51
|
Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology (Reading) 2007; 153:2321-2331. [PMID: 17600076 DOI: 10.1099/mic.0.2006/004648-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of UPEC are fimbrial adhesins, which mediate attachment to specific receptors, enhance persistence and trigger innate host responses. UPEC produce a range of fimbrial adhesins, with type 1 and P fimbriae of the chaperone-usher subclass being the best characterized. The prototype UPEC strain CFT073 contains ten gene clusters that contain genes characteristic of this class of fimbriae. However, only five of these gene clusters have been characterized in detail. In this study the F9 fimbrial gene cluster (c1931-c1936) from CFT073 has been characterized. The F9 fimbriae-encoding genes were PCR amplified, cloned and expressed in a K-12 background devoid of type 1 fimbriae. While F9 fimbrial expression was not associated with any haemagglutination or cellular adherence properties, a role in biofilm formation was observed. E. coli K-12 cells expressing F9 fimbriae produced a dense and uniform biofilm in both microtitre plate and continuous-flow biofilm model systems. In wild-type UPEC CFT073, expression of the F9 major subunit-encoding gene was detected during exponential growth in M9 minimal medium. F9 expression could also be detected following selection and enrichment for pellicle growth in a CFT073fim foc double mutant. The F9 genes appear to be common in UPEC and other types of pathogenic E. coli. However, their precise contribution to disease remains to be determined.
Collapse
Affiliation(s)
- Glen C Ulett
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda N Mabbett
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Khe C Fung
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A Schembri
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
52
|
Magnusson LU, Gummesson B, Joksimović P, Farewell A, Nyström T. Identical, independent, and opposing roles of ppGpp and DksA in Escherichia coli. J Bacteriol 2007; 189:5193-202. [PMID: 17496080 PMCID: PMC1951846 DOI: 10.1128/jb.00330-07] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent discovery that the protein DksA acts as a coregulator of genes controlled by ppGpp led us to investigate the similarities and differences between the relaxed phenotype of a ppGpp-deficient mutant and the phenotype of a strain lacking DksA. We demonstrate that the absence of DksA and ppGpp has similar effects on many of the observed phenotypes but that DksA and ppGpp also have independent and sometimes opposing roles in the cell. Specifically, we show that overexpression of DksA can compensate for the loss of ppGpp with respect to transcription of the promoters P(uspA), P(livJ), and P(rrnBP1) as well as amino acid auxotrophy, cell-cell aggregation, motility, filamentation, and stationary phase morphology, suggesting that DksA can function without ppGpp in regulating gene expression. In addition, ppGpp and DksA have opposing effects on adhesion. In the course of our analysis, we also discovered new features of the relaxed mutant, namely, defects in cell-cell aggregation and motility.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, 405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
53
|
Holden N, Totsika M, Dixon L, Catherwood K, Gally DL. Regulation of P-fimbrial phase variation frequencies in Escherichia coli CFT073. Infect Immun 2007; 75:3325-34. [PMID: 17452474 PMCID: PMC1932927 DOI: 10.1128/iai.01989-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Adherence of uropathogenic Escherichia coli to host tissue is required for infection and is mediated by fimbriae, such as pyelonephritis-associated pili (Pap). Expression of P fimbriae is regulated by phase variation, and to date, phase transition frequencies have been measured only for pap regulatory region constructs integrated into the E. coli K-12 chromosome. The aim of this work was to measure P phase transition frequencies in clinical isolates for the first time, including frequencies for the sequenced strain E. coli CFT073. P fimbriation and associated phase transition frequencies were measured for two E. coli clinical isolates and compared with levels for homologous pap constructs in E. coli K-12. Fimbriation and off-to-on transition frequencies were always higher in the clinical isolate. It was concluded that the regulatory inputs controlling papI expression are likely to be different in E. coli CFT073 and E. coli K-12 as (i) phase variation could be stimulated in E. coli K-12 by induction of papI and (ii) the level of expression of a papI::gfp(+) fusion was higher in E. coli CFT073 than in E. coli K-12. Furthermore, phase transition frequencies for the two E. coli CFT073 pap clusters were shown to be different depending on the culture conditions, indicating that there is a hierarchy of expression depending on signal inputs.
Collapse
Affiliation(s)
- Nicola Holden
- Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | | | | | | | | |
Collapse
|
54
|
Abstract
Fimbria-mediated interaction with the host elicits both innate and adaptive immune responses, and thus their expression may not always be beneficial in vivo. Furthermore, the metabolic drain of producing fimbriae is significant. It is not surprising, therefore, to find that fimbrial production in Escherichia coli and Salmonella enterica is under extensive environmental regulation. In many instances, fimbrial expression is regulated by phase variation, in which individual cells are capable of switching between fimbriate and afimbriate states to produce a mixed population. Mechanisms of phase variation vary considerably between different fimbriae and involve both genetic and epigenetic processes. Notwithstanding this, fimbrial expression is also sometimes controlled at the posttranscriptional level. In this chapter, we review key features of the regulation of fimbrial gene expression in E. coli and Salmonella. The occurrence and distribution of fimbrial operons vary significantly among E. coli pathovars and even among the many Salmonella serovars. Therefore, general principles are presented on the basis of detailed discussion of paradigms that have been extensively studied, including Pap, type 1 fimbriae, and curli. The roles of operon specific regulators like FimB or CsgD and of global regulatory proteins like Lrp, CpxR, and the histone-like proteins H-NS and IHF are reviewed as are the roles of sRNAs and of signalling nucleotide cyclic-di-GMP. Individual examples are discussed in detail to illustrate how the regulatory factors cooperate to allow tight control of expression of single operons. Molecular networks that allow coordinated expression between multiple fimbrial operons and with flagella in a single isolate are also presented. This chapter illustrates how adhesin expression is controlled, and the model systems also illustrate general regulatory principles germane to our overall understanding of bacterial gene regulation.
Collapse
|
55
|
Lane MC, Mobley HLT. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 2007; 72:19-25. [PMID: 17396114 DOI: 10.1038/sj.ki.5002230] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P fimbria, a mannose-resistant adhesin of uropathogenic Escherichia coli (UPEC), has been shown to be associated with acute pyelonephritis. The pap gene cluster encodes the proteins required for P-fimbrial biogenesis, including papG, which encodes the tip adhesin. The three most studied PapG molecular variants, which are shown to bind distinct isoreceptors, are PapGI, -II, and -III. PapGII preferentially binds globoside, or GbO4, a glycolipid isoreceptor of the human kidney. Studies using different animal models of ascending urinary tract infection (UTI) have demonstrated a variable role for P fimbriae, and specifically PapGII-mediated adherence, in renal colonization. The disparities in the results obtained from those studies are likely to be attributed to the differences in animal models and UPEC strains utilized. One explanation that is discussed in detail is the contribution of multiple fimbriae of UPEC that potentially mediate adherence to the mammalian kidney. Overall, P fimbriae appear to play some role in mediating adherence to uroepithelial cells in vivo and establishing an inflammatory response during renal colonization, thus contributing to kidney damage during acute pyelonephritis. To verify that P fimbriae contribute to the pathogenesis of UPEC during ascending UTI (and in particular acute pyelonephritis), future studies should be conducted to satisfy fully all three tenets of the molecular Koch's postulates, including complementation of a mutated allele.
Collapse
Affiliation(s)
- M C Lane
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
56
|
Xie Y, Yao Y, Kolisnychenko V, Teng CH, Kim KS. HbiF regulates type 1 fimbriation independently of FimB and FimE. Infect Immun 2006; 74:4039-47. [PMID: 16790777 PMCID: PMC1489709 DOI: 10.1128/iai.02058-05] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Type 1 fimbriae have been suggested to play a role in the pathogenesis of extraintestinal Escherichia coli infection. Type 1 fimbriation in E. coli is phase variable and known to be dependent upon FimB and FimE, the two recombinases that invert the molecular switch fimS and control the expression of the downstream fim operon. Here we showed that HbiF, a novel site-specific recombinase, inverted fimS independently of FimB and FimE. HbiF-mediated fimS inversion appeared to be predominantly switching from "off" (termed OFF) to "on" (termed ON) orientation. This is different from the fimS inversion mediated by either FimB (bidirectional ON to OFF and OFF to ON) or FimE (unidirectional ON to OFF). Constitutive expression of the hbiF gene in E. coli resulted in a fimS-locked-ON phenotype, which resulted in the pathogenic E. coli K1 strain being incapable of inducing a high degree of bacteremia in neonatal rats. Discovery of HbiF-mediated OFF-to-ON fimS switching provides a new opportunity to develop a strategy for the prevention and therapy of extraintestinal E. coli infection including bacteremia and meningitis.
Collapse
Affiliation(s)
- Yi Xie
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe St., Park 256, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
57
|
Manson JM, Gilmore MS. Pathogenicity island integrase cross-talk: a potential new tool for virulence modulation. Mol Microbiol 2006; 61:555-9. [PMID: 16879637 DOI: 10.1111/j.1365-2958.2006.05262.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Instability and excision of pathogenicity islands (PAIs) have already been described in Escherichia coli 536. In this edition of Molecular Microbiology, Bianca Hochhut and colleagues from the University of Würzburg in Germany have shown that the instability of four of the E. coli 536 PAIs is mediated by a P4-type integrase encoded within the specific PAI by a site-specific recombination mechanism. The integrase encoded on PAI II(536) is able to mediate excision and integration of both PAI II(536), and also PAI V(536). The att sites of both these PAIs have a region of sequence similarity, which is also found in several other PAIs and in tRNA genes in several bacterial species. The cross-PAI activity of this integrase (Int(PAI II)) suggests that it plays an important role in both genome evolution and horizontal transfer of pathogenicity elements, possibly even across species barriers. Deletion of PAIs that carry genes for adhesins and other traits might lead to a phase variation-like phenomenon. Differential regulation of integrase activity or production might add a further level of fine-tuning during bacterial infection.
Collapse
Affiliation(s)
- Janet M Manson
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
58
|
Holden NJ, Totsika M, Mahler E, Roe AJ, Catherwood K, Lindner K, Dobrindt U, Gally DL. Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. MICROBIOLOGY-SGM 2006; 152:1143-1153. [PMID: 16549677 DOI: 10.1099/mic.0.28677-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The majority of Escherichia coli strains isolated from urinary tract infections have the potential to express multiple fimbriae. Two of the most common fimbrial adhesins are type 1 fimbriae and pyelonephritis-associated pili (Pap). Previous research has shown that induced, plasmid-based expression of a Pap regulator, papB, and its close homologues can prevent inversion of the fim switch controlling the expression of type 1 fimbriae. The aim of the present study was to determine if this cross-regulation occurs when PapB is expressed from its native promoter in the chromosome of E. coli K-12 and clinical isolates. The regulation was examined in three ways: (1) mutated alleles of the pap regulatory region, including papB and papI, that maintain the pap promoter in either the off or the on phase were exchanged into the chromosome of both E. coli K-12 and the clinical isolate E. coli CFT073, and the effect on type 1 fimbrial expression was measured; (2) type 1 fimbrial expression was determined using a novel fimS : : gfp(+) reporter system in mutants of the clinical isolate E. coli 536 in which combinations of complete fimbrial clusters had been deleted; (3) type 1 fimbrial expression was determined in a range of clinical isolates and compared with both the number of P clusters and their expression. All three approaches demonstrated that P expression represses type 1 fimbrial expression. Using a number of novel genetic approaches, this work extends the initial finding that PapB inhibits FimB recombination to the impact of this regulation in clinical isolates.
Collapse
Affiliation(s)
- Nicola J Holden
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Makrina Totsika
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Eva Mahler
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Andrew J Roe
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Kirsteen Catherwood
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Karin Lindner
- Institute for Molecular Infection Biology, University of Würzburg, Röntgenring 11-97070 Würzburg, Germany
| | - Ulrich Dobrindt
- Institute for Molecular Infection Biology, University of Würzburg, Röntgenring 11-97070 Würzburg, Germany
| | - David L Gally
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
59
|
Low AS, Dziva F, Torres AG, Martinez JL, Rosser T, Naylor S, Spears K, Holden N, Mahajan A, Findlay J, Sales J, Smith DGE, Low JC, Stevens MP, Gally DL. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2006; 74:2233-44. [PMID: 16552054 PMCID: PMC1418889 DOI: 10.1128/iai.74.4.2233-2244.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/09/2005] [Accepted: 01/09/2006] [Indexed: 12/28/2022] Open
Abstract
Recent transposon mutagenesis studies with two enterohemorrhagic Escherichia coli (EHEC) strains, a sero- type O26:H- strain and a serotype O157:H7 strain, led to identification of a putative fimbrial operon that promotes colonization of young calves (1 to 2 weeks old). The distribution of the gene encoding the major fimbrial subunit present in O-island 61 of EHEC O157:H7 in a characterized set of 78 diarrheagenic E. coli strains was determined, and this gene was found in 87.2% of the strains and is therefore not an EHEC-specific region. The cluster was amplified by long-range PCR and cloned into the inducible expression vector pBAD18. Induced expression in E. coli K-12 led to production of fimbriae, as demonstrated by transmission electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The fimbriae were purified, and sera to the purified major subunit were raised and used to demonstrate expression from wild-type E. coli O157:H7 strains. Induced expression of the fimbriae, designated F9 fimbriae, was used to characterize binding to bovine epithelial cells, bovine gastrointestinal tissue explants, and extracellular matrix components. The fimbriae promoted increases in the levels of E. coli K-12 binding only to bovine epithelial cells. In contrast, induced expression of F9 fimbriae in E. coli O157:H7 significantly reduced adherence of the bacteria to bovine gastrointestinal explant tissue. This may have been due to physical hindrance of type III secretion-dependent attachment. The main F9 subunit gene was deleted in E. coli O157:H7, and the resulting mutant was compared with the wild-type strain for colonization in weaned cattle. While the shedding levels of the mutant were reduced, the animals were still colonized at the terminal rectum, indicating that the adhesin is not responsible for the rectal tropism observed but may contribute to colonization at other sites, as demonstrated previously with very young animals.
Collapse
Affiliation(s)
- Alison S Low
- Zoonotic and Animal Pathogens Research Laboratory, Centre for Infectious Diseases, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Westerlund-Wikström B, Korhonen TK. Molecular structure of adhesin domains in Escherichia coli fimbriae. Int J Med Microbiol 2005; 295:479-86. [PMID: 16238022 DOI: 10.1016/j.ijmm.2005.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Crystal structures of FimH, PapG, GafD, and DraE fimbrial adhesin subunits or lectin domains have been resolved. These adhesins bind to different targets and are only distantly related in amino acid sequence. The overall structures of the fimbrial lectins, however, appear similar, suggesting that the fimbrial lectins have diverged from a common scaffold. FimH, PapG and GafD are two-domain structures connected by a flexible linker, and the N-terminal adhesin domains have an elongated beta-barrel jelly roll fold that contains the receptor-binding groove. The adhesin domains differ in disulfide patterns, in size and location of the ligand-binding groove, as well as in mechanism of receptor binding. Minor sequence variations that can be either distant from, near to, or at the ligand-binding groove have profound effects on receptor binding by the fimbriae; this is particularly apparent with FimH. The existing structures give insight into the molecular basis of the diversity in fimbrial lectins.
Collapse
Affiliation(s)
- Benita Westerlund-Wikström
- General Microbiology, Department of Biological and Environmental Sciences, Faculty of Biosciences, FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
61
|
Torres AG, Kanack KJ, Tutt CB, Popov V, Kaper JB. Characterization of the second long polar (LP) fimbriae ofEscherichia coliO157:H7 and distribution of LP fimbriae in other pathogenicE. colistrains. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09774.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|