51
|
Physiological levels of glucose induce membrane vesicle secretion and affect the lipid and protein composition of Yersinia pestis cell surfaces. Appl Environ Microbiol 2013; 79:4509-14. [PMID: 23686263 DOI: 10.1128/aem.00675-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis grown with physiologic glucose increased cell autoaggregation and deposition of extracellular material, including membrane vesicles. Membranes were characterized, and glucose had significant effects on protein, lipid, and carbohydrate profiles. These effects were independent of temperature and the biofilm-related locus pgm and were not observed in Yersinia pseudotuberculosis.
Collapse
|
52
|
Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:3264-72. [PMID: 23503314 DOI: 10.1128/aem.00460-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.
Collapse
|
53
|
Ho DK, Riva R, Skurnik M, Meri S. TheYersinia pseudotuberculosisOuter Membrane Protein Ail Recruits the Human Complement Regulatory Protein Factor H. THE JOURNAL OF IMMUNOLOGY 2012; 189:3593-9. [DOI: 10.4049/jimmunol.1201145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Kolodziejek AM, Hovde CJ, Minnich SA. Yersinia pestis Ail: multiple roles of a single protein. Front Cell Infect Microbiol 2012; 2:103. [PMID: 22919692 PMCID: PMC3417512 DOI: 10.3389/fcimb.2012.00103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/14/2012] [Indexed: 01/03/2023] Open
Abstract
Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen.
Collapse
Affiliation(s)
- Anna M Kolodziejek
- School of Food Science, University of Idaho Moscow, ID, USA. akolodziejek@ vandals.uidaho.edu
| | | | | |
Collapse
|
55
|
Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells. Infect Immun 2012; 80:3490-500. [PMID: 22851745 DOI: 10.1128/iai.00434-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague.
Collapse
|
56
|
Abstract
A comprehensive TnphoA mutant library was constructed in Yersinia pestis KIM6 to identify surface proteins involved in Y. pestis host cell invasion and bacterial virulence. Insertion site analysis of the library repeatedly identified a 9,042-bp chromosomal gene (YPO3944), intimin/invasin-like protein (Ilp), similar to the Gram-negative intimin/invasin family of surface proteins. Deletion mutants of ilp were generated in Y. pestis strains KIM5(pCD1(+)) Pgm(-) (pigmentation negative)/, KIM6(pCD1(-)) Pgm(+), and CO92. Comparative analyses were done with the deletions and the parental wild type for bacterial adhesion to and internalization by HEp-2 cells in vitro, infectivity and maintenance in the flea vector, and lethality in murine models of systemic and pneumonic plague. Deletion of ilp had no effect on bacterial blockage of flea blood feeding or colonization. The Y. pestis KIM5 Δilp strain had reduced adhesion to and internalization by HEp-2 cells compared to the parental wild-type strain (P < 0.05). Following intravenous challenge with Y. pestis KIM5 Δilp, mice had a delayed time to death and reduced dissemination to the lungs, livers, and kidneys as monitored by in vivo imaging using a lux reporter system (in vivo imaging system [IVIS]) and bacterial counts. Intranasal challenge in mice with Y. pestis CO92 Δilp had a 55-fold increase in the 50% lethal dose ([LD(50)] 1.64 × 10(4) CFU) compared to the parental wild-type strain LD(50) (2.98 × 10(2) CFU). These findings identified Ilp as a novel virulence factor of Y. pestis.
Collapse
|
57
|
Houppert AS, Kwiatkowski E, Glass EM, DeBord KL, Merritt PM, Schneewind O, Marketon MM. Identification of chromosomal genes in Yersinia pestis that influence type III secretion and delivery of Yops into target cells. PLoS One 2012; 7:e34039. [PMID: 22479512 PMCID: PMC3316589 DOI: 10.1371/journal.pone.0034039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/21/2012] [Indexed: 01/05/2023] Open
Abstract
Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague.
Collapse
Affiliation(s)
- Andrew S. Houppert
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth Kwiatkowski
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Elizabeth M. Glass
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Kristin L. DeBord
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Peter M. Merritt
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Melanie M. Marketon
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
58
|
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 2012; 19:1672-82. [PMID: 22078566 DOI: 10.1016/j.str.2011.08.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
Abstract
Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Dentovskaya SV, Anisimov AP, Kondakova AN, Lindner B, Bystrova OV, Svetoch TE, Shaikhutdinova RZ, Ivanov SA, Bakhteeva IV, Titareva GM, Knirel AYA. Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. BIOCHEMISTRY (MOSCOW) 2012; 76:808-22. [PMID: 21999543 DOI: 10.1134/s0006297911070121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In silico analysis of available bacterial genomes revealed the phylogenetic proximity levels of enzymes responsible for biosynthesis of lipopolysaccharide (LPS) of Yersinia pestis, the cause of plague, to homologous proteins of closely related Yersinia spp. and some other bacteria (Serratia proteamaculans, Erwinia carotovora, Burkholderia dolosa, Photorhabdus luminescens and others). Isogenic Y. pestis mutants with single or double mutations in 14 genes of LPS biosynthetic pathways were constructed by site-directed mutagenesis on the base of the virulent strain 231 and its attenuated derivative. Using high-resolution electrospray ionization mass spectrometry, the full LPS structures were elucidated in each mutant, and the sequence of monosaccharide transfers in the assembly of the LPS core was inferred. Truncation of the core decreased significantly the resistance of bacteria to normal human serum and polymyxin B, the latter probably as a result of a less efficient incorporation of 4-amino-4-deoxyarabinose into lipid A. Impairing of LPS biosynthesis resulted also in reduction of LPS-dependent enzymatic activities of plasminogen activator and elevation of LD(50) and average survival time in mice and guinea pigs infected with experimental plague. Unraveling correlations between biological properties of bacteria and particular LPS structures may help a better understanding of pathogenesis of plague and implication of appropriate genes as potential molecular targets for treatment of plague.
Collapse
Affiliation(s)
- S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Yersinia pestis autoagglutination is mediated by HCP-like protein and siderophore Yersiniachelin (Ych). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:289-92. [PMID: 22782775 DOI: 10.1007/978-1-4614-3561-7_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Byvalov AA, Ovodov IS. [Immunobiological properties of Yersinia pestis antigens]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:452-63. [PMID: 22096987 DOI: 10.1134/s1068162011040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present review contains information concerning immunobiological properties of plague microbe antigens. All of the identified antigens are evaluated in relation to pathogenicity of Yersinia pestis namely a resistance to phagocytosis, toxicity, adhesiveness etc. as well as persistence ability and adaptation to variable environment. In addition, the role of antigens in immunogenicity of living plague microbe for experimental animals is considered. The data concerning mechanisms of antigenic contribution to the development of adaptive immunity are presented.
Collapse
|
62
|
Thomas RJ. Receptor mimicry as novel therapeutic treatment for biothreat agents. Bioeng Bugs 2011; 1:17-30. [PMID: 21327124 DOI: 10.4161/bbug.1.1.10049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/20/2022] Open
Abstract
The specter of intentional release of pathogenic microbes and their toxins is a real threat. This article reviews the literature on adhesins of biothreat agents, their interactions with oligosaccharides and the potential for anti-adhesion compounds as an alternative to conventional therapeutics. The minimal binding structure of ricin has been well characterised and offers the best candidate for successful anti-adhesion therapy based on the Galβ1-4GlcNAc structure. The botulinum toxin serotypes A-F bind to a low number of gangliosides (GT1b, GQ1b, GD1a and GD1b) hence it should be possible to determine the minimal structure for binding. The minimal disaccharide sequence of GalNAcβ1-4Gal found in the gangliosides asialo-GM1 and asialo-GM2 is required for adhesion for many respiratory pathogens. Although a number of adhesins have been identified in bacterial biothreat agents such as Yersinia pestis, Bacillus anthracis, Francisella tularensis, Brucella species and Burkholderia pseudomallei, specific information regarding their in vivo expression during pneumonic infection is lacking. Limited oligosaccharide inhibition studies indicate the potential of GalNAcβ1-4Gal, GalNAcβ-3Gal and the hydrophobic compound, para-nitrophenol as starting points for the rational design of generic anti-adhesion compounds. A cocktail of multivalent oligosaccharides based on the minimal binding structures of identified adhesins would offer the best candidates for anti-adhesion therapy.
Collapse
|
63
|
Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infect Immun 2011; 79:4984-9. [PMID: 21969002 DOI: 10.1128/iai.05307-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node.
Collapse
|
64
|
Podladchikova O, Antonenka U, Heesemann J, Rakin A. Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol 2011; 301:562-9. [PMID: 21784704 DOI: 10.1016/j.ijmm.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/16/2011] [Accepted: 03/20/2011] [Indexed: 10/17/2022] Open
Abstract
Autoagglutination (AA) is a protective phenotypic trait facilitating survival of bacteria in hostile environments and in the host during infection. Autoagglutination factors (AFs) that possess self-associating ability are currently characterized in many Gram-negative bacteria, but Yersinia pestis AFs are still a matter of debate. Previously, we have shown that AF of Hms(-) strain Y. pestis EV76 is a complex of the 17,485-kDa protein and a low-molecular-weight component with siderophore activity. Here, we identified the protein moiety of AF and examined its role in AA of Hms(+) and Hms(-)Y. pestis strains. Using MALDI-TOF MS of trypsin-hydrolyzed AF, we unambiguously identified the protein as YPO0502, which belongs to a family of Hcp-proteins forming pilus-like structures of the type six secretion system (T6SS). To address the role of YPO0502 in AA, we cloned ypo0502 in E. coli, overexpressed it in Y. pestis and constructed its knock-out mutant in Y. pestis. However, all these approaches failed: YPO0502 was not secreted in E. coli, formed inclusion bodies when overexpressed in Y. pestis, and could probably be compensated by other Hcp-like proteins in Y. pestis. In contrast, downregulation of ypo0502 expression by its antisense RNA supported the contribution of YPO0502 in AA of Hms(+) and Hms(-)Y. pestis strains. The results of the present study indicate that the Hcp-like component of T6SS encoded by ypo502 is involved in Y. pestis AA and suggest that at least one (ypo0499-0516) of the 6 T6SS clusters of Y. pestis is involved in bacterial interaction.
Collapse
|
65
|
Guo J, Nair MKM, Galván EM, Liu SL, Schifferli DM. Tn5AraOut mutagenesis for the identification of Yersinia pestis genes involved in resistance towards cationic antimicrobial peptides. Microb Pathog 2011; 51:121-32. [PMID: 21575704 DOI: 10.1016/j.micpath.2011.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 12/27/2022]
Abstract
Bacterial pathogens display a variety of protection mechanisms against the inhibitory and lethal effects of host cationic antimicrobial peptides (CAMPs). To identify Yersinia pestis genes involved in CAMP resistance, libraries of DSY101 (KIM6 caf1 pla psa) minitransposon Tn5AraOut mutants were selected at 37°C for resistance to the model CAMPs polymyxin B or protamine. This approach targeted genes that needed to be repressed (null mutations) or induced (upstream P(BAD) insertions) for the detection of CAMP resistance, and predictably for improved pathogen fitness in mammalian hosts. Ten mutants demonstrated increased resistance to polymyxin B or protamine, with the mapped mutations pointing towards genes suspected to participate in modifying membrane components, genes encoding transport proteins or enzymes, or the regulator of a ferrous iron uptake system (feoC). Not all the mutants were resistant to both CAMPs used for selection. None of the polymyxin B- and only some protamine-resistant mutants, including the feoC mutant, showed increased resistance to rat bronchoalveolar lavage fluid (rBALF) known to contain cathelicidin and β-defensin 1. Thus, findings on bacterial resistance to polymyxin B or protamine don't always apply to CAMPs of the mammalian innate immune system, such as the ones in rBALF.
Collapse
Affiliation(s)
- Jitao Guo
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
66
|
Sun YC, Koumoutsi A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 2011; 6:e19267. [PMID: 21559445 PMCID: PMC3084805 DOI: 10.1371/journal.pone.0019267] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/25/2011] [Indexed: 11/25/2022] Open
Abstract
Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.
Collapse
Affiliation(s)
- Yi-Cheng Sun
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
67
|
Felek S, Jeong JJ, Runco LM, Murray S, Thanassi DG, Krukonis ES. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence. MICROBIOLOGY-SGM 2010; 157:805-818. [PMID: 21088108 PMCID: PMC3081084 DOI: 10.1099/mic.0.044826-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.
Collapse
Affiliation(s)
- Suleyman Felek
- University of Michigan School of Dentistry, Department of Biologic and Materials Science, 1011 N. University, Dental Bldg 3209, Ann Arbor, MI 48109-1078, USA
| | - Jenny J Jeong
- University of Michigan School of Dentistry, Department of Biologic and Materials Science, 1011 N. University, Dental Bldg 3209, Ann Arbor, MI 48109-1078, USA
| | - Lisa M Runco
- New York Institute of Technology, Department of Life Sciences, NY, USA
| | - Susan Murray
- University of Michigan School of Public Health, Department of Biostatistics, MI, USA
| | - David G Thanassi
- Stony Brook University, Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, NY, USA
| | - Eric S Krukonis
- University of Michigan School of Medicine, Department of Microbiology and Immunology, MI, USA.,University of Michigan School of Dentistry, Department of Biologic and Materials Science, 1011 N. University, Dental Bldg 3209, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
68
|
Plesniak LA, Mahalakshmi R, Rypien C, Yang Y, Racic J, Marassi FM. Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:482-9. [PMID: 20883662 DOI: 10.1016/j.bbamem.2010.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023]
Abstract
Ail is an outer membrane protein and virulence factor of Yersinia pestis, an extremely pathogenic, category A biothreat agent, responsible for precipitating massive human plague pandemics throughout history. Due to its key role in bacterial adhesion to host cells and bacterial resistance to host defense, Ail is a key target for anti-plague therapy. However, little information is available about the molecular aspects of its function and interactions with the human host, and the structure of Ail is not known. Here we describe the recombinant expression, purification, refolding, and sample preparation of Ail for solution and solid-state NMR structural studies in lipid micelles and lipid bilayers. The initial NMR and CD spectra show that Ail adopts a well-defined transmembrane β-sheet conformation in lipids.
Collapse
Affiliation(s)
- Leigh A Plesniak
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
69
|
Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect Immun 2010; 78:5233-43. [PMID: 20837715 DOI: 10.1128/iai.00783-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, is one of the most virulent microorganisms known. The outer membrane protein X (OmpX) in Y. pestis KIM is required for efficient bacterial adherence to and internalization by cultured HEp-2 cells and confers resistance to human serum. Here, we tested the contribution of OmpX to disease progression in the fully virulent Y. pestis CO92 strain by engineering a deletion mutant and comparing its ability in mediating pneumonic plague to that of the wild type in two animal models. The deletion of OmpX delayed the time to death up to 48 h in a mouse model and completely attenuated virulence in a rat model of disease. All rats challenged with 1 × 10(8) CFU of the ompX mutant survived, compared to the 50% lethal dose (LD50) of 1.2 × 10(3) CFU for the wild-type strain. Because murine serum is not bactericidal for the ompX mutant, the mechanism underlying the delay in time to death in mice was attributed to loss of adhesion/internalization properties but not serum resistance. The rat model, which is most similar to humans, highlighted the critical role of serum resistance in disease. To resolve conflicting evidence for the role of Y. pestis lipopolysaccharide (LPS) and OmpX in serum resistance, ompX was cloned into Escherichia coli D21 and three isogenic derivatives engineered to have progressively truncated LPS core saccharides. OmpX-mediated serum resistance, adhesiveness, and invasiveness, although dependent on LPS core length, displayed these functions in E. coli, independently of other Yersinia proteins and/or LPS. Also, autoaggregation was required for efficient OmpX-mediated adhesiveness and internalization but not serum resistance.
Collapse
|
70
|
Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 2010; 78:4134-50. [PMID: 20679446 DOI: 10.1128/iai.00167-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To establish a successful infection, Yersinia pestis requires the delivery of cytotoxic Yops to host cells. Yops inhibit phagocytosis, block cytokine responses, and induce apoptosis of macrophages. The Y. pestis adhesin Ail facilitates Yop translocation and is required for full virulence in mice. To determine the contributions of other adhesins to Yop delivery, we deleted five known adhesins of Y. pestis. In addition to Ail, plasminogen activator (Pla) and pH 6 antigen (Psa) could mediate Yop translocation to host cells. The contribution of each adhesin to binding and Yop delivery was dependent upon the growth conditions. When cells were pregrown at 28°C and pH 7, the order of importance for adhesins in cell binding and cytotoxicity was Ail > Pla > Psa. Y. pestis grown at 37°C and pH 7 had equal contributions from Ail and Pla but an undetectable role for Psa. At 37°C and pH 6, both Ail and Psa contributed to binding and Yop delivery, while Pla contributed minimally. Pla-mediated Yop translocation was independent of protease activity. Of the three single mutants, the Δail mutant was the most defective in mouse virulence. The expression level of ail was also the highest of the three adhesins in infected mouse tissues. Compared to an ail mutant, additional deletion of psaA (encoding Psa) led to a 130,000-fold increase in the 50% lethal dose for mice relative to that of the KIM5 parental strain. Our results indicate that in addition to Ail, Pla and Psa can serve as environmentally specific adhesins to facilitate Yop secretion, a critical virulence function of Y. pestis.
Collapse
|
71
|
Eroshenko GA, Odinokov GN, Kukleva LM, Krasnov YM, Kutyrev VV. Sequence analysis of the yadA, inv, and ail genes and their expression in the main and nonmain Yersinia pestis subspecies and Yersinia pseudotuberculosis. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410060025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
72
|
Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl Environ Microbiol 2010; 76:5188-98. [PMID: 20543055 DOI: 10.1128/aem.02498-09] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that actively invades host eukaryotic cells. To identify invasion factors responsible for the intestinal translocation of C. sakazakii, we constructed for the first time outer membrane protein X (OmpX) and A (OmpA) deletion mutants using the lambda Red recombination system. The ompX and ompA deletion mutants showed significantly reduced invasion of human enterocyte-like epithelial Caco-2 and human intestinal epithelial INT-407 cells, and significantly fewer mutant cells were recovered from the livers and spleens of rat pups. Furthermore, compared with intact target cells, the invasion and initial association potentials of the mutants increased at a rate similar to that of the wild type in tight-junction-disrupted target cells, suggesting that OmpX and OmpA are involved in basolateral invasion by C. sakazakii. This is the first report of C. sakazakii virulence determinants that are essential for basolateral invasion and that may be critical for the virulence of C. sakazakii.
Collapse
|
73
|
Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun 2010; 78:3358-68. [PMID: 20498264 DOI: 10.1128/iai.00238-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, evades host immune responses and rapidly causes disease. The Y. pestis adhesin Ail mediates host cell binding and is critical for Yop delivery. To identify the Ail receptor(s), Ail was purified following overexpression in Escherichia coli. Ail bound specifically to fibronectin, an extracellular matrix protein with the potential to act as a bridge between Ail and host cells. Ail expressed by E. coli also mediated binding to purified fibronectin, and Ail-mediated E. coli adhesion to host cells was dependent on fibronectin. Ail expressed by Y. pestis bound purified fibronectin, as did the Y. pestis adhesin plasminogen activator (Pla). However, a KIM5 Delta ail mutant had decreased binding to host cells, while a KIM5 Delta pla mutant had no significant defect in adhesion. Furthermore, treatment with antifibronectin antibodies decreased Ail-mediated adhesion by KIM5 and the KIM5 Delta pla mutant, indicating that the Ail-fibronectin interaction was important for cell binding. Finally, antifibronectin antibodies inhibited the KIM5-mediated cytotoxicity of host cells in an Ail-dependent fashion. These data indicate that Ail is a key adhesin that mediates binding to host cells through interaction with fibronectin on the surface of host cells, and this interaction is important for Yop delivery by Y. pestis.
Collapse
|
74
|
Bolz DD, Tenor JL, Aballay A. A conserved PMK-1/p38 MAPK is required in caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection. J Biol Chem 2010; 285:10832-40. [PMID: 20133945 DOI: 10.1074/jbc.m109.091629] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Yersinia pestis has acquired a variety of complex strategies that enable the bacterium to overcome defenses in different hosts and ensure its survival and successful transmission. A full-genome microarray analysis on Caenorhabditis elegans infected with Y. pestis shows enrichment in genes that are markers of innate immune responses and regulated by a conserved PMK-1/p38 MAPK. Consistent with a role in regulating expression of immune effectors, inhibition of PMK-1/p38 by mutation or RNA interference enhances susceptibility to Y. pestis. Further studies of mosaic animals where PMK-1/p38 is exclusively inhibited or overexpressed in a tissue-specific manner indicate that PMK-1/p38 controls expression of a CUB-like family of immune genes at the cell-autonomous level. Given the conserved nature of PMK-1/p38 MAPK-mediated signaling and innate immune responses, PMK-1/p38 MAPK may play a role in the immune response against Y. pestis in natural hosts.
Collapse
Affiliation(s)
- Devin D Bolz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
75
|
Phosphoglucomutase of Yersinia pestis is required for autoaggregation and polymyxin B resistance. Infect Immun 2009; 78:1163-75. [PMID: 20028810 DOI: 10.1128/iai.00997-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, autoaggregates within a few minutes of cessation of shaking when grown at 28 degrees C. To identify the autoaggregation factor of Y. pestis, we performed mariner-based transposon mutagenesis. Autoaggregation-defective mutants from three different pools were identified, each with a transposon insertion at a different position within the gene encoding phosphoglucomutase (pgmA; y1258). Targeted deletion of pgmA in Y. pestis KIM5 also resulted in loss of autoaggregation. Given the previously defined role for phosphoglucomutase in antimicrobial peptide resistance in other organisms, we tested the KIM5 DeltapgmA mutant for antimicrobial peptide sensitivity. The DeltapgmA mutant displayed >1,000-fold increased sensitivity to polymyxin B compared to the parental Y. pestis strain, KIM5. This sensitivity is not due to changes in lipopolysaccharide (LPS) since the LPSs from both Y. pestis KIM5 and the DeltapgmA mutant are identical based on a comparison of their structures by mass spectrometry (MS), tandem MS, and nuclear magnetic resonance analyses. Furthermore, the ability of polymyxin B to neutralize LPS toxicity was identical for LPS purified from both KIM5 and the DeltapgmA mutant. Our results indicate that increased polymyxin B sensitivity of the DeltapgmA mutant is due to changes in surface structures other than LPS. Experiments with mice via the intravenous and intranasal routes did not demonstrate any virulence defect for the DeltapgmA mutant, nor was flea colonization or blockage affected. Our findings suggest that the activity of PgmA results in modification and/or elaboration of a surface component of Y. pestis responsible for autoaggregation and polymyxin B resistance.
Collapse
|
76
|
Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun 2009; 78:773-82. [PMID: 19933831 DOI: 10.1128/iai.00718-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the most abundant innate immune cell and kill most invading bacteria through combined activities of reactive oxygen species (ROS) and antimicrobial granule constituents. Pathogens such as Yersinia pestis resist destruction by the innate immune system and are able to survive in macrophages and neutrophils. The specific molecular mechanisms used by Y. pestis to survive following phagocytosis by human PMNs are incompletely defined. To gain insight into factors that govern Y. pestis intracellular survival in neutrophils, we inactivated 25 two-component gene regulatory systems (TCSs) with known or inferred function and assessed susceptibility of these mutant strains to human PMN granule extracts. Y. pestis strains deficient for PhoPQ, KdpED, CheY, CvgSY, and CpxRA TCSs were selected for further analysis, and all five strains were altered for survival following interaction with PMNs. Of these five strains, only Y. pestis DeltaphoPQ demonstrated global sensitivity to a panel of seven individual neutrophil antimicrobial peptides and serine proteases. Notably, Y. pestis DeltaphoPQ was deficient for intracellular survival in PMNs. Iterative analysis with Y. pestis strains lacking the PhoP-regulated genes ugd and pmrK indicated that the mechanism most likely responsible for increased resistance to killing is 4-amino-4-deoxy-l-arabinose modification of lipid A. Together, the data provide new information about Y. pestis evasion of the innate immune system.
Collapse
|
77
|
Bergman MA, Loomis WP, Mecsas J, Starnbach MN, Isberg RR. CD8(+) T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog 2009; 5:e1000573. [PMID: 19730693 PMCID: PMC2731216 DOI: 10.1371/journal.ppat.1000573] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022] Open
Abstract
All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8+ T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8+ T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated TH1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8+ T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis–associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8+ T cells are critical for hosts to overcome the anti-phagocytic action of Yops. Pathogenic Yersinia are bacteria that cause diverse diseases such as gastroenteritis and plague. Yersinia binds to specialized immune cells called macrophages, which attempt to engulf and destroy the bacteria. The bacteria resist destruction by injecting proteins called Yops into macrophages, which stops the engulfment process. Yersinia thus survives as attached but extracellular bacteria to cause disease. Yersinia disease can be prevented by immunization. In this study, we identified one mechanism of protective immunity—that host cells called CD8+ T lymphocytes are important to restrict Yersinia infection. This observation is unusual because CD8+ T cells generally protect against intracellular pathogens: T cells destroy the host cell harboring the pathogen, thus preventing the pathogen's replication. We present data consistent with the model that CD8+ T cells can also restrict extracellular bacteria by showing that T cells target host cells with extracellularly attached Yersinia, thus allowing the host cells and associated bacteria to be engulfed and removed by neighboring macrophages.
Collapse
Affiliation(s)
- Molly A. Bergman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Wendy P. Loomis
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
78
|
Identification, characterization, and molecular application of a virulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain. Appl Environ Microbiol 2009; 75:4333-40. [PMID: 19447960 DOI: 10.1128/aem.00159-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Collapse
|
79
|
Zhang WW, Hu YH, Wang HL, Sun L. Identification and characterization of a virulence-associated protease from a pathogenic Pseudomonas fluorescens strain. Vet Microbiol 2009; 139:183-8. [PMID: 19464828 DOI: 10.1016/j.vetmic.2009.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/17/2009] [Accepted: 04/24/2009] [Indexed: 11/17/2022]
Abstract
Pseudomonas fluorescens is an aquaculture pathogen that can infect a number of fish species. The virulence mechanisms of aquatic P. fluorescens remain largely unknown. Many P. fluorescens strains are able to secrete an extracellular protease called AprX, yet no AprX-like proteins have been identified in pathogenic P. fluorescens associated with aquaculture. In this study, a gene encoding an AprX homologue was cloned from TSS, a pathogenic P. fluorescens strain isolated from diseased fish. In TSS, AprX is secreted into the extracellular milieu, and the production of AprX is controlled by growth phase and calcium. Mutation of aprX has multiple effects, which include impaired abilities in interaction with cultured host cells, adherence to host mucus, modulation of host immune response, and dissemination and survival in host tissues and blood. Purified recombinant AprX exhibits apparent proteolytic activity, which is optimal at pH 8.0 and 50 degrees C. The protease activity of recombinant AprX is enhanced by Ca2+ and Zn2+ and reduced by Co2+. Cytotoxicity analyses showed that purified recombinant AprX has profound toxic effect on cultured fish cells. These results demonstrate that AprX is an extracellular metalloprotease that is involved in bacterial virulence.
Collapse
Affiliation(s)
- Wei-wei Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
80
|
|
81
|
Pieper R, Huang ST, Clark DJ, Robinson JM, Alami H, Parmar PP, Suh MJ, Kuntumalla S, Bunai CL, Perry RD, Fleischmann RD, Peterson SN. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes. Proteome Sci 2009; 7:5. [PMID: 19228400 PMCID: PMC2663777 DOI: 10.1186/1477-5956-7-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/19/2009] [Indexed: 11/28/2022] Open
Abstract
Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr), an alkaline solution (180 mM Na2CO3, pH 11.3) and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14). Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i) integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries); (ii) peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries); (iii) cytoplasmic or ribosomal membrane-contaminating proteins (80 entries). Thirty-one proteins were experimentally associated with the outer membrane (OM). Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM) proteins with two or more predicted transmembrane domains (TMDs) were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.
Collapse
|
82
|
Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology (Reading) 2009; 155:498-512. [DOI: 10.1099/mic.0.022160-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis cells were grown in vitro at 26 and 37 °C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 °C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small β-barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 °C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 °C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of Y. pestis to its in vivo life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationary-phase cells grown at 26 °C, but not at 37 °C. The corresponding genes are clustered in the Y. pestis KIM gene locus y3658–y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a M
r range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of Y. pestis cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in Y. pestis.
Collapse
|
83
|
The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun 2008; 77:825-36. [PMID: 19064637 DOI: 10.1128/iai.00913-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although adhesion to host cells is a critical step in the delivery of cytotoxic Yop proteins by Yersinia pestis, the mechanism has not been defined. To identify adhesins critical for Yop delivery, we initiated two transposon mutagenesis screens using the mariner transposon. To avoid redundant cell binding activities, we initiated the screen with a strain deleted for two known adhesins, pH 6 antigen and the autotransporter, YapC, as well as the Caf1 capsule, which is known to obscure some adhesins. The mutants that emerged contained insertions within the ail (attachment and invasion locus) gene of Y. pestis. A reconstructed mutant with a single deletion in the ail locus (y1324) was severely defective for delivery of Yops to HEp-2 human epithelial cells and significantly defective for delivery of Yops to THP-1 human monocytes. Specifically, the Yop delivery defect was apparent when cell rounding and translocation of an ELK-tagged YopE derivative into host cells were monitored. Although the ail mutant showed only a modest decrease in cell binding capacity in vitro, the KIM5 Deltaail mutant exhibited a >3,000-fold-increased 50% lethal dose in mice. Mice infected with the Deltaail mutant also had 1,000-fold fewer bacteria in their spleens, livers, and lungs 3 days after infection than did those infected with the parental strain, KIM5. Thus, the Ail protein is critical for both Y. pestis type III secretion in vitro and infection in mice.
Collapse
|
84
|
Kirjavainen V, Jarva H, Biedzka-Sarek M, Blom AM, Skurnik M, Meri S. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein. PLoS Pathog 2008; 4:e1000140. [PMID: 18769718 PMCID: PMC2516929 DOI: 10.1371/journal.ppat.1000140] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 08/01/2008] [Indexed: 02/01/2023] Open
Abstract
Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host. To cause disease in humans, pathogenic bacteria have to evade the versatile immune system of the host. An important part of innate immunity is the complement system that is composed of over 30 proteins on host cells and in blood able to detect and destroy foreign material. To survive, bacteria can bind complement regulator proteins onto their surfaces and thus inhibit the activation of complement. Previously, it has been shown that food-borne diarrhoea-causing Yersinia enterocolitica can survive in human serum because of two bacterial surface proteins, YadA and Ail. These proteins have been shown to bind a complement alternative pathway regulator, factor H. Here, we show that both proteins also bind the classical and lectin pathway inhibitor, C4b-binding protein. These results together explain the serum resistance of Y. enterocolitica. The ability to evade complement attack is apparently important for the pathogenicity of Yersinia enterocolitica.
Collapse
Affiliation(s)
- Vesa Kirjavainen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Hanna Jarva
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Marta Biedzka-Sarek
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anna M. Blom
- Department of Laboratory Medicine, Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
85
|
Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, Klena JD, Skurnik M, Hinnebusch BJ, Chen T. Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 2008; 283:31511-21. [PMID: 18650418 DOI: 10.1074/jbc.m804646200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MPhis) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MPhis and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MPhisby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MPhis and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MPhis could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.
Collapse
Affiliation(s)
- Shu-sheng Zhang
- Department of Biomedical Sciences, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois 61107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Yersinia pestis type III secretion system-dependent inhibition of human polymorphonuclear leukocyte function. Infect Immun 2008; 76:3754-60. [PMID: 18490459 DOI: 10.1128/iai.00385-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the primary innate host defense against invading bacterial pathogens. Neutrophils are rapidly recruited to sites of infection and ingest microorganisms through a process known as phagocytosis. Following phagocytosis by human PMNs, microorganisms are killed by reactive oxygen species (ROS) and microbicidal products contained within granules. Yersinia pestis, the causative agent of plague, is capable of rapid replication and dissemination from sites of infection in the host. Although Y. pestis survives in macrophages, the bacterial fate following interaction with human PMNs is less clear. The ability of Y. pestis to inhibit phagocytosis by human PMNs was assessed by differential fluorescence microscopy and was shown to be dependent on expression of the type III secretion system (TTSS). Previous studies have demonstrated that TTSS expression in enteropathogenic Yersinia spp. also inhibits the respiratory burst in PMNs and macrophages, and we show here that human PMN ROS production is similarly repressed by Y. pestis. However, exclusion of uningested TTSS-expressing Y. pestis with gentamicin revealed that intracellular bacteria are eliminated by human PMNs, similar to bacteria lacking the TTSS. In summary, our results suggest that the Y. pestis TTSS contributes to extracellular survival following interactions with human PMNs and that the intracellular fate is independent of TTSS inhibition of neutrophil ROS production.
Collapse
|
87
|
Human dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells. Infect Immun 2008; 76:2070-9. [PMID: 18285492 DOI: 10.1128/iai.01246-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Yersinia pestis is the etiologic agent of bubonic and pneumonic plagues. It is speculated that Y. pestis hijacks antigen-presenting cells (APCs), such as dendritic cells (DCs) and alveolar macrophages, in order to be delivered to lymph nodes. However, how APCs initially capture the bacterium remains uncharacterized. It is well known that HIV-1 uses human DC-specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) (CD209) receptor, expressed by APCs, to be captured and delivered to target cell, such as CD4+ lymphocytes. Several gram-negative bacteria utilize their core lipopolysaccharides (LPS) as ligands to interact with the human DC-SIGN. Therefore, it is possible that Y. pestis, whose core LPS is naturally exposed, might exploit DC-SIGN to invade APCs. We demonstrate in this study that Y. pestis directly interacts with DC-SIGN and invades both DCs and alveolar macrophages. In contrast, when engineered to cover the core LPS, Y. pestis loses its ability to invade DCs, alveolar macrophages, and DC-SIGN-expressing transfectants. The interaction between Y. pestis and human DCs can be reduced by a combination treatment with anti-CD209 and anti-CD207 antibodies. This study shows that human DC-SIGN is a receptor for Y. pestis that promotes phagocytosis by DCs in vitro.
Collapse
|
88
|
Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun 2007; 76:612-22. [PMID: 18025094 DOI: 10.1128/iai.01125-07] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host to host by fleas. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 and 37 degrees C. Ail was expressed at high levels at both 26 and 37 degrees C, but not at 6 degrees C. Expression of Ail in Escherichia coli provided protection from the bactericidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (the y1682, y2034, and y2446 proteins) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infection of mice, Caenorhabditis elegans, and fleas was investigated.
Collapse
|