51
|
The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation. Appl Microbiol Biotechnol 2017; 102:1343-1355. [PMID: 29275430 DOI: 10.1007/s00253-017-8703-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
Abstract
Histone lysine acetylation orchestrates transcriptional activity essential for diverse cellular events across organisms, but it remains poorly understood how an acetylated lysine affects cellular functions in filamentous fungal pathogens. Here, we show the functions of a histone acetyltransferase that is phylogenetically close to Mst2 in fission yeast and specifically acetylates histone H3K14 in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest management. Deletion of mst2 in B. bassiana resulted in moderate growth defects on rich and minimal media, delayed conidiation, and drastic reduction (75%) in conidiation capacity under normal culture conditions. The Δmst2 conidia suffered slower germination, decreased hydrophobicity, attenuated virulence, and reduced thermotolerance and UV-B resistance. The Δmst2 mutant also displayed increased sensitivities to DNA damaging, oxidative, cell wall perturbing, and osmotic stresses during conidial germination and colony growth at optimal 25 °C. Intriguingly, the phenotypic changes were accompanied with transcriptional repression of related gene sets, which are required for asexual development and conidial hydrophobicity or cascaded for CWI and HOG pathways, and encode the families of superoxide dismutases (SOD), catalases, heat-shock proteins, and trehalose or mannitol-metabolizing enzymes. Consequently, total SOD and catalase activities, trehalose and mannitol contents, and hydrophobicity were remarkably lowered in the hyphal cells or conidia of Δmst2. All of these changes were well restored by targeted mst2 complementation. Our results indicate that Mst2 enables to mediate global gene transcription and/or post-translation through H3K14 acetylation and plays an essential role in sustaining the biological control potential of B. bassiana against arthropod pests.
Collapse
|
52
|
Chen A, Wang Y, Shao Y, Zhou Q, Chen S, Wu Y, Chen H, Liu E. Genes involved in Beauveria bassiana infection to Galleria mellonella. Arch Microbiol 2017; 200:541-552. [PMID: 29214339 DOI: 10.1007/s00203-017-1456-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022]
Abstract
The ascomycete fungus Beauveria bassiana is a natural pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. Many genes involved in fungal insecticide infection have been identified but few have been further explored. In this study, we constructed three transcriptomes of B. bassiana at 24, 48 and 72 h post infection of insect pests (BbI) or control (BbC). There were 3148, 3613 and 4922 genes differentially expressed at 24, 48 and 72 h post BbI/BbC infection, respectively. A large number of genes and pathways involved in infection were identified. To further analyze those genes, expression patterns across different infection stages (0, 12, 24, 36, 48, 60, 72 and 84 h) were studied using quantitative RT-PCR. This analysis showed that the infection-related genes could be divided into four patterns: highly expressed throughout the whole infection process (thioredoxin 1); highly expressed during early stages of infection but lowly expressed after the insect death (adhesin protein Mad1); lowly expressed during early infection but highly expressed after insect death (cation transporter, OpS13); or lowly expressed across the entire infection process (catalase protein). The data provide novel insights into the insect-pathogen interaction and help to uncover the molecular mechanisms involved in fungal infection of insect pests.
Collapse
Affiliation(s)
- Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safety, Xuzhou University of Technology, Xuzhou, China
| | - Yulong Wang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ying Shao
- Jiangsu Key Laboratory of Food Resource Development and Quality Safety, Xuzhou University of Technology, Xuzhou, China
| | - Qiumei Zhou
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Shanglong Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safety, Xuzhou University of Technology, Xuzhou, China
| | - Yonghua Wu
- Jiangsu Key Laboratory of Food Resource Development and Quality Safety, Xuzhou University of Technology, Xuzhou, China
| | - Hongwei Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safety, Xuzhou University of Technology, Xuzhou, China
| | - Enqi Liu
- Jiangsu Key Laboratory of Food Resource Development and Quality Safety, Xuzhou University of Technology, Xuzhou, China.
| |
Collapse
|
53
|
Huarte-Bonnet C, Paixão FRS, Ponce JC, Santana M, Prieto ED, Pedrini N. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations. Fungal Biol 2017; 122:457-464. [PMID: 29801789 DOI: 10.1016/j.funbio.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.
Collapse
Affiliation(s)
- Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Flávia R S Paixão
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Juan C Ponce
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Marianela Santana
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Eduardo D Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
54
|
Chu ZJ, Sun HH, Zhu XG, Ying SH, Feng MG. Discovery of a new intravacuolar protein required for the autophagy, development and virulence of Beauveria bassiana. Environ Microbiol 2017; 19:2806-2818. [DOI: 10.1111/1462-2920.13803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Zhen-Jian Chu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Huan-Huan Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| |
Collapse
|
55
|
Qu J, Zou X, Yu J, Zhou Y. The conidial mucilage, natural film coatings, is involved in environmental adaptability and pathogenicity of Hirsutella satumaensis Aoki. Sci Rep 2017; 7:1301. [PMID: 28465519 PMCID: PMC5431061 DOI: 10.1038/s41598-017-01368-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/29/2017] [Indexed: 01/11/2023] Open
Abstract
The Hirsutella genus is very special asexually-reproducing pathogens of insects by reduced sporulation, host specificity and spores covered by a thick mucilage layer. However, the ecological function of conidial mucilage remains elusive. In this study, the possible ecological role of conidial mucilage from the entomopathogenic fungus Hirsutella satumaensis was functionally investigated through tolerance, adherence and insect bioassays involving aerial conidia (AC) and mucilage-free conidia (MFC). Measurements of hydrophobicity using microbial adhesion to hydrocarbons (MATH) indicated that mucilage is main contributor to the surface hydrophobicity of AC. When subjected in tolerance assays to extreme temperatures, high chemical pressure, extended exposure to ultraviolet radiation and cold stress, AC produced more colonies, exhibited higher conidiation and germination percentages than those of MFC. In adhesion assays, MFC displayed an approximately 40% reduction in adherence to locust, dragonfly cuticle and onion epidermis when washed with 0.05% Tween 20. Similarly, Galleria mellonella and Plutella xylostella larvae infected with mucilage-producing AC experienced a relatively higher mortality rate. Our findings suggest that mucilage is critical to the ecological adaptability of H. satumaensis, where it plays positive roles on maintenance of spore surface hydrophobicity, enhancement of spore resistance to extreme environments and strengthening of spore adhesion and host pathogenicity.
Collapse
Affiliation(s)
- Jiaojiao Qu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| | - Jianping Yu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yeming Zhou
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
56
|
Alkhaibari AM, Carolino AT, Bull JC, Samuels RI, Butt TM. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:696-704. [PMID: 28399202 DOI: 10.1093/jme/tjw223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
Biorational insecticides are being increasingly used in integrated pest management programs. In laboratory bioassays, the pathogenicity of blastospores and conidia of the entomopathogenic fungus Metarhizium brunneum ARSEF 4556 was evaluated against larvae of three mosquito species. Three propagule concentrations (1 × 106, 1 × 107, and 1 × 108 spores ml - 1) were used in the bioassays. Results showed that Aedes aegypti had lower survival rates when exposed to blastospores than when exposed to conidia, whereas the converse was true for Culex quinquefasciatus larvae. Anopheles stephensi larvae survival rates were similar when exposed to blastospores and conidia, except at the higher doses, where blastospores were more virulent. Several assays showed little difference in mortalities when using either 1 × 107 or 1 × 108 spores ml - 1, suggesting a threshold above which no higher control levels or economic benefit would be achieved. When tested at the lowest dose, the LT50 of Cx. quinquefasciatus using blastospores, wet conidia, and dry conidia was 3.2, 1.9, and 4.4 d, respectively. The LT50 of Ae. aegypti using blastospores, wet conidia, and dry conidia was 1.3, 3.3, and 6.2 d, respectively. The LT50 of An. stephensi using blastospores, wet conidia, and dry conidia was 2.0, 1.9, and 2.1 d, respectively. These observations suggest that for optimized control, two different formulations of the fungus may be needed when treating areas where there are mixed populations of Aedes, Anopheles, and Culex.
Collapse
Affiliation(s)
- A M Alkhaibari
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| | - A T Carolino
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro 28016-602, Brazil (; )
| | - J C Bull
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| | - R I Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro 28016-602, Brazil (; )
| | - T M Butt
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| |
Collapse
|
57
|
Ionic effects on microalgae harvest via microalgae-fungi co-pelletization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
58
|
Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect. Fungal Genet Biol 2016; 99:13-25. [PMID: 28040530 DOI: 10.1016/j.fgb.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/16/2016] [Accepted: 12/26/2016] [Indexed: 12/19/2022]
Abstract
The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host.
Collapse
|
59
|
Ortiz-Urquiza A, Fan Y, Garrett T, Keyhani NO. Growth substrates and caleosin-mediated functions affect conidial virulence in the insect pathogenic fungus Beauveria bassiana. Microbiology (Reading) 2016; 162:1913-1921. [DOI: 10.1099/mic.0.000375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Timothy Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Nemat O. Keyhani
- Genetic Engineering Research Center, Chongqing University, School of Life Sciences, Chongqing 40045, PR China
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
60
|
He Z, Luo L, Keyhani NO, Yu X, Ying S, Zhang Y. The C-terminal MIR-containing region in the Pmt1 O-mannosyltransferase restrains sporulation and is dispensable for virulence in Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:1143-1161. [DOI: 10.1007/s00253-016-7894-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022]
|
61
|
Mascarin GM, Jaronski ST. The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 2016; 32:177. [PMID: 27628337 DOI: 10.1007/s11274-016-2131-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022]
Abstract
Among invertebrate fungal pathogens, Beauveria bassiana has assumed a key role in management of numerous arthropod agricultural, veterinary and forestry pests. Beauveria is typically deployed in one or more inundative applications of large numbers of aerial conidia in dry or liquid formulations, in a chemical paradigm. Mass production is mainly practiced by solid-state fermentation to yield hydrophobic aerial conidia, which remain the principal active ingredient of mycoinsecticides. More robust and cost-effective fermentation and formulation downstream platforms are imperative for its overall commercialization by industry. Hence, where economics allow, submerged liquid fermentation provides alternative method to produce effective and stable propagules that can be easily formulated as dry stable preparations. Formulation also continues to be a bottleneck in the development of stable and effective commercial Beauveria-mycoinsecticides in many countries, although good commercial formulations do exist. Future research on improving fermentation and formulation technologies coupled with the selection of multi-stress tolerant and virulent strains is needed to catalyze the widespread acceptance and usefulness of this fungus as a cost-effective mycoinsecticide. The role of Beauveria as one tool among many in integrated pest management, rather than a stand-alone management approach, needs to be better developed across the range of crop systems. Here, we provide an overview of mass-production and formulation strategies, updated list of registered commercial products, major biocontrol programs and ecological aspects affecting the use of Beauveria as a mycoinsecticide.
Collapse
Affiliation(s)
- Gabriel Moura Mascarin
- EMBRAPA Rice and Beans, Rod. GO-462, km 12, Zona Rural, St. Antônio de Goiás, GO, 75375-000, Brazil.
| | - Stefan T Jaronski
- United States Department of Agriculture, Agriculture Research Service, Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, 1500 N. Central Avenue, Sidney, MT, 59270, USA
| |
Collapse
|
62
|
Alkhaibari AM, Carolino AT, Yavasoglu SI, Maffeis T, Mattoso TC, Bull JC, Samuels RI, Butt TM. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality. PLoS Pathog 2016; 12:e1005715. [PMID: 27389584 PMCID: PMC4936676 DOI: 10.1371/journal.ppat.1005715] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/01/2016] [Indexed: 11/19/2022] Open
Abstract
Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti.
Collapse
Affiliation(s)
- Abeer M. Alkhaibari
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Aline T. Carolino
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Sare I. Yavasoglu
- Department of Biology, Faculty of Arts & Sciences, Adnan Menderes University, Aydin, Turkey
| | - Thierry Maffeis
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Thalles C. Mattoso
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Richard I. Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Tariq M. Butt
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
63
|
Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection. PLoS One 2016; 11:e0152908. [PMID: 27043942 PMCID: PMC4820269 DOI: 10.1371/journal.pone.0152908] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24–48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.
Collapse
|
64
|
Barelli L, Moonjely S, Behie SW, Bidochka MJ. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. PLANT MOLECULAR BIOLOGY 2016; 90:657-664. [PMID: 26644135 DOI: 10.1007/s11103-015-0413-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.
Collapse
Affiliation(s)
- Larissa Barelli
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Soumya Moonjely
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Scott W Behie
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
65
|
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. ADVANCES IN GENETICS 2016; 94:307-64. [PMID: 27131329 DOI: 10.1016/bs.adgen.2016.01.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs.
Collapse
Affiliation(s)
- T M Butt
- Swansea University, Swansea, Wales, United Kingdom
| | - C J Coates
- Swansea University, Swansea, Wales, United Kingdom
| | | | - N A Ratcliffe
- Swansea University, Swansea, Wales, United Kingdom; Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
66
|
Wang J, Ying SH, Hu Y, Feng MG. Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen. Environ Microbiol 2016; 18:1037-47. [DOI: 10.1111/1462-2920.13197] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
- Key Laboratory of Tropical Marine Bio-resources and Ecology; RNAM Center for Marine Microbiology; Guangdong Key Laboratory of Marine Material Medical; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou Guangdong 510301 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| |
Collapse
|
67
|
Molecular Genetics of Beauveria bassiana Infection of Insects. ADVANCES IN GENETICS 2016; 94:165-249. [DOI: 10.1016/bs.adgen.2015.11.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
68
|
Cheong P, Glare TR, Rostás M, Haines SR. Measuring Chitinase and Protease Activity in Cultures of Fungal Entomopathogens. Methods Mol Biol 2016; 1477:177-189. [PMID: 27565500 DOI: 10.1007/978-1-4939-6367-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Entomopathogenic fungi produce a variety of destructive enzymes and metabolites to overcome the unique defense mechanisms of insects. In a first step, fungal chitinases and proteinases need to break down the insect's cuticle. Both enzyme classes support the infection process by weakening the chitin barrier and by producing nutritional cleavage products for the fungus. In a second step, the pathogen can now mechanically penetrate the weakened cuticle and reach the insect's hemolymph where it starts proliferating. The critical enzymes chitinase and proteinase are also excreted into the supernatants of fungal cultures and can be used as indicators of virulence. Chromogenic assays adapted for 96-well microtiter plates that measure these enzymes provide a sensitive, fast, and easy screening method for evaluating the potential biocontrol activity of fungal isolates and may be considered as an alternative to laborious and time-consuming bioassays. Furthermore, monitoring fungal enzyme production in dependence of time, nutrient sources, or other factors can facilitate in establishing optimal growth and harvesting conditions for selected isolates with the aim of achieving maximum biocontrol activity.
Collapse
Affiliation(s)
- Peter Cheong
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand.
- Biotelliga Limited, 4 Austen Place, Pukekohe, 2120, New Zealand.
| | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand
| | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand
| | - Stephen R Haines
- AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch, 8140, New Zealand
| |
Collapse
|
69
|
Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
70
|
Lee R, Jessop PG, Champagne P. Carbon dioxide pressure-induced coagulation of microalgae. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2015.0016. [PMID: 26574522 DOI: 10.1098/rsta.2015.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 06/05/2023]
Abstract
The move to a low-carbon economy has generated renewed interest in microalgae for the production of biofuels with the potential mutual benefit of wastewater treatment. However, harvesting has been identified as a limiting factor to the economic viability of this process. This paper explores the harvesting of microalgae using high-pressure gas without the addition of coagulants. Coagulation of microalgae under high-pressure gas was found to be an efficient method to separate algae from suspension. The critical coagulation pressures (CCPs) for H(2) and CO(2) were determined to be 6.1 and 6.2 MPa, respectively. The CO(2)-induced decrease in solution pH positively influenced coagulation rates, without appearing to affect the CCP. This approach could be beneficial for the economic removal of microalgae from solution for the production of both biofuels and biomedical compounds without the addition of non-environmentally friendly chemicals.
Collapse
Affiliation(s)
- Roland Lee
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6 Department of Civil Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Philip G Jessop
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
71
|
Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2015; 130:42-51. [DOI: 10.1016/j.jip.2015.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/19/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
|
72
|
Huang S, He Z, Zhang S, Keyhani NO, Song Y, Yang Z, Jiang Y, Zhang W, Pei Y, Zhang Y. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana. Fungal Genet Biol 2015; 83:78-91. [PMID: 26319315 DOI: 10.1016/j.fgb.2015.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023]
Abstract
The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana.
Collapse
Affiliation(s)
- Shuaishuai Huang
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhangjiang He
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Shiwei Zhang
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yulin Song
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhi Yang
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Yahui Jiang
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Wenli Zhang
- Medical Research Center, North China University of Science and Technology, Hebei 06000, People's Republic of China
| | - Yan Pei
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
| | - Yongjun Zhang
- College of Plant Protection, Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
73
|
WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol 2015; 99:10069-81. [DOI: 10.1007/s00253-015-6823-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/01/2015] [Accepted: 07/05/2015] [Indexed: 12/31/2022]
|
74
|
Chen X, Li L, Hu Q, Zhang B, Wu W, Jin F, Jiang J. Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol 2015. [PMID: 26198409 PMCID: PMC4509747 DOI: 10.1186/s12896-015-0170-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) technology shows a great potential in controlling agricultural pests, despite the difficulty of introducing exogenous dsRNA/siRNA into target pests. Isaria fumosorosea is a common fungal pathogen of the B-biotype Bemisia tabaci (whitefly), which is a widespread pest. Entomopathogenic fungi directly penetrate the cuticle and invade insect hemocoel. Application of I. fumosorosea expressing dsRNA of whitefly immunity-related gene may aid in developing RNAi technology to effectively control whiteflies. METHODS A dsRNA expression plasmid, psTLR7, was constructed by introducing the Toll-like receptor 7 (TLR7) gene of B-biotype whitefly to the silent vector, pSilent-1. The plasmid psTLR7 was transferred into the protoplast of the I. fumosorosea strain IfB01. Then, the recombinant strain was screened out based on the biological stability and bioactivity against whitefly. RESULTS A genetically stable recombinant strain IfB01-TRL7 was screened out. The impact of IfB01-TRL7 against whitefly TRL7 gene was validated by qPCR. Lower expression levels of the TLR7 gene was observed in the whiteflies infected by the recombinant strain. The bioassay results indicated that compared to IfB01 strain, IfB01-TRL7 increased the mortality of whitefly nymphs, and decreased and shortened the values of LC50 and LT50, thus indicating higher virulence of IfB01-TRL7. CONCLUSION The expression of the dsRNA of whitefly TLR7 gene in recombinant I. fumosorosea strain successfully knocked down the host target gene by infecting the nymphs and enhanced the whiteflies mortality. The present study will give insight to new application of RNAi technology for more effective biocontrol of this pests.
Collapse
Affiliation(s)
- Xiurun Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Lin Li
- College of Agriculture, South China Agricultural University, Guangzhou, China. .,College of Agronamy, Jiangxi Agricultural University, Nanchang, China.
| | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Bowen Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Wei Wu
- College of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Junxi Jiang
- College of Agronamy, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
75
|
Rodriguez-Gomez D, Marcial-Quino J, Loera O. Modulation of conidia production and expression of the gene bbrgs1 from Beauveria bassiana by oxygen pulses and light. J Invertebr Pathol 2015; 130:82-7. [PMID: 26166809 DOI: 10.1016/j.jip.2015.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
Abstract
Light and oxidant states affect the conidiation in diverse fungi, although the response has not been described when both stimuli are applied simultaneously. Conidial production and quality in Beauveria bassiana were analysed under four conditions for a wild-type (wt) strain and a previously isolated mutant (mt): normal atmosphere (21% O2; NA) or oxygen-enriched pulses (26% O2; OEP), with either light (L) or darkness (D). The response was complemented by following the expression of the bbrgs1 gene, encoding a regulator of the G-protein signal associated to conidia production. Conidiation was not significantly affected in the mutant strain by any condition (highest value with NA-L: 2.7×10(8)concm(-2)). Relative to maximal levels under NA (NA-D: 4×10(7)concm(2)), the wt strain diminished conidiation by 34-fold under OEP. The expression of bbrgs1 was higher (up to 188 times) in the mutant strain in every condition relative to the wt strain, in fact expression levels were consistent with the conidiation yields between strains. Viability and hydrophobicity were less affected by culture conditions, although pathogenicity parameters improved in conidia from OEP. The response to OEP, either with light or darkness, was strain-dependent for conidial production, viability, hydrophobicity and infectivity of conidia, then these parameters could be modulated in mass production processes.
Collapse
Affiliation(s)
- Divanery Rodriguez-Gomez
- Departmento de Biotecnologia, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico, D.F., Mexico
| | - Jaime Marcial-Quino
- Cátedras CONACyT, comissioned to Instituto Nacional de Pediatrıa, S.S., 04530 Mexico, D.F., Mexico
| | - Octavio Loera
- Departmento de Biotecnologia, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico, D.F., Mexico.
| |
Collapse
|
76
|
Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc Natl Acad Sci U S A 2015; 112:E3651-60. [PMID: 26056261 DOI: 10.1073/pnas.1504552112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.
Collapse
|
77
|
Miranda AF, Taha M, Wrede D, Morrison P, Ball AS, Stevenson T, Mouradov A. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:179. [PMID: 26550031 PMCID: PMC4635583 DOI: 10.1186/s13068-015-0364-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/22/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. RESULTS This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. CONCLUSION Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.
Collapse
Affiliation(s)
- Ana F. Miranda
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| | - Mohamed Taha
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| | - Digby Wrede
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| | - Paul Morrison
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| | - Andrew S. Ball
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| | - Trevor Stevenson
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| | - Aidyn Mouradov
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083 Australia
| |
Collapse
|
78
|
Ortiz-Urquiza A, Luo Z, Keyhani NO. Improving mycoinsecticides for insect biological control. Appl Microbiol Biotechnol 2014; 99:1057-68. [DOI: 10.1007/s00253-014-6270-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/03/2023]
|
79
|
He PH, Wang XX, Chu XL, Feng MG, Ying SH. RNA sequencing analysis identifies the metabolic and developmental genes regulated by BbSNF1 during conidiation of the entomopathogenic fungus Beauveria bassiana. Curr Genet 2014; 61:143-52. [DOI: 10.1007/s00294-014-0462-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|
80
|
Greenfield BPJ, Lord AM, Dudley E, Butt TM. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140193. [PMID: 26064542 PMCID: PMC4448906 DOI: 10.1098/rsos.140193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/23/2014] [Indexed: 05/12/2023]
Abstract
Adhesion of conidia of the insect pathogenic fungus, Metarhizium anisopliae, to the arthropod host cuticle initially involves hydrophobic forces followed by consolidation facilitated by the action of extracellular enzymes and secretion of mucilage. Gene expression analysis and atomic force microscopy were used to directly quantify recognition and adhesion between single conidia of M. anisopliae and the cuticle of the aquatic larval stage of Aedes aegypti and a representative terrestrial host, Tenebrio molitor. Gene expression data indicated recognition by the pathogen of both hosts; however, the forces for adhesion to the mosquito were approximately five times lower than those observed for Tenebrio. Although weak forces were recorded in response to Aedes, Metarhizium was unable to consolidate firm attachment. An analysis of the cuticular composition revealed an absence of long-chain hydrocarbons in Aedes larvae which are thought to be required for fungal development on host cuticle. This study provides, to our knowledge, the first evidence that Metarhizium does not form firm attachment to Ae. aegypti larvae in situ, therefore preventing the normal route of invasion and pathogenesis from occuring.
Collapse
Affiliation(s)
- Bethany P. J. Greenfield
- College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
- Author for correspondence: Bethany P. J. Greenfield e-mail:
| | - Alex M. Lord
- College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Ed Dudley
- College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Tariq M. Butt
- College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
81
|
Ortiz-Urquiza A, Keyhani NO. Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet 2014; 61:239-49. [DOI: 10.1007/s00294-014-0439-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 01/18/2023]
|
82
|
BbSNF1 contributes to cell differentiation, extracellular acidification, and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus. Appl Microbiol Biotechnol 2014; 98:8657-73. [DOI: 10.1007/s00253-014-5907-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/07/2014] [Accepted: 06/15/2014] [Indexed: 01/23/2023]
|
83
|
Wang JJ, Qiu L, Cai Q, Ying SH, Feng MG. Three α-1,2-mannosyltransferases contribute differentially to conidiation, cell wall integrity, multistress tolerance and virulence of Beauveria bassiana. Fungal Genet Biol 2014; 70:1-10. [PMID: 24981201 DOI: 10.1016/j.fgb.2014.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/02/2014] [Accepted: 06/22/2014] [Indexed: 11/25/2022]
Abstract
Members of α-1,2-mannosyltransferase (Ktr) family are required for protein O-mannosylation for the elongation of Ser/Thr mannose residues in yeasts but functionally unknown in most filamentous fungi. Here we characterized the functions of the Ktr orthologues Ktr1, Ktr4 and Kre2/Mnt1 in Beauveria bassiana, a filamentous enotmopathogen, and found that they were positive, but differential, mediators of many biological traits. Inactivation of Ktr4 and Kre2 resulted in 92% reduction of conidial yield on a standard medium and growth defects on substrates with altered carbon or nitrogen sources and availability, accompanied with reduced conidial size and complexity. This contrasts to the dispensability of Ktr1 for fungal growth and conidiation. More cell wall damage occurred in Δktr4 and Δkre2 than in Δktr1, including altered contents of the cell wall components mannoproteins, α-glucans and chitin, more carbohydrate epitopes changed on conidial surfaces, much lower conidial hydrophobicity, and thinner cell walls. Consequently, Δktr4 and Δkre2 became more sensitive to oxidation and cell wall perturbation than Δktr1 during colony growth or conidial germination despite less difference in their sensitivities to two osmotic agents. Conidial thermotolerance, UV-B resistance and virulence were all lowered greatly in Δktr4 and Δkre2 but only the thermotolerance decreased in Δktr1. All the phenotypical changes were well restored to wild-type levels by the complementation of each target gene. Our results indicate that Ktr4 and Kre2 contribute more to the biocontrol potential of B. bassiana than Ktr1 although all of them are significant contributors.
Collapse
Affiliation(s)
- Juan-Juan Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lei Qiu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
84
|
Lohse R, Jakobs-Schönwandt D, Patel AV. Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express 2014; 4:47. [PMID: 24949278 PMCID: PMC4052666 DOI: 10.1186/s13568-014-0047-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/04/2014] [Indexed: 11/10/2022] Open
Abstract
A novel approach for biological control of insect pests could be the use of the endophytic entomopathogenic Beauveria bassiana isolate ATP-02. For the utilization of the endophyte as a commercial biocontrol agent, the fungus has to be mass-produced. B. bassiana was raised in shake flask cultures to produce high concentrations of total spores (TS), which include blastospores (BS) and submerged conidiospores (SCS). The highest concentration of 1.33×10(9) TS/mL and the highest yield of 5.32×10(10) TS/g sucrose was obtained in the TKI broth with 5% sugar beet molasses which consists of 50% sucrose as a carbon source. In spite of the lower sugar concentration (2.5%) the amount of TS could be increased up to 11-times in contrast to the cultivation with 5% sucrose. The scale-up to a 2 L stirred tank reactor was carried out at 25°C, 200-600 rpm and 1 vvm at pH 5.5. A TS yield of 5.2×10(10) TS/g sucrose corresponding to a SCS yield of 0.2×10(10) SCS/g sucrose was obtained after 216 h. With regards to the culture medium the cost of 10(12) TS amounts to 0.24 €. Plutella xylostella larvae, which were fed with oilseed rape leaves treated with spores from fermentation resulted in 77 ± 5% mortality. Moreover, spores from submerged cultivation were able to colonize oilseed rape leaves via leaf application. This is the first report of fermentation of an endophytic B. bassiana strain in a low-cost culture medium to very high yields of TS.
Collapse
Affiliation(s)
- Rieke Lohse
- Department of Engineering and Mathematics, University of Applied Sciences, Wilhelm-Bertelsmann-Str. 10, Bielefeld 33602, Germany
| | - Desiree Jakobs-Schönwandt
- Department of Engineering and Mathematics, University of Applied Sciences, Wilhelm-Bertelsmann-Str. 10, Bielefeld 33602, Germany
| | - Anant V Patel
- Department of Engineering and Mathematics, University of Applied Sciences, Wilhelm-Bertelsmann-Str. 10, Bielefeld 33602, Germany
| |
Collapse
|
85
|
Wang JJ, Qiu L, Chu ZJ, Ying SH, Feng MG. The connection of protein O-mannosyltransferase family to the biocontrol potential of Beauveria bassiana, a fungal entomopathogen. Glycobiology 2014; 24:638-48. [DOI: 10.1093/glycob/cwu028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
86
|
Ying SH, Ji XP, Wang XX, Feng MG, Keyhani NO. The transcriptional co-activator multiprotein bridging factor 1 from the fungal insect pathogen,Beauveria bassiana, mediates regulation of hyphal morphogenesis, stress tolerance and virulence. Environ Microbiol 2014; 16:1879-97. [DOI: 10.1111/1462-2920.12450] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/08/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xiao-Ping Ji
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xiu-Xiu Wang
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science; University of Florida; Gainesville FL 32611 USA
| |
Collapse
|
87
|
Fukunishi K, Miyakubi K, Hatanaka M, Otsuru N, Hirata A, Shimoda C, Nakamura T. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3. Mol Biol Cell 2014; 25:1549-59. [PMID: 24623719 PMCID: PMC4019487 DOI: 10.1091/mbc.e13-12-0731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses.
Collapse
Affiliation(s)
- Kana Fukunishi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kana Miyakubi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Mitsuko Hatanaka
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Natsumi Otsuru
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
88
|
Guerriero G, Silvestrini L, Obersriebnig M, Salerno M, Pum D, Strauss J. Sensitivity of Aspergillus nidulans to the cellulose synthase inhibitor dichlobenil: insights from wall-related genes' expression and ultrastructural hyphal morphologies. PLoS One 2013; 8:e80038. [PMID: 24312197 PMCID: PMC3843659 DOI: 10.1371/journal.pone.0080038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Abstract
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- * E-mail: (GG); (JS)
| | - Lucia Silvestrini
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Michael Obersriebnig
- Institute of Wood Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Marco Salerno
- Nanophysics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- * E-mail: (GG); (JS)
| |
Collapse
|
89
|
Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) Blastospores with Agricultural Chemicals Used for Management of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). INSECTS 2013; 4:694-711. [PMID: 26462531 PMCID: PMC4553511 DOI: 10.3390/insects4040694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/17/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022]
Abstract
Biorational insecticides are being increasingly emphasized for inclusion in integrated pest management programs for invasive insects. The entomopathogenic fungus, Isaria fumosorosea, can be used to help manage the Asian citrus psyllid with minimal impact on beneficial arthropods, but its effectiveness may be compromised by agrochemicals used to control concurrent arthropod pests and diseases. We evaluated the compatibility of I. fumosorosea blastospores with a range of spray oils and copper-based fungicides registered for use in citrus groves. Results of laboratory and greenhouse tests showed a range of responses of the fungus to the different materials, including compatibility and incompatibility. Overall, I. fumosorosea growth in vitro was reduced least by petroleum-based materials and most by botanical oils and borax, and some of the copper-based fungicides, suggesting that tank mixing of I. fumosorosea with these latter products should be avoided. However, equivalent negative effects of test materials on fungal pathogenicity were not always observed in tests with adult psyllids. We hypothesize that some oils enhanced adherence of blastospores to the insect cuticle, overcoming negative impacts on germination. Our data show that care should be taken in selecting appropriate agrochemicals for tank-mixing with commercial formulations of entomopathogenic fungi for management of citrus pests. The prospects of using I. fumosorosea for managing the invasive Asian citrus psyllid and other citrus pests are discussed.
Collapse
|
90
|
|
91
|
Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus. ENERGIES 2013. [DOI: 10.3390/en6115921] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
Wang YB, Yang ZH, Yu JJ, Zhang YA, Xue JJ, Li Z, Li JJ, Wang CY, Wang Z, Hou JG, Begum S, Gu LJ, Lee MR, Sung CK. Comparison between conidia and blastospores of Esteya vermicola, an endoparasitic fungus of the pinewood nematode, Bursaphelenchus xylophilus. World J Microbiol Biotechnol 2013; 29:2429-36. [DOI: 10.1007/s11274-013-1433-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
|
93
|
Ortiz-Urquiza A, Keyhani NO. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle. INSECTS 2013; 4:357-74. [PMID: 26462424 PMCID: PMC4553469 DOI: 10.3390/insects4030357] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 01/22/2023]
Abstract
Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms underlying this interaction can shed light on the ecology and evolution of virulence and can be used for rational design strategies at increasing the effectiveness of entomopathogenic fungi for pest control in field applications.
Collapse
Affiliation(s)
- Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
94
|
Ying SH, Feng MG, Keyhani NO. A carbon responsive G-protein coupled receptor modulates broad developmental and genetic networks in the entomopathogenic fungus,Beauveria bassiana. Environ Microbiol 2013; 15:2902-21. [DOI: 10.1111/1462-2920.12169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ming-Guang Feng
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; 32611; USA
| |
Collapse
|
95
|
Abstract
Filamentous fungi have been constantly recovered from diverse aquatic environments including drinking water distribution systems. Although most of the works are focused on the study of planktonic form, recent researches have shown that fungi develop biofilm within these systems. In this study, Aspergillus sp. (section Nigri), Aspergillus sp. (section Flavi), Alternaria sp., Botrytis sp., Cladosporium sp., and Penicillium sp. recovered from water biofilms were used to evaluate their capability to grow as biofilms under laboratorial conditions. Morphological and physiological characteristics were analysed using image analysis and biomass and cell activity estimation. All six isolates were able to form biofilm, though different patterns of development were observed. Only Alternaria sp. formed biofilm in water over 24 h of analysis. MEB was shown to be the best culture media for biofilm formation. A direct correlation between biomass and cell activity was not observed, but biomass values and morphological parameters, that is, monolayer and EPS production, were directly correlated. Thus, the results present here highlight the capability of fungi to form biofilms and the emergent necessity to standardize methods for further research in this area.
Collapse
|
96
|
Olivelli MS, Curutchet GA, Torres Sánchez RM. Uranium Uptake by Montmorillonite-Biomass Complexes. Ind Eng Chem Res 2013. [DOI: 10.1021/ie301773p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Melisa S. Olivelli
- Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, M.B. Gonnet, Buenos Aires, Argentina
- Laboratorio de Análisis
Ambiental, Escuela de Ciencia y Tecnología, Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires,
Argentina
| | - Gustavo A. Curutchet
- Laboratorio de Análisis
Ambiental, Escuela de Ciencia y Tecnología, Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires,
Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnicas, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| | - Rosa M. Torres Sánchez
- Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, M.B. Gonnet, Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnicas, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| |
Collapse
|
97
|
Adya AK, Gautam A, Zhang L, Varma A. Characterization of Piriformospora indica Culture Filtrate. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-33802-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
98
|
Jin K, Ming Y, Xia YX. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. Microbiology (Reading) 2012; 158:2987-2996. [DOI: 10.1099/mic.0.059469-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Kai Jin
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 400030, PR China
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yue Ming
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 400030, PR China
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yu Xian Xia
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 400030, PR China
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing 400030, PR China
| |
Collapse
|
99
|
van Veluw GJ, Teertstra WR, de Bekker C, Vinck A, van Beek N, Muller WH, Arentshorst M, van der Mei HC, Ram AFJ, Dijksterhuis J, Wösten HAB. Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants. Stud Mycol 2012; 74:47-57. [PMID: 23449476 PMCID: PMC3563290 DOI: 10.3114/sim0008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Black pigmented conidia of Aspergillus niger give rise to micro-colonies when incubated in liquid shaken medium. These micro-colonies are heterogeneous with respect to gene expression and size. We here studied the biophysical properties of the conidia of a control strain and of strains in which the fwnA, olvA or brnA gene is inactivated. These strains form fawn-, olive-, and brown-coloured conidia, respectively. The ΔolvA strain produced larger conidia (3.8 μm) when compared to the other strains (3.2-3.3 μm). Moreover, the conidia of the ΔolvA strain were highly hydrophilic, whereas those of the other strains were hydrophobic. The zeta potential of the ΔolvA conidia in medium was also more negative when compared to the control strain. This was accompanied by the near absence of a rodlet layer of hydrophobins. Using the Complex Object Parametric Analyzer and Sorter it was shown that the ratio of individual hyphae and micro-colonies in liquid shaken cultures of the deletion strains was lower when compared to the control strain. The average size of the micro-colonies of the control strain was also smaller (628 μm) than that of the deletion strains (790-858 μm). The size distribution of the micro-colonies of the ΔfwnA strain was normally distributed, while that of the other strains could be explained by assuming a population of small and a population of large micro-colonies. In the last set of experiments it was shown that relative expression levels of gpdA, and AmyR and XlnR regulated genes correlate in individual hyphae at the periphery of micro-colonies. This indicates the existence of transcriptionally and translationally highly active and lowly active hyphae as was previously shown in macro-colonies. However, the existence of distinct populations of hyphae with high and low transcriptional and translational activity seems to be less robust when compared to macro-colonies grown on solid medium.
Collapse
Affiliation(s)
- G J van Veluw
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Mantilla JG, Galeano NF, Gaitan AL, Cristancho MA, Keyhani NO, Góngora CE. Transcriptome analysis of the entomopathogenic fungus Beauveria bassiana grown on cuticular extracts of the coffee berry borer (Hypothenemus hampei). Microbiology (Reading) 2012; 158:1826-1842. [DOI: 10.1099/mic.0.051664-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
| | - Narmer F. Galeano
- Department of Plant Pathology, Cenicafe – Federacafe, Chinchina, Caldas, Colombia
| | - Alvaro L. Gaitan
- Department of Plant Pathology, Cenicafe – Federacafe, Chinchina, Caldas, Colombia
| | - Marco A. Cristancho
- Department of Plant Pathology, Cenicafe – Federacafe, Chinchina, Caldas, Colombia
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Carmenza E. Góngora
- Department of Entomology, Cenicafe – Federacafe, Chinchina, Caldas, Colombia
| |
Collapse
|