutic strategies against diseases. CRISPR/Cas9 based approaches have been increasingly applied to the treatment of human diseases like cancer, genetic, immunological and neurological disorders and viral diseases. These strategies using CRISPR/Cas9 are not only therapy oriented but can also be used for disease modeling as well, which in turn can lead to the improved understanding of mechanisms of various infectious and genetic diseases. In addition, CRISPR/Cas9 system can also be used as programmable antibiotics to kill the bacteria sequence specifically and therefore can bypass multidrug resistance. Furthermore, CRISPR/Cas9 based gene drive may also hold the potential to limit the spread of vector borne diseases. This bacterial and archaeal adaptive immune system might be a therapeutic answer to previous incurable diseases, of course rigorous testing is required to corroborate these claims. In this review, we provide an insight about the recent developments using CRISPR/Cas9 against various diseases with respect to disease modeling and treatment, and what future perspectives should be noted while using this technology.
Collapse
|
77
|
Ren L, Peng Z, Ouyang T, Liu X, Chen X, Ye L, Fan J, Ouyang H, Pang D, Bai J. Subculturing cells have no effect on CRISPR/Cas9-mediated cleavage of UL30 gene in pseudorabies virus. Animal Model Exp Med 2018; 1:74-77. [PMID: 30891550 PMCID: PMC6357676 DOI: 10.1002/ame2.12006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 01/15/2023] Open
Abstract
CRISPR/Cas9-mediated genome editing can inhibit virus infection by targeting the conserved regions of the viral genomic DNA. Unexpectedly, we found previously that pseudorabies virus (PRV) could escape from CRISPR/Cas9-mediated inhibition. In order to elucidate whether the escape of PRV from Cas9-mediated inhibition was due to cell deficiencies, such as genetic instability of sgRNA or Cas9 protein, the positive cells were passaged ten times, and PRV infection in the sgRNA-expressing cells was evaluated in the present study. The results showed that subculturing cells has no effect on Cas9-mediated cleavage of PRV. Different passages of PX459-PRV cells can stably express sgRNA to facilitate Cas9/sgRNA cleavage on the UL30 gene of PRV, resulting in a pronounced inhibition of PRV infection. Studies to elucidate the mechanism of PRV escape are currently in progress.
Collapse
Affiliation(s)
- Lin‐zhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Zhi‐yuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Xiao‐hui Liu
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Xin‐rong Chen
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
- The Laboratory Animal CenterThe Academic of Military Medical SciencesBeijingChina
| | - Li Ye
- The Laboratory Animal CenterThe Academic of Military Medical SciencesBeijingChina
| | - Jun‐wen Fan
- The Laboratory Animal CenterThe Academic of Military Medical SciencesBeijingChina
| | - Hong‐sheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Da‐xin Pang
- Jilin Provincial Key Laboratory of Animal Embryo EngineeringCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Jie‐ying Bai
- The Laboratory Animal CenterThe Academic of Military Medical SciencesBeijingChina
| |
Collapse
|
78
|
Aravalli RN, Steer CJ. CRISPR/Cas9 therapeutics for liver diseases. J Cell Biochem 2018; 119:4265-4278. [PMID: 29266637 DOI: 10.1002/jcb.26627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The development of innovative genome editing techniques in recent years has revolutionized the field of biomedicine. Among the novel approaches, the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas9) technology has become the most popular, in part due to its matchless ability to carry out gene editing at the target site with great precision. With considerable successes in animal and preclinical studies, CRISPR/Cas9-mediated gene editing has paved the way for its use in human trials, including patients with a variety of liver diseases. Gene editing is a logical therapeutic approach for liver diseases because many metabolic and acquired disorders are caused by mutations within a single gene. In this review, we provide an overview on current and emerging therapeutic strategies for the treatment of liver diseases using the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Clifford J Steer
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
79
|
Borca MV, Holinka LG, Berggren KA, Gladue DP. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Sci Rep 2018; 8:3154. [PMID: 29453406 PMCID: PMC5816594 DOI: 10.1038/s41598-018-21575-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
African swine fever virus (ASFV) causes a highly contagious disease called African swine fever. This disease is often lethal for domestic pigs, causing extensive losses for the swine industry. ASFV is a large and complex double stranded DNA virus. Currently there is no commercially available treatment or vaccine to prevent this devastating disease. Development of recombinant ASFV for producing live-attenuated vaccines or studying the involvement of specific genes in virus virulence has relied on the relatively rare event of homologous recombination in primary swine macrophages, causing difficulty to purify the recombinant virus from the wild-type parental ASFV. Here we present the use of the CRISPR-Cas9 gene editing system as a more robust and efficient system to produce recombinant ASFVs. Using CRISPR-Cas9 a recombinant virus was efficiently developed by deleting the non-essential gene 8-DR from the genome of the highly virulent field strain Georgia07 using swine macrophages as cell substrate.
Collapse
Affiliation(s)
- Manuel V Borca
- Agricultural Research Service (ARS), Plum Island Animal Disease Center, Greenport, NY, 11944, USA
| | - Lauren G Holinka
- Agricultural Research Service (ARS), Plum Island Animal Disease Center, Greenport, NY, 11944, USA
| | - Keith A Berggren
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, 37831, USA
| | - Douglas P Gladue
- Agricultural Research Service (ARS), Plum Island Animal Disease Center, Greenport, NY, 11944, USA.
| |
Collapse
|
80
|
Chen P, You L, Lu Y. Applications of CRISPR-Cas9 Technology in Translational Research on Solid-Tumor Cancers. CRISPR J 2018; 1:47-54. [PMID: 31021191 DOI: 10.1089/crispr.2017.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since its introduction to genome editing, CRISPR-Cas9 has been used to generate cell and animal models of disease, investigate relations between genomes and phenotypes, and interfere with disease development. Although most of its applications have been in basic research, efforts are underway to move CRISPR-Cas9 from bench to bedside. This review summarizes current and prospective applications of the CRISPR-Cas9 system in biomedical and translational research on solid tumors, as well as the challenges of expanding this technology into clinical use.
Collapse
Affiliation(s)
- Patricia Chen
- 1 Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China .,2 Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Liting You
- 1 Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- 1 Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
81
|
Tang N, Zhang Y, Pedrera M, Chang P, Baigent S, Moffat K, Shen Z, Nair V, Yao Y. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine 2018; 36:716-722. [PMID: 29269155 PMCID: PMC5783714 DOI: 10.1016/j.vaccine.2017.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Herpesvirus of turkeys (HVT) has been successfully used as live vaccine against Marek's disease (MD) worldwide for more than 40 years either alone or in combination with other serotypes. HVT is also widely used as a vector platform for generation of recombinant vaccines against a number of avian diseases such as infectious bursal disease (IBD), Newcastle disease (ND) and avian influenza (AI) using conventional recombination methods or recombineering tools on cloned viral genomes. In the present study, we describe the application of CRISPR/Cas9-based genome editing as a rapid and efficient method of generating HVT recombinants expressing VP2 protein of IBDV. This approach offers an efficient method to introduce other viral antigens into the HVT genome for rapid development of recombinant vaccines.
Collapse
Affiliation(s)
- Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom; Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, PR China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Miriam Pedrera
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Pengxiang Chang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Katy Moffat
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, PR China
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom.
| |
Collapse
|
82
|
Okoli A, Okeke MI, Tryland M, Moens U. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development. Viruses 2018; 10:E50. [PMID: 29361752 PMCID: PMC5795463 DOI: 10.3390/v10010050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/17/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.
Collapse
Affiliation(s)
- Arinze Okoli
- Biosafety of Genome Editing Research Group, GenØk-Centre for Biosafety, Siva Innovation Centre, N-9294 Tromsø, Norway.
| | - Malachy I Okeke
- Biosafety of Genome Editing Research Group, GenØk-Centre for Biosafety, Siva Innovation Centre, N-9294 Tromsø, Norway.
| | - Morten Tryland
- Biosafety of Genome Editing Research Group, GenØk-Centre for Biosafety, Siva Innovation Centre, N-9294 Tromsø, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, The Artic University of Norway, N-9037 Tromsø, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
83
|
Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018; 10:E40. [PMID: 29337866 PMCID: PMC5795453 DOI: 10.3390/v10010040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiao Yu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
84
|
Yuen KS, Wang ZM, Wong NHM, Zhang ZQ, Cheng TF, Lui WY, Chan CP, Jin DY. Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Res 2018; 244:296-303. [PMID: 28456574 DOI: 10.1016/j.virusres.2017.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the world's adult population. Once established, latent infection of nasopharyngeal epithelial cells with EBV is difficult to eradicate and might lead to the development of nasopharyngeal carcinoma (NPC) in a small subset of individuals. In this study we explored the anti-EBV potential of CRISPR/Cas9 targeting of EBV genome in infected NPC cells. We designed gRNAs to target different regions of the EBV genome and transfected them into C666-1 cells. The levels of EBV DNA in transfected cells were decreased by about 50%. The suppressive effect on EBV DNA load lasted for weeks but could not be further enhanced by re-transfection of gRNA. Suppression of EBV by CRISPR/Cas9 did not affect survival of C666-1 cells but sensitized them to chemotherapeutic killing by cisplatin and 5-fluorouracil. Our work provides the proof-of-principle for suppressing EBV DNA load with CRISPR/Cas9 and a potential new strategy to sensitize EBV-infected NPC cells to chemotherapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Associated Protein 9
- CRISPR-Cas Systems
- Cell Line, Tumor
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Endonucleases/genetics
- Endonucleases/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Fluorouracil/pharmacology
- Gene Editing/methods
- Genome, Viral
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Humans
- Nasopharynx/drug effects
- Nasopharynx/pathology
- Nasopharynx/virology
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Viral Load/drug effects
- Virus Latency/genetics
- Virus Replication
Collapse
Affiliation(s)
- Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Zhong-Min Wang
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Nok-Hei Mickey Wong
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Zhi-Qian Zhang
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Tsz-Fung Cheng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Wai-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
85
|
White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2017; 7:12305-17. [PMID: 26840090 PMCID: PMC4914286 DOI: 10.18632/oncotarget.7104] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
All cancers have multiple mutations that can largely be grouped into certain classes depending on the function of the gene in which they lie and these include oncogenic changes that enhance cellular proliferation, loss of function of tumor suppressors that regulate cell growth potential and induction of metabolic enzymes that confer resistance to chemotherapeutic agents. Thus the ability to correct such mutations is an important goal in cancer treatment. Recent research has led to the developments of reagents which specifically target nucleotide sequences within the cellular genome and these have a huge potential for expanding our anticancer armamentarium. One such a reagent is the clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, a powerful, highly specific and adaptable tool that provides unparalleled control for editing the cellular genome. In this short review, we discuss the potential of CRISPR/Cas9 against human cancers and the current difficulties in translating this for novel therapeutic approaches.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
86
|
Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production. J Virol 2017; 91:JVI.00975-17. [PMID: 28904200 DOI: 10.1128/jvi.00975-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV), a member of human gammaherpesvirus, infects mainly B cells. EBV has two alternative life cycles, latent and lytic, and is reactivated occasionally from the latent stage to the lytic cycle. To combat EBV-associated disorders, understanding the molecular mechanisms of the EBV lytic replication cycle is also important. Here, we focused on an EBV lytic gene, BKRF4. Using our anti-BKRF4 antibody, we revealed that the BKRF4 gene product is expressed during the lytic cycle with late kinetics. To characterize the role of BKRF4, we constructed BKRF4-knockout mutants using the bacterial artificial chromosome (BAC) and CRISPR/Cas9 systems. Although disruption of the BKRF4 gene had almost no effect on viral protein expression and DNA synthesis, it significantly decreased progeny virion levels in HEK293 and Akata cells. Furthermore, we show that BKRF4 is involved not only in production of progeny virions but also in increasing the infectivity of the virus particles. Immunoprecipitation assays revealed that BKRF4 interacted with a virion protein, BGLF2. We showed that the C-terminal region of BKRF4 was critical for this interaction and for efficient progeny production. Immunofluorescence analysis revealed that BKRF4 partially colocalized with BGLF2 in the nucleus and perinuclear region. Finally, we showed that BKRF4 is a phosphorylated, possible tegument protein and that the EBV protein kinase BGLF4 may be important for this phosphorylation. Taken together, our data suggest that BKRF4 is involved in the production of infectious virions.IMPORTANCE Although the latent genes of EBV have been studied extensively, the lytic genes are less well characterized. This study focused on one such lytic gene, BKRF4, which is conserved only among gammaherpesviruses (ORF45 of Kaposi's sarcoma-associated herpesvirus or murine herpesvirus 68). After preparing the BKRF4 knockout virus using B95-8 EBV-BAC, we demonstrated that the BKRF4 gene was involved in infectious progeny particle production. Importantly, we successfully generated a BKRF4 knockout virus of Akata using CRISPR/Cas9 technology, confirming the phenotype in this separate strain. We further showed that BKRF4 interacted with another virion protein, BGLF2, and demonstrated the importance of this interaction in infectious virion production. These results shed light on the elusive process of EBV progeny maturation in the lytic cycle. Notably, this study describes a successful example of the generation and characterization of an EBV construct with a disrupted lytic gene using CRISPR/Cas9 technology.
Collapse
|
87
|
Soppe JA, Lebbink RJ. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends Microbiol 2017; 25:833-850. [PMID: 28522157 DOI: 10.1016/j.tim.2017.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy.
Collapse
Affiliation(s)
- Jasper Adriaan Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
88
|
Wahid B, Usman S, Ali A, Saleem K, Rafique S, Naz Z, Ahsan Ashfaq H, Idrees M. Therapeutic Strategies of Clustered Regularly Interspaced Palindromic Repeats-Cas Systems for Different Viral Infections. Viral Immunol 2017; 30:552-559. [DOI: 10.1089/vim.2017.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Usman
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Komal Saleem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Hafiz Ahsan Ashfaq
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
- Vice Chancellor Hazara University, Mansehra, Pakistan
| |
Collapse
|
89
|
Lui PY, Wong LYR, Ho TH, Au SWN, Chan CP, Kok KH, Jin DY. PACT Facilitates RNA-Induced Activation of MDA5 by Promoting MDA5 Oligomerization. THE JOURNAL OF IMMUNOLOGY 2017; 199:1846-1855. [PMID: 28760879 DOI: 10.4049/jimmunol.1601493] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/27/2017] [Indexed: 12/24/2022]
Abstract
MDA5 is a RIG-I-like cytoplasmic sensor of dsRNA and certain RNA viruses, such as encephalomyocarditis virus, for the initiation of the IFN signaling cascade in the innate antiviral response. The affinity of MDA5 toward dsRNA is low, and its activity becomes optimal in the presence of unknown cellular coactivators. In this article, we report an essential coactivator function of dsRNA-binding protein PACT in mediating the MDA5-dependent type I IFN response. Virus-induced and polyinosinic-polycytidylic acid-induced activation of MDA5 were severely impaired in PACT-knockout cells and attenuated in PACT-knockdown cells, but they were potentiated when PACT was overexpressed. PACT augmented IRF3-dependent type I IFN production subsequent to dsRNA-induced activation of MDA5. In contrast, PACT had no influence on MDA5-mediated activation of NF-κB. PACT required dsRNA interaction for its action on MDA5 and promoted dsRNA-induced oligomerization of MDA5. PACT had little stimulatory effect on MDA5 mutants deficient for oligomerization and filament assembly. PACT colocalized with MDA5 in the cytoplasm and potentiated MDA5 recruitment to the dsRNA ligand. Taken together, these findings suggest that PACT functions as an essential cellular coactivator of RIG-I, as well as MDA5, and it facilitates RNA-induced formation of MDA5 oligomers.
Collapse
Affiliation(s)
- Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Shannon Wing Ngor Au
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Kin-Hang Kok
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057; .,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| |
Collapse
|
90
|
Pankowicz FP, Jarrett KE, Lagor WR, Bissig KD. CRISPR/Cas9: at the cutting edge of hepatology. Gut 2017; 66:1329-1340. [PMID: 28487442 PMCID: PMC5878048 DOI: 10.1136/gutjnl-2016-313565] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome engineering has revolutionised biomedical science and we are standing on the cusp of medical transformation. The therapeutic potential of this technology is tremendous, however, its translation to the clinic will be challenging. In this article, we review recent progress using this genome editing technology and explore its potential uses in studying and treating diseases of the liver. We discuss the development of new research tools and animal models as well as potential clinical applications, strategies and challenges.
Collapse
Affiliation(s)
- Francis P Pankowicz
- Center for Cell and Gene Therapy, Center for Stem Cells and
Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA,Graduate Program Department of Molecular & Cellular Biology,
Baylor College of Medicine, Houston, Texas, USA
| | - Kelsey E Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, Texas, USA,Integrative Molecular and Biomedical Sciences Graduate Program,
Baylor College of Medicine, Houston, Texas, USA
| | - William R Lagor
- Center for Cell and Gene Therapy, Center for Stem Cells and
Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA,Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, Texas, USA,Integrative Molecular and Biomedical Sciences Graduate Program,
Baylor College of Medicine, Houston, Texas, USA,Texas Medical Center Digestive Diseases Center, Baylor College of
Medicine, Houston, Texas, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Center for Stem Cells and
Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA,Graduate Program Department of Molecular & Cellular Biology,
Baylor College of Medicine, Houston, Texas, USA,Texas Medical Center Digestive Diseases Center, Baylor College of
Medicine, Houston, Texas, USA,Graduate Program in Translational Biology and Molecular Medicine,
Baylor College of Medicine, Houston, Texas, USA,Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, Texas, USA,Program in Developmental Biology, Baylor College of Medicine,
Houston, Texas, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston,
Texas, USA
| |
Collapse
|
91
|
Type II CRISPR/Cas9 approach in the oncological therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:80. [PMID: 28619109 PMCID: PMC5472952 DOI: 10.1186/s13046-017-0550-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a prokaryotic adaptable immune mechanism used by many bacteria and archaea to protect themselves from foreign nucleic acids. This complex system can recognize and cut non-self DNA in order to provide the prokaryotic organisms a strong defense against foreign viral or plasmid attacks and make the cell immune from further assaults. Today, it has been adapted to be used in vitro and in vivo in eukaryotic cells to perform a complete and highly selective gene knockout or a specific gene editing. The ease of use and the low cost are only two features that have made it very popular among the scientific community and the possibility to be used as a clinical treatment in several genetic derived pathologies has rapidly spread its fame worldwide. However, CRISPR is still not fully understood and many efforts need to be done in order to make it a real power tool for the human clinical treatment especially for oncological patients. Indeed, since cancer originates from non-lethal genetic disorders, CRISPR discovery fuels the hope to strike tumors on their roots. More than 4000 papers regarding CRISPR were published in the last ten years and only few of them take in count the possible applications in oncology. The purpose of this review is to clarify many problematics on the CRISPR usage and highlight its potential in oncological therapy.
Collapse
|
92
|
Jubair L, McMillan NAJ. The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: Virally Driven Cancers as a Model System. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:56-63. [PMID: 28918056 PMCID: PMC5485762 DOI: 10.1016/j.omtn.2017.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022]
Abstract
The field of gene editing is undergoing unprecedented growth. The first ex vivo human clinical trial in China started in 2016, more than 1000 US patents have been filed, and there is exponential growth in publications. The ability to edit genes with high fidelity is promising for the development of new treatments for a range of diseases, particularly inherited conditions, infectious diseases, and cancers. For cancer, a major issue is the identification of driver mutations and oncogenes to target for therapeutic effect, and this requires the development of robust models with which to prove their efficacy. The challenge is that there is rarely a single critical gene. However, virally driven cancers, in which cells are addicted to the expression of a single viral oncogene in some cases, may serve as model systems for CRISPR/Cas therapies, as they did for RNAi. These models and systems offer an excellent opportunity to test both preclinical models and clinical conditions to examine the effectiveness of gene editing, and here we review the options and offer a way forward.
Collapse
Affiliation(s)
- Luqman Jubair
- School of Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Nigel A J McMillan
- School of Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Diamantina Institute, University of Queensland, Brisbane St. Lucia, QLD 4072, Australia
| |
Collapse
|
93
|
Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection. Sci Rep 2017; 7:1478. [PMID: 28469192 PMCID: PMC5431151 DOI: 10.1038/s41598-017-01554-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 01/05/2023] Open
Abstract
Duck enteritis virus (DEV), duck tembusu virus (DTMUV), and highly pathogenic avian influenza virus (HPAIV) H5N1 are the most important viral pathogens in ducks, as they cause significant economic losses in the duck industry. Development of a novel vaccine simultaneously effective against these three viruses is the most economical method for reducing losses. In the present study, by utilizing a clustered regularly interspaced short palindromic repeats (CRISPR)/associated 9 (Cas9)-mediated gene editing strategy, we efficiently generated DEV recombinants (C-KCE-HA/PrM-E) that simultaneously encode the hemagglutinin (HA) gene of HPAIV H5N1 and pre-membrane proteins (PrM), as well as the envelope glycoprotein (E) gene of DTMUV, and its potential as a trivalent vaccine was also evaluated. Ducks immunized with C-KCE-HA/PrM-E enhanced both humoral and cell-mediated immune responses to H5N1 and DTMUV. Importantly, a single-dose of C-KCE-HA/PrM-E conferred solid protection against virulent H5N1, DTMUV, and DEV challenges. In conclusion, these results demonstrated for the first time that the CRISPR/Cas9 system can be applied for modification of the DEV genome rapidly and efficiently, and that recombinant C-KCE-HA/PrM-E can serve as a potential candidate trivalent vaccine to prevent H5N1, DTMUV, and DEV infections in ducks.
Collapse
|
94
|
Puschnik AS, Majzoub K, Ooi YS, Carette JE. A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 2017; 15:351-364. [PMID: 28420884 PMCID: PMC5800792 DOI: 10.1038/nrmicro.2017.29] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are obligate intracellular pathogens that depend on host cellular components for replication. Genetic screens are an unbiased and comprehensive method to uncover host cellular components that are critical for the infection with viruses. Loss-of-function screens result in the genome-wide disruption of gene expression, whereas gain-of-function screens rely on large-scale overexpression of host genes. Genetic knockout screens can be conducted using haploid insertional mutagenesis or the CRISPR–Cas system. Genetic screens using the CRISPR–Cas system have provided crucial insights in the host determinants of infections with important human pathogens such as dengue virus, West Nile virus, Zika virus and hepatitis C virus. CRISPR–Cas-based techniques additionally provide ways to generate both in vitro and in vivo models to study viral pathogenesis, to manipulate viral genomes, to eradicate viral disease vectors using gene drive systems and to advance the development of antiviral therapeutics.
In this Review, Puschnik and colleagues discuss the technical aspects of using CRISPR–Cas technology in genome-scale knockout screens to study virus–host interactions, and they compare these screens with alternative genetic screening technologies. Viruses depend on their hosts to complete their replication cycles; they exploit cellular receptors for entry and hijack cellular functions to replicate their genome, assemble progeny virions and spread. Recently, genome-scale CRISPR–Cas screens have been used to identify host factors that are required for virus replication, including the replication of clinically relevant viruses such as Zika virus, West Nile virus, dengue virus and hepatitis C virus. In this Review, we discuss the technical aspects of genome-scale knockout screens using CRISPR–Cas technology, and we compare these screens with alternative genetic screening technologies. The relative ease of use and reproducibility of CRISPR–Cas make it a powerful tool for probing virus–host interactions and for identifying new antiviral targets.
Collapse
Affiliation(s)
- Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
95
|
Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus. J Virol 2017; 91:JVI.02465-16. [PMID: 28122981 PMCID: PMC5375672 DOI: 10.1128/jvi.02465-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species.
Collapse
|
96
|
Wang Z, Zhao Y, Zhang Y. Viral lncRNA: A regulatory molecule for controlling virus life cycle. Noncoding RNA Res 2017; 2:38-44. [PMID: 30159419 PMCID: PMC6096409 DOI: 10.1016/j.ncrna.2017.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are found not only in mammals but also in other organisms, including viruses. Recent findings suggest that lncRNAs play various regulatory roles in multiple major biological and pathological processes. During viral life cycles, lncRNAs are involved in a series of steps, including enhancing viral gene expression, promoting viral replication and genome packaging, boosting virion release, maintaining viral latency and assisting viral transformation; additionally, lncRNAs antagonize host antiviral innate immune responses. In contrast to proteins that function in viral infection, lncRNAs are expected to be novel targets for the modulation of all types of biochemical processes due to their broad characteristics and profound influence. This review highlights our current understanding of the regulatory roles of lncRNAs during viral infection processes with an emphasis on the potential usefulness of lncRNAs as a target for viral intervention strategies, which could have therapeutic implications for the application of a clinical approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yiwan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China.,Open FIESTA Center, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
97
|
Lebbink RJ, de Jong DCM, Wolters F, Kruse EM, van Ham PM, Wiertz EJHJ, Nijhuis M. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 2017; 7:41968. [PMID: 28176813 PMCID: PMC5296774 DOI: 10.1038/srep41968] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023] Open
Abstract
HIV presents one of the highest evolutionary rates ever detected and combination antiretroviral therapy is needed to overcome the plasticity of the virus population and control viral replication. Conventional treatments lack the ability to clear the latent reservoir, which remains the major obstacle towards a cure. Novel strategies, such as CRISPR/Cas9 gRNA-based genome-editing, can permanently disrupt the HIV genome. However, HIV genome-editing may accelerate viral escape, questioning the feasibility of the approach. Here, we demonstrate that CRISPR/Cas9 targeting of single HIV loci, only partially inhibits HIV replication and facilitates rapid viral escape at the target site. A combinatorial approach of two strong gRNAs targeting different regions of the HIV genome can completely abrogate viral replication and prevent viral escape. Our data shows that the accelerating effect of gene-editing on viral escape can be overcome and as such gene-editing may provide a future alternative for control of HIV-infection.
Collapse
Affiliation(s)
- Robert Jan Lebbink
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorien C. M. de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke Wolters
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth M. Kruse
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
98
|
Liu YC, Cai ZM, Zhang XJ. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl 2017; 18:475-9. [PMID: 26228041 PMCID: PMC4854108 DOI: 10.4103/1008-682x.157399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The persistence infection of low-risk type (type 6 or type 11) of human papillomavirus (HPV) is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transformed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transformed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts.
Collapse
Affiliation(s)
| | - Zhi-Ming Cai
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, The Genitourinary Institution of Shenzhen University, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xue-Jun Zhang
- Institute of Dermatology, Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei; Key Laboratory of Dermatology, Ministry of Education, State Key Laboratory of Dermatology Incubation Center, Department of Dermatology, Anhui Medical University, Hefei, China
| |
Collapse
|
99
|
Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017; 599:1-18. [DOI: 10.1016/j.gene.2016.11.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/18/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
|
100
|
Chin WX, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discov Today 2017; 22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
|