51
|
Sha S, Shi X, Xu L, Wen J, Xin Y, Ma Y. Viability, morphology, and proteome of Mycobacterium smegmatis MSMEG_0319 knockout strain. Proteomics 2016; 16:1090-9. [PMID: 26833451 DOI: 10.1002/pmic.201500054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 11/13/2015] [Accepted: 01/26/2016] [Indexed: 11/06/2022]
Abstract
Mycobacterium tuberculosis Rv0228, a membrane protein, is predicted as a drug target through computational methods. MSMEG_0319 (MS0319) in Mycobacterium smegmatis mc(2) 155 is the ortholog of Rv0228. To study the effect of MS0319 protein on M. smegmatis, an MS0319 gene knockout strain (ΔMS0319) was generated via a homologous recombination technique in this study. The results showed that the lack of MS0319 protein in mc(2) 155 cells led to the loss of viability at nonpermissive temperature. Scanning electron microscopy and transmission electron microscopy observations showed drastic changes in cellular shape especially cell wall disruption in ΔMS0319 cells. Proteomic analysis of ΔMS0319 cells through LC-MS/MS revealed that 462 proteins had changes in their expressions by lacking MS0319 protein. The M. tuberculosis orthologs of these 462 proteins were found through BLASTp search and functional clustering and metabolic pathway enrichment were performed on the orthologs. The results revealed that most of them were enzymes involved in metabolism of carbohydrates and amino acids, indicating that Rv0228 played an important role in cellular metabolism. All these results suggested Rv0228 as a potential target for development of antituberculosis drugs.
Collapse
Affiliation(s)
- Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, P. R. China
| | - Xiaoxia Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, P. R. China
| | - Liming Xu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, P. R. China
| | - Jiabin Wen
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, P. R. China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, P. R. China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, P. R. China
| |
Collapse
|
52
|
Perkowski EF, Miller BK, McCann JR, Sullivan JT, Malik S, Allen IC, Godfrey V, Hayden JD, Braunstein M. An orphaned Mce-associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters. Mol Microbiol 2016; 100:90-107. [PMID: 26712165 DOI: 10.1111/mmi.13303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis proteins that are exported out of the bacterial cytoplasm are ideally positioned to be virulence factors; however, the functions of individual exported proteins remain largely unknown. Previous studies identified Rv0199 as an exported membrane protein of unknown function. Here, we characterized the role of Rv0199 in M. tuberculosis virulence using an aerosol model of murine infection. Rv0199 appears to be a member of a Mce-associated membrane (Mam) protein family leading us to rename it OmamA, for orphaned Mam protein A. Consistent with a role in Mce transport, we showed OmamA is required for cholesterol import, which is a Mce4-dependent process. We further demonstrated a function for OmamA in stabilizing protein components of the Mce1 transporter complex. These results indicate a function of OmamA in multiple Mce transporters and one that may be analogous to the role of VirB8 in stabilizing Type IV secretion systems, as structural similarities between Mam proteins and VirB8 proteins are predicted by the Phyre 2 program. In this study, we provide functional information about OmamA and shed light on the function of Mam family proteins in Mce transporters.
Collapse
Affiliation(s)
| | - Brittany K Miller
- Department of Microbiology and Immunology, University of North Carolina
| | - Jessica R McCann
- Department of Microbiology and Immunology, University of North Carolina
| | | | - Seidu Malik
- Department of Microbiology and Immunology, University of North Carolina
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine
| | - Virginia Godfrey
- Department of Pathology and Laboratory Medicine, University of North Carolina
| | - Jennifer D Hayden
- Department of Microbiology and Immunology, University of North Carolina
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina
| |
Collapse
|
53
|
Garcia BJ, Datta G, Davidson RM, Strong M. MycoBASE: expanding the functional annotation coverage of mycobacterial genomes. BMC Genomics 2015; 16:1102. [PMID: 26704706 PMCID: PMC4690229 DOI: 10.1186/s12864-015-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Background Central to most omic scale experiments is the interpretation and examination of resulting gene lists corresponding to differentially expressed, regulated, or observed gene or protein sets. Complicating interpretation is a lack of functional annotation assigned to a large percentage of many microbial genomes. This is particularly noticeable in mycobacterial genomes, which are significantly divergent from many of the microbial model species used for gene and protein functional characterization, but which are extremely important clinically. Mycobacterial species, ranging from M. tuberculosis to M. abscessus, are responsible for deadly infectious diseases that kill over 1.5 million people each year across the world. A better understanding of the coding capacity of mycobacterial genomes is therefore necessary to shed increasing light on putative mechanisms of virulence, pathogenesis, and functional adaptations. Description Here we describe the improved functional annotation coverage of 11 important mycobacterial genomes, many involved in human diseases including tuberculosis, leprosy, and nontuberculous mycobacterial (NTM) infections. Of the 11 mycobacterial genomes, we provide 9899 new functional annotations, compared to NCBI and TBDB annotations, for genes previously characterized as genes of unknown function, hypothetical, and hypothetical conserved proteins. Functional annotations are available at our newly developed web resource MycoBASE (Mycobacterial Annotation Server) at strong.ucdenver.edu/mycobase. Conclusion Improved annotations allow for better understanding and interpretation of genomic and transcriptomic experiments, including analyzing the functional implications of insertions, deletions, and mutations, inferring the function of understudied genes, and determining functional changes resulting from differential expression studies. MycoBASE provides a valuable resource for mycobacterial researchers, through improved and searchable functional annotations and functional enrichment strategies. MycoBASE will be continually supported and updated to include new genomes, enabling a powerful resource to aid the quest to better understand these important pathogenic and environmental species.
Collapse
Affiliation(s)
- Benjamin J Garcia
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA. .,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| | - Gargi Datta
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| |
Collapse
|
54
|
Lowery R, Gibson MI, Thompson RL, Fullam E. Deuterated carbohydrate probes as 'label-free' substrates for probing nutrient uptake in mycobacteria by nuclear reaction analysis. Chem Commun (Camb) 2015; 51:4838-41. [PMID: 25695462 PMCID: PMC4774366 DOI: 10.1039/c4cc09588j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deuterated sugars that are transported into mycobacteria can be detected using ion beam (nuclear reaction) analysis.
Understanding and probing small molecule uptake in cells is challenging, requiring sterically large chemical labels, or radioactive isotopes. Here, the uptake of deuterated sugars by Mycobacterium smegmatis, a non-pathogenic model of Mycobacterium tuberculosis, has been investigated using ion-beam (nuclear reaction) analysis demonstrating a new technique for label-free nutrient acquisition measurement.
Collapse
Affiliation(s)
- R Lowery
- School of Life Sciences, University of Warwick, CV4 7AL, UK.
| | | | | | | |
Collapse
|
55
|
Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis. Sci Rep 2015; 5:16918. [PMID: 26603639 PMCID: PMC4658479 DOI: 10.1038/srep16918] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis, the agent of human tuberculosis has developed
different virulence mechanisms and virulence-associated tools during its evolution
to survive and multiply inside the host. Based on previous reports and by analogy
with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought
to be among these tools. To get deeper insights into the function of PLCs, we
investigated their putative involvement in the intracellular lifestyle of M.
tuberculosis, with emphasis on phagosomal rupture and virulence, thereby
re-visiting a research theme of longstanding interest. Through the construction and
use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and
control strains, we found that PLCs of M. tuberculosis were not required for
induction of phagosomal rupture and only showed marginal, if any, impact on
virulence of M. tuberculosis in the cellular and mouse infection models used
in this study. In contrast, we found that PLC-encoding genes were strongly
upregulated under phosphate starvation and that PLC-proficient M.
tuberculosis strains survived better than ΔPLC mutants under
conditions where phosphatidylcholine served as sole phosphate source, opening new
perspectives for studies on the role of PLCs in the lifecycle of M.
tuberculosis.
Collapse
|
56
|
Abstract
The granuloma is the defining feature of the host response to infection with Mycobacterium tuberculosis (Mtb). Despite knowing of its existence for centuries, much remains unclear regarding the host and bacterial factors that contribute to granuloma formation, heterogeneity of presentation, and the forces at play within. Mtb is highly adapted to life within the granuloma and employs many unique strategies to both create a niche within the host as well as survive the stresses imposed upon it. Adding to the complexity of the granuloma is the vast range of pathology observed, often within the same individual. Here, we explore some of the many ways in which Mtb crafts the immune response to its liking and builds a variety of granuloma features that contribute to its survival. We also consider the multitude of ways that Mtb is adapted to life in the granuloma and how variability in the deployment of these strategies may result in different fates for both the bacterium and the host. It is through better understanding of these complex interactions that we may begin to strategize novel approaches for tuberculosis treatments.
Collapse
|
57
|
Jayawardana KW, Wijesundera SA, Yan M. Aggregation-based detection of M. smegmatis using D-arabinose-functionalized fluorescent silica nanoparticles. Chem Commun (Camb) 2015; 51:15964-6. [PMID: 26379182 PMCID: PMC4618767 DOI: 10.1039/c5cc05772h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescein-doped silica nanoparticles (FSNPs) functionalized with D-arabinose (Ara) showed strong interactions with Mycobacterium smegmatis (M. smegmatis) and caused the bacteria to aggregate. This aggregate formation was used as a means to detect M. smegmatis at the concentration of 10(4) CFU per mL.
Collapse
Affiliation(s)
- Kalana W Jayawardana
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | | | | |
Collapse
|
58
|
Speer A, Sun J, Danilchanka O, Meikle V, Rowland JL, Walter K, Buck BR, Pavlenok M, Hölscher C, Ehrt S, Niederweis M. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol Microbiol 2015; 97:881-97. [PMID: 26036301 DOI: 10.1111/mmi.13073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.
Collapse
Affiliation(s)
- Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Rowland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kerstin Walter
- Infection Immunology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Borstel, Germany
| | - Bradford R Buck
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Borstel, Germany.,Cluster of Excellence 'Inflammation at Interfaces', Christian-Albrechts-University, Kiel, Germany
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
59
|
Kleftogiannis D, Wong L, Archer JA, Kalnis P. Hi-Jack: a novel computational framework for pathway-based inference of host–pathogen interactions. Bioinformatics 2015; 31:2332-9. [DOI: 10.1093/bioinformatics/btv138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
|
60
|
Kweon O, Kim SJ, Blom J, Kim SK, Kim BS, Baek DH, Park SI, Sutherland JB, Cerniglia CE. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol Biol 2015; 15:21. [PMID: 25880171 PMCID: PMC4342237 DOI: 10.1186/s12862-015-0302-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Results Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Conclusions Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0302-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Jochen Blom
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany.
| | - Sung-Kwan Kim
- Department of Management, University of Arkansas at Little Rock, Little Rock, Arkansas, USA.
| | - Bong-Soo Kim
- Department of Life Science, Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan, Republic of Korea.
| | - Su Inn Park
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA.
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| |
Collapse
|
61
|
The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules. Antimicrob Agents Chemother 2015; 59:2328-36. [PMID: 25645841 DOI: 10.1128/aac.04222-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is protected from toxic solutes by an effective outer membrane permeability barrier. Recently, we showed that the outer membrane channel protein CpnT is required for efficient nutrient uptake by M. tuberculosis and Mycobacterium bovis BCG. In this study, we found that the cpnT mutant of M. bovis BCG is more resistant than the wild type to a large number of drugs and antibiotics, including rifampin, ethambutol, clarithromycin, tetracycline, and ampicillin, by 8- to 32-fold. Furthermore, the cpnT mutant of M. bovis BCG was 100-fold more resistant to nitric oxide, a major bactericidal agent required to control M. tuberculosis infections in mice. Thus, CpnT constitutes the first outer membrane susceptibility factor in slow-growing mycobacteria. The dual functions of CpnT in uptake of nutrients and mediating susceptibility to toxic molecules are reflected in macrophage infection experiments: while loss of CpnT was detrimental for M. bovis BCG in macrophages that enable bacterial replication, presumably due to inadequate nutrient uptake, it conferred a survival advantage in macrophages that mount a strong bactericidal response. Importantly, the cpnT gene showed a significantly higher density of nonsynonymous mutations in drug-resistant clinical M. tuberculosis strains, indicating that CpnT is under selective pressure in human tuberculosis and/or during chemotherapy. Our results indicate that the CpnT channel constitutes an outer membrane gateway controlling the influx of nutrients and toxic molecules into slow-growing mycobacteria. This study revealed that reducing protein-mediated outer membrane permeability might constitute a new drug resistance mechanism in slow-growing mycobacteria.
Collapse
|
62
|
Phong TQ, Ha DTT, Volker U, Hammer E. Using a Label Free Quantitative Proteomics Approach to Identify Changes in Protein Abundance in Multidrug-Resistant Mycobacterium tuberculosis. Indian J Microbiol 2015; 55:219-30. [PMID: 25805910 DOI: 10.1007/s12088-015-0511-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Reports in recent years indicate that the increasing emergence of resistance to drugs be using to TB treatment. The resistance to them severely affects to options for effective treatment. The emergence of multidrug-resistant tuberculosis has increased interest in understanding the mechanism of drug resistance in M. tuberculosis and the development of new therapeutics, diagnostics and vaccines. In this study, a label-free quantitative proteomics approach has been used to analyze proteome of multidrug-resistant and susceptible clinical isolates of M. tuberculosis and identify differences in protein abundance between the two groups. With this approach, we were able to identify a total of 1,583 proteins. The majority of identified proteins have predicted roles in lipid metabolism, intermediary metabolism, cell wall and cell processes. Comparative analysis revealed that 68 proteins identified by at least two peptides showed significant differences of at least twofolds in relative abundance between two groups. In all protein differences, the increase of some considering proteins such as NADH dehydrogenase, probable aldehyde dehydrogenase, cyclopropane mycolic acid synthase 3, probable arabinosyltransferase A, putative lipoprotein, uncharacterized oxidoreductase and six membrane proteins in resistant isolates might be involved in the drug resistance and to be potential diagnostic protein targets. The decrease in abundance of proteins related to secretion system and immunogenicity (ESAT-6-like proteins, ESX-1 secretion system associated proteins, O-antigen export system and MPT63) in the multidrug-resistant strains can be a defensive mechanism undertaken by the resistant cell.
Collapse
Affiliation(s)
- Truong Quoc Phong
- Center for Research and Development in Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Do Thi Thu Ha
- Center for Research and Development in Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Uwe Volker
- Interfaculty Institute for Genetic and Functional Genomic, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetic and Functional Genomic, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
63
|
Patta PC, Martinelli LKB, Rotta M, Abbadi BL, Santos DS, Basso LA. Mode of action of recombinant hypoxanthine–guanine phosphoribosyltransferase from Mycobacterium tuberculosis. RSC Adv 2015. [DOI: 10.1039/c5ra14918e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homodimeric Mycobacterium tuberculosis HGPRT follows a sequential compulsory ordered enzyme mechanism.
Collapse
Affiliation(s)
- Paulo C. Patta
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Leonardo K. B. Martinelli
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Mariane Rotta
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Bruno L. Abbadi
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Diogenes S. Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| |
Collapse
|
64
|
Abstract
Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances-in particular, the development of systems biology tools such as metabolomics-have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host-pathogen interaction through modulation of metabolic functions.
Collapse
Affiliation(s)
- Digby F Warner
- Medical Research Council/National Health Laboratory Services/University of Cape Town Molecular Mycobacteriology Research Unit and Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, University of Cape Town, Rondebosch 7700, South Africa
| |
Collapse
|
65
|
Rienksma RA, Suarez-Diez M, Spina L, Schaap PJ, Martins dos Santos VAP. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol 2014; 26:610-22. [PMID: 25453232 DOI: 10.1016/j.smim.2014.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/28/2022]
Abstract
Systems-level metabolic network reconstructions and the derived constraint-based (CB) mathematical models are efficient tools to explore bacterial metabolism. Approximately one-fourth of the Mycobacterium tuberculosis (Mtb) genome contains genes that encode proteins directly involved in its metabolism. These represent potential drug targets that can be systematically probed with CB models through the prediction of genes essential (or the combination thereof) for the pathogen to grow. However, gene essentiality depends on the growth conditions and, so far, no in vitro model precisely mimics the host at the different stages of mycobacterial infection, limiting model predictions. These limitations can be circumvented by combining expression data from in vivo samples with a validated CB model, creating an accurate description of pathogen metabolism in the host. To this end, we present here a thoroughly curated and extended genome-scale CB metabolic model of Mtb quantitatively validated using 13C measurements. We describe some of the efforts made in integrating CB models and high-throughput data to generate condition specific models, and we will discuss challenges ahead. This knowledge and the framework herein presented will enable to identify potential new drug targets, and will foster the development of optimal therapeutic strategies.
Collapse
MESH Headings
- Antitubercular Agents/therapeutic use
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Carbon Isotopes
- Drug Resistance, Multiple, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Host-Pathogen Interactions
- Humans
- Metabolic Networks and Pathways/genetics
- Models, Statistical
- Molecular Targeted Therapy
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Systems Biology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/metabolism
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Rienk A Rienksma
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, Wageningen 6703 HB, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, Wageningen 6703 HB, The Netherlands
| | - Lucie Spina
- Centre National de la Rescherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (UMR 5089), Department of Tuberculosis and Infection Biology and Université de Toulouse (Université Paul Sabatier, Toulouse III), IPBS, 205 Route de Narbonne, BP 64182, F-31077 Toulouse, France
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, Wageningen 6703 HB, The Netherlands
| | - Vitor A P Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; Lifeglimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| |
Collapse
|
66
|
Yang Y, Kulka K, Montelaro RC, Reinhart TA, Sissons J, Aderem A, Ojha AK. A hydrolase of trehalose dimycolate induces nutrient influx and stress sensitivity to balance intracellular growth of Mycobacterium tuberculosis. Cell Host Microbe 2014; 15:153-63. [PMID: 24528862 DOI: 10.1016/j.chom.2014.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Chronic tuberculosis in an immunocompetent host is a consequence of the delicately balanced growth of Mycobacterium tuberculosis (Mtb) in the face of host defense mechanisms. We identify an Mtb enzyme (TdmhMtb) that hydrolyzes the mycobacterial glycolipid trehalose dimycolate and plays a critical role in balancing the intracellular growth of the pathogen. TdmhMtb is induced under nutrient-limiting conditions and remodels the Mtb envelope to increase nutrient influx but concomitantly sensitizes Mtb to stresses encountered in the host. Consistent with this, a ΔtdmhMtb mutant is more resilient to stress and grows to levels higher than those of wild-type in immunocompetent mice. By contrast, mutant growth is retarded in MyD88(-/-) mice, indicating that TdmhMtb provides a growth advantage to intracellular Mtb in an immunocompromised host. Thus, the effects and countereffects of TdmhMtb play an important role in balancing intracellular growth of Mtb in a manner that is directly responsive to host innate immunity.
Collapse
Affiliation(s)
- Yong Yang
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kathleen Kulka
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ronald C Montelaro
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Todd A Reinhart
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James Sissons
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Alan Aderem
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Anil K Ojha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
67
|
Abstract
Several major pathogens, including Mycobacterium tuberculosis, parasitize host cells and exploit host-derived nutrients to sustain their own metabolism. Although the carbon sources that are used by M. tuberculosis have been extensively studied, the mechanisms by which mycobacteria capture and metabolize nitrogen, which is another essential constituent of biomolecules, have only recently been revisited. In this Progress article, we discuss central nitrogen metabolism in M. tuberculosis, the mechanisms that are used by this pathogen to obtain nitrogen from its host and the potential role of nitrogen capture and metabolism in virulence.
Collapse
|
68
|
Librado P, Vieira FG, Sánchez-Gracia A, Kolokotronis SO, Rozas J. Mycobacterial phylogenomics: an enhanced method for gene turnover analysis reveals uneven levels of gene gain and loss among species and gene families. Genome Biol Evol 2014; 6:1454-65. [PMID: 24904011 PMCID: PMC4079203 DOI: 10.1093/gbe/evu117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Species of the genus Mycobacterium differ in several features, from geographic ranges, and degree of pathogenicity, to ecological and host preferences. The recent availability of several fully sequenced genomes for a number of these species enabled the comparative study of the genetic determinants of this wide lifestyle diversity. Here, we applied two complementary phylogenetic-based approaches using information from 19 Mycobacterium genomes to obtain a more comprehensive view of the evolution of this genus. First, we inferred the phylogenetic relationships using two new approaches, one based on a Mycobacterium-specific amino acid substitution matrix and the other on a gene content dissimilarity matrix. Then, we utilized our recently developed gain-and-death stochastic models to study gene turnover dynamics in this genus in a maximum-likelihood framework. We uncovered a scenario that differs markedly from traditional 16S rRNA data and improves upon recent phylogenomic approaches. We also found that the rates of gene gain and death are high and unevenly distributed both across species and across gene families, further supporting the utility of the new models of rate heterogeneity applied in a phylogenetic context. Finally, the functional annotation of the most expanded or contracted gene families revealed that the transposable elements and the fatty acid metabolism-related gene families are the most important drivers of gene content evolution in Mycobacterium.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Filipe G Vieira
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, SpainDepartment of Integrative Biology, University of California, Berkeley
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sergios-Orestis Kolokotronis
- Department of Biological Sciences, Fordham UniversitySackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
69
|
Godbole AA, Ahmed W, Bhat RS, Bradley EK, Ekins S, Nagaraja V. Inhibition of Mycobacterium tuberculosis topoisomerase I by m-AMSA, a eukaryotic type II topoisomerase poison. Biochem Biophys Res Commun 2014; 446:916-20. [PMID: 24642256 DOI: 10.1016/j.bbrc.2014.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
Abstract
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme-DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.
Collapse
Affiliation(s)
- Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Rajeshwari Subray Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
70
|
Getsin I, Nalbandian GH, Yee DC, Vastermark A, Paparoditis PCG, Reddy VS, Saier MH. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor. BMC Microbiol 2013; 13:279. [PMID: 24304716 PMCID: PMC3924187 DOI: 10.1186/1471-2180-13-279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/20/2013] [Indexed: 01/11/2023] Open
Abstract
Background Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene amplification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
71
|
Jiang D, Zhang Q, Zheng Q, Zhou H, Jin J, Zhou W, Bartlam M, Rao Z. Structural analysis ofMycobacterium tuberculosisATP-binding cassette transporter subunit UgpB reveals specificity for glycerophosphocholine. FEBS J 2013; 281:331-41. [DOI: 10.1111/febs.12600] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Dunquan Jiang
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Qingqing Zhang
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Qianqian Zheng
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Pharmacy; Nankai University; Tianjin China
| | - Weihong Zhou
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
- College of Pharmacy; Nankai University; Tianjin China
| |
Collapse
|
72
|
Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis? Tuberculosis (Edinb) 2013; 93:569-88. [DOI: 10.1016/j.tube.2013.09.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022]
|
73
|
Gunawardena HP, Feltcher ME, Wrobel JA, Gu S, Braunstein M, Chen X. Comparison of the membrane proteome of virulent Mycobacterium tuberculosis and the attenuated Mycobacterium bovis BCG vaccine strain by label-free quantitative proteomics. J Proteome Res 2013; 12:5463-74. [PMID: 24093440 DOI: 10.1021/pr400334k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Mycobacterium tuberculosis membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention, we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative proteomics, utilizing the area under the curve of the extracted ion chromatograms of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least two fold in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge, we have generated the first comprehensive and high-coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen.
Collapse
Affiliation(s)
- Harsha P Gunawardena
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , 120 Mason Farm Road, Campus Box 7260 3rd Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.
Collapse
|
75
|
A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 2013; 195:3724-33. [PMID: 23772064 DOI: 10.1128/jb.00546-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most important bacterial pathogens. Recent work has revealed that the natural bactericidal properties of copper are utilized by the host immune system to combat infections with bacteria, including M. tuberculosis. However, M. tuberculosis employs multiple mechanisms to reduce the internal copper amount by efflux and sequestration, which are required for virulence of M. tuberculosis. Here, we describe an alternative mechanism of copper resistance by M. tuberculosis. Deletion of the rv0846c gene increased the susceptibility of M. tuberculosis to copper at least 10-fold, establishing Rv0846c as a major component of copper resistance in M. tuberculosis. In vitro assays showed that Rv0846c oxidized organic substrates and Fe(II). Importantly, mutation of the predicted copper-coordinating cysteine 486 resulted in inactive Rv0846c protein which did not protect M. tuberculosis against copper stress. Hence, Rv0846c is a multicopper oxidase of M. tuberculosis and was renamed mycobacterial multicopper oxidase (MmcO). MmcO is membrane associated, probably by lipidation after export across the inner membrane by the twin-arginine translocation system. However, mutation of the lipidation site did not affect the oxidase activity or the copper protective function of MmcO. Our study revealed MmcO as an important copper resistance mechanism of M. tuberculosis, which possibly acts by oxidation of toxic Cu(I) in the periplasm.
Collapse
|
76
|
Gehre F, Otu J, DeRiemer K, de Sessions PF, Hibberd ML, Mulders W, Corrah T, de Jong BC, Antonio M. Deciphering the growth behaviour of Mycobacterium africanum. PLoS Negl Trop Dis 2013; 7:e2220. [PMID: 23696911 PMCID: PMC3656116 DOI: 10.1371/journal.pntd.0002220] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/05/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human tuberculosis (TB) in West Africa is not only caused by M. tuberculosis but also by bacteria of the two lineages of M. africanum. For instance, in The Gambia, 40% of TB is due to infections with M. africanum West African 2. This bacterial lineage is associated with HIV infection, reduced ESAT-6 immunogenicity and slower progression to active disease. Although these characteristics suggest an attenuated phenotype of M. africanum, no underlying mechanism has been described. From the first descriptions of M. africanum in the literature in 1969, the time to a positive culture of M. africanum on solid medium was known to be longer than the time to a positive culture of M. tuberculosis. However, the delayed growth of M. africanum, which may correlate with the less virulent phenotype in the human host, has not previously been studied in detail. METHODOLOGY/PRINCIPAL FINDINGS We compared the growth rates of M. tuberculosis and M. africanum isolates from The Gambia in two liquid culture systems. M. africanum grows significantly slower than M. tuberculosis, not only when grown directly from sputa, but also in growth experiments under defined laboratory conditions. We also sequenced four M. africanum isolates and compared their whole genomes with the published M. tuberculosis H37Rv genome. M. africanum strains have several non-synonymous SNPs or frameshift mutations in genes that were previously associated with growth-attenuation. M. africanum strains also have a higher mutation frequency in genes crucial for transport of sulphur, ions and lipids/fatty acids across the cell membrane into the bacterial cell. Surprisingly, 5 of 7 operons, recently described as essential for intracellular survival of H37Rv in the host macrophage, showed at least one non-synonymously mutated gene in M. africanum. CONCLUSIONS/SIGNIFICANCE The altered growth behaviour of M. africanum might indicate a different survival strategy within host cells.
Collapse
Affiliation(s)
- Florian Gehre
- Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit, Fajara, The Gambia
- * E-mail:
| | - Jacob Otu
- Medical Research Council Unit, Fajara, The Gambia
| | - Kathryn DeRiemer
- University of California, Davis, Davis, California, United States of America
| | | | | | - Wim Mulders
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Bouke C. de Jong
- Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit, Fajara, The Gambia
- New York University, New York, New York, United States of America
| | | |
Collapse
|
77
|
Paritala H, Carroll KS. New targets and inhibitors of mycobacterial sulfur metabolism. Infect Disord Drug Targets 2013; 13:85-115. [PMID: 23808874 PMCID: PMC4332622 DOI: 10.2174/18715265113139990022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| |
Collapse
|
78
|
Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC, Crew R, Sampson NS, Thomas ST, Jamshidi N, Sisk P, Caspi R, Crick DC, McNeil MR, Pavelka MS, Niederweis M, Siroy A, Dona V, McFadden J, Boshoff H, Lew JM. Updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 2013; 93:47-59. [PMID: 23375378 DOI: 10.1016/j.tube.2012.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023]
Abstract
The sequencing of complete genomes has accelerated biomedical research by providing information about the overall coding capacity of bacterial chromosomes. The original TB annotation resulted in putative functional assignment of ∼60% of the genes to specific metabolic functions, however, the other 40% of the encoded ORFs where annotated as conserved hypothetical proteins, hypothetical proteins or encoding proteins of unknown function. The TB research community is now at the beginning of the next phases of post-genomics; namely reannotation and functional characterization by targeted experimentation. Arguably, this is the most significant time for basic microbiology in recent history. To foster basic TB research, the Tuberculosis Community Annotation Project (TBCAP) jamboree exercise began the reannotation effort by providing additional information for previous annotations, and refining and substantiating the functional assignment of ORFs and genes within metabolic pathways. The overall goal of the TBCAP 2012 exercise was to gather and compile various data types and use this information with oversight from the scientific community to provide additional information to support the functional annotations of encoding genes. Another objective of this effort was to standardize the publicly accessible Mycobacterium tuberculosis reference sequence and its annotation. The greatest benefit of functional annotation information of genome sequence is that it fuels TB research for drug discovery, diagnostics, vaccine development and epidemiology.
Collapse
|
79
|
Marrero J, Trujillo C, Rhee KY, Ehrt S. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 2013; 9:e1003116. [PMID: 23326232 PMCID: PMC3542180 DOI: 10.1371/journal.ppat.1003116] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb's central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections. The development of new drugs targeting Mycobacterium tuberculosis (Mtb) will benefit from a better understanding of the mechanisms by which this pathogen establishes and maintains chronic infections. Mtb has to adapt its metabolic needs to the nutritional environment in the host. We investigated the role of glucose phosphorylation and discovered that Mtb expresses two functional glucokinases. Using 13C-tracing experiments we demonstrated that both enzymes are competent to incorporate glucose into central carbon metabolism. In agreement with the view that Mtb metabolizes fatty acids to grow in vivo, both enzymes were dispensable for Mtb replication in mouse lungs and spleens. Surprisingly, however, the glucokinase double mutant was attenuated during the chronic phase of mouse infections. These studies suggest that Mtb metabolizes glucose in vivo and that its survival in chronically infected mice depends on glucose phosphorylation.
Collapse
Affiliation(s)
- Joeli Marrero
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | | | | |
Collapse
|
80
|
Ruiz N. A bird's eye view of the bacterial landscape. Methods Mol Biol 2013; 966:1-14. [PMID: 23299725 DOI: 10.1007/978-1-62703-245-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacteria interact with the environment through their cell surface. Activities as diverse as attaching to a catheter, crawling on a surface, swimming through a pond, or being preyed on by a bacteriophage depend on the composition and structure of the cell surface. The cell surface must also protect bacteria from harmful chemicals present in the environment while allowing the intake of nutrients and excretion of toxic molecules. Bacteria have evolved four main types of bacterial cell surfaces to accomplish these functions: those of the typical gram-negative and gram-positive bacteria, and those of the Actinobacteria and Mollicutes. So few types seems remarkable since bacteria are very diverse and abundant, and they can live in many different environments. However, each species has tweaked these stereotypical bacterial surfaces to best fit its needs. The result is an amazing diversity of the bacterial landscape, most of which remains unexplored. Here I give an overview of the main features of the bacterial cell surface and highlight how advances in methodology have moved forward this field of study.
Collapse
Affiliation(s)
- Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
81
|
Jena P, Mohanty S, Mohanty T, Kallert S, Morgelin M, Lindstrøm T, Borregaard N, Stenger S, Sonawane A, Sørensen OE. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One 2012; 7:e50345. [PMID: 23251364 PMCID: PMC3522671 DOI: 10.1371/journal.pone.0050345] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022] Open
Abstract
Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.
Collapse
Affiliation(s)
- Prajna Jena
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Soumitra Mohanty
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stephanie Kallert
- Institute for Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Matthias Morgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Lindstrøm
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Niels Borregaard
- Department of Hematology, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Avinash Sonawane
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Ole E. Sørensen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
82
|
Phillips M, Basa-Dalay V, Blais J, Bothamley G, Chaturvedi A, Modi KD, Pandya M, Natividad MPR, Patel U, Ramraje NN, Schmitt P, Udwadia ZF. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb) 2012; 92:314-20. [DOI: 10.1016/j.tube.2012.04.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
83
|
Santos P, Gordillo A, Osses L, Salazar LM, Soto CY. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 2012; 36:121-8. [PMID: 22569076 DOI: 10.1016/j.peptides.2012.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/29/2022]
Abstract
The potential usefulness of antimicrobial peptides (AMPs) as antimycobacterial compounds has not been extensively explored. Although a myriad of studies on AMPs from different sources have been done, some of its mechanisms of action are still unknown. Maganins are of particular interest since they do not lyse non-dividing mammalian cells. In this work, AMPs with well-recognized activity against bacteria were synthesized, characterized, purified and their antimycobacterial activity and influence on ATPase activity in mycobacterial plasma membrane vesicles were assessed. Using bioinformatics tools, a magainin-I analog peptide (MIAP) with improved antimicrobial activity was designed. The influence of MIAP on proton (H(+)) pumping mediated by F(1)F(0)-ATPase in plasma membrane vesicles obtained from Mycobacterium tuberculosis was evaluated. We observed that the antimycobacterial activity of AMPs was low and variable. However, the activity of the designed peptide MIAP against M. tuberculosis was 2-fold higher in comparison to magainin-I. The basal ATPase activity of mycobacterial plasma membrane vesicles decreased approximately 24-30% in the presence of AMPs. On the other hand, the MIAP peptide completely abolished the F(1)F(0)-ATPase activity involved in H(+) pumping across M. tuberculosis plasma membranes vesicles at levels similar to the specific inhibitor N,N' dicyclohexylcarbodiimide. These finding suggest that AMPs can inhibit the H(+) pumping F(1)F(0)-ATPase of mycobacterial plasma membrane that potentially interferes the internal pH and viability of mycobacteria.
Collapse
Affiliation(s)
- Paola Santos
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
84
|
Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 2012; 15:149-61. [DOI: 10.1016/j.drup.2012.04.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Berney M, Weimar MR, Heikal A, Cook GM. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 2012; 84:664-81. [PMID: 22507203 DOI: 10.1111/j.1365-2958.2012.08053.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genes with a role in proline metabolism are strongly expressed when mycobacterial cells are exposed to nutrient starvation and hypoxia. Here we show that proline metabolism in mycobacteria is mediated by the monofunctional enzymes Δ(1) -pyrroline-5-carboxylate dehydrogenase (PruA) and proline dehydrogenase (PruB). Proline metabolism was controlled by a unique membrane-associated DNA-binding protein PruC. Under hypoxia, addition of proline led to higher biomass production than in the absence of proline despite excess carbon and nitrogen. To identify the mechanism responsible for this enhanced growth, microarray analysis of wild-type Mycobacterium smegmatis versus pruC mutant was performed. Expression of the DNA repair machinery and glyoxalases was increased in the pruC mutant. Glyoxalases are proposed to degrade methylglyoxal, a toxic metabolite produced by various bacteria due to an imbalance in intermediary metabolism, suggesting the pruC mutant was under methylglyoxal stress. Consistent with this notion, pruB and pruC mutants were hypersensitive to methylglyoxal. Δ(1) -pyrroline-5-carboxylate is reported to react with methylglyoxal to form non-toxic 2-acetyl-1-pyrroline, thus providing a link between proline metabolism and methylglyoxal detoxification. In support of this mechanism, we show that proline metabolism protects mycobacterial cells from methylglyoxal toxicity and that functional proline dehydrogenase, but not Δ(1) -pyrroline-5-carboxylate dehydrogenase, is essential for this protective effect.
Collapse
Affiliation(s)
- Michael Berney
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
86
|
A VapBC toxin-antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria. J Bacteriol 2012; 194:2189-204. [PMID: 22366418 DOI: 10.1128/jb.06790-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The largest family of toxin-antitoxin (TA) modules are encoded by the vapBC operons, but their roles in bacterial physiology remain enigmatic. Microarray analysis in Mycobacterium smegmatis overexpressing VapC/VapBC revealed a high percentage of downregulated genes with annotated roles in carbon transport and metabolism, suggesting that VapC was targeting specific metabolic mRNA transcripts. To validate this hypothesis, purified VapC was used to identify the RNA cleavage site in vitro. VapC had RNase activity that was sequence specific, cleaving single-stranded RNA substrates at AUAU and AUAA in vitro and in vivo (viz., MSMEG_2121 to MSMEG_2124). A bioinformatic analysis of these regions suggested that an RNA hairpin 3' of the AUA(U/A) motif is also required for efficient cleavage. VapC-mediated regulation in vivo was demonstrated by showing that MSMEG_2124 (dhaF) and MSMEG_2121 (dhaM) were upregulated in a ΔvapBC mutant growing on glycerol. The ΔvapBC mutant had a specific rate of glycerol consumption that was 2.4-fold higher than that of the wild type during exponential growth. This increased rate of glycerol consumption was not used for generating bacterial biomass, suggesting that metabolism by the ΔvapBC mutant was uncoupled from growth. These data suggest a model in which VapC regulates the rate of glycerol utilization to match the anabolic demands of the cell, allowing for fine-tuning of the catabolic rate at a posttranscriptional level.
Collapse
|
87
|
Sonawane A, Mohanty S, Jagannathan L, Bekolay A, Banerjee S. Role of glycans and glycoproteins in disease development by Mycobacterium tuberculosis. Crit Rev Microbiol 2012; 38:250-66. [PMID: 22324751 DOI: 10.3109/1040841x.2011.653550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycoproteins play a critical role in host-pathogen interactions, antigenicity, and virulence determination, and are therefore, considered as potential drug targets. The cell wall of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), dominantly contains sugars and lipids. Despite the efforts taken by the World Health Organization to reduce the incidence rate, the prevalence of TB is increasing in certain regions. This is mainly attributed to the emergence of multidrug-resistant bacteria. Factors that contribute to Mtb virulence and antigenicity remain elusive. However, several studies have shown that sugars and lipids are mainly responsible for Mtb pathogenesis and resistance to numerous drugs. This review gives insight into the role of glycoproteins in mycobacterium pathogenesis, disease development, and its implications in drug development.
Collapse
Affiliation(s)
- Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India.
| | | | | | | | | |
Collapse
|
88
|
Ehrt S, Rhee K. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 2012; 374:163-88. [PMID: 23242856 DOI: 10.1007/82_2012_299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism is a widely recognized facet of all host-pathogen interactions. Knowledge of its roles in pathogenesis, however, remains comparatively incomplete. Existing studies have emphasized metabolism as a cell autonomous property of pathogens used to fuel replication in a quantitative, rather than qualitatively specific, manner. For Mycobacterium tuberculosis, however, matters could not be more different. M. tuberculosis is a chronic facultative intracellular pathogen that resides in humans as its only known host. Within humans, M. tuberculosis resides chiefly within the macrophage phagosome, the cell type, and compartment most committed to its eradication. M. tuberculosis has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. The specific ways in which its metabolic network serves these distinct, through interdependent, functions, however, remain incompletely defined. Here, we review existing knowledge of the M. tuberculosis-host interaction, highlighting the distinct phases of its natural life cycle and the diverse microenvironments encountered therein.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA,
| | | |
Collapse
|
89
|
Uptake of sulfate but not phosphate by Mycobacterium tuberculosis is slower than that for Mycobacterium smegmatis. J Bacteriol 2011; 194:956-64. [PMID: 22194452 DOI: 10.1128/jb.06132-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process.
Collapse
|
90
|
Youm J, Saier MH. Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:776-97. [PMID: 22179038 DOI: 10.1016/j.bbamem.2011.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
Abstract
The co-emergence of multidrug resistant pathogenic bacterial strains and the Human Immunodeficiency Virus pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life was identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth.
Collapse
Affiliation(s)
- Jiwon Youm
- University of California, La Jolla, CA, USA
| | | |
Collapse
|
91
|
Li J, Shi C, Gao Y, Wu K, Shi P, Lai C, Chen L, Wu F, Tian C. Structural studies of Mycobacterium tuberculosis Rv0899 reveal a monomeric membrane-anchoring protein with two separate domains. J Mol Biol 2011; 415:382-92. [PMID: 22108166 DOI: 10.1016/j.jmb.2011.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/26/2022]
Abstract
Rv0899 from Mycobacterium tuberculosis belongs to the OmpA (outer membrane protein A) family of outer membrane proteins. It functions as a pore-forming protein; the deletion of this gene impairs the uptake of some water-soluble substances, such as serine, glucose, and glycerol. Rv0899 has also been shown to play a part in low-pH environment adaption, which may play a part in pathogenic mycobacteria overcoming the host's defense mechanisms. Based on many bacterial physiological data and recent structural studies, it was proposed that Rv0899 forms an oligomeric channel to carry out such functions. In this work, biochemical and structural data obtained from solution NMR and EPR spectroscopy indicated that Rv0899 is a monomeric membrane-anchoring protein with two separate domains, rather than an oligomeric pore. Using NMR chemical shift perturbation and isothermal calorimetric titration assays, we show that Rv0899 was able to interact with Zn(2+) ions, which may indicate a role for Rv0899 in the process of Zn(2+) acquisition.
Collapse
Affiliation(s)
- Juan Li
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Breda A, Rosado LA, Lorenzini DM, Basso LA, Santos DS. Molecular, kinetic and thermodynamic characterization of Mycobacterium tuberculosis orotate phosphoribosyltransferase. MOLECULAR BIOSYSTEMS 2011; 8:572-86. [PMID: 22075667 DOI: 10.1039/c1mb05402c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused mainly by Mycobacterium tuberculosis. The worldwide emergence of drug-resistant strains, the increasing number of infected patients among immune compromised populations, and the large number of latent infected individuals that are reservoir to the disease have underscored the urgent need of new strategies to treat TB. The nucleotide metabolism pathways provide promising molecular targets for the development of novel drugs against active TB and may, hopefully, also be effective against latent forms of the pathogen. The orotate phosphoribosyltransferase (OPRT) enzyme of the de novo pyrimidine synthesis pathway catalyzes the reversible phosphoribosyl transfer from 5'-phospho-α-D-ribose 1'-diphosphate (PRPP) to orotic acid (OA), forming pyrophosphate and orotidine 5'-monophosphate (OMP). Here we describe cloning and characterization of pyrE-encoded protein of M. tuberculosis H37Rv strain as a homodimeric functional OPRT enzyme. The M. tuberculosis OPRT true kinetic constants for forward reaction and product inhibition results suggest a Mono-Iso Ordered Bi-Bi kinetic mechanism, which has not been previously described for this enzyme family. Absence of detection of half reaction and isothermal titration calorimetry (ITC) data support the proposed mechanism. ITC data also provided thermodynamic signatures of non-covalent interactions between substrate/product and M. tuberculosis OPRT. These data provide a solid foundation on which to base target-based rational design of anti-TB agents and should inform us how to better design inhibitors of M. tuberculosis OPRT.
Collapse
Affiliation(s)
- Ardala Breda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
93
|
Chavadi SS, Edupuganti UR, Vergnolle O, Fatima I, Singh SM, Soll CE, Quadri LEN. Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. J Biol Chem 2011; 286:24616-25. [PMID: 21592957 DOI: 10.1074/jbc.m111.247601] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.
Collapse
|
94
|
Song H, Huff J, Janik K, Walter K, Keller C, Ehlers S, Bossmann SH, Niederweis M. Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis to acidic environments. Mol Microbiol 2011; 80:900-18. [PMID: 21410778 DOI: 10.1111/j.1365-2958.2011.07619.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Homeostasis of intracellular pH is a trait critical for survival of Mycobacterium tuberculosis in macrophages. However, mechanisms by which M. tuberculosis adapts to acidic environments are poorly understood. In this study, we analysed the physiological functions of OmpATb, a surface-accessible protein of M. tuberculosis. OmpATb did not complement the permeability defects of a Mycobacterium smegmatis porin mutant to glucose, serine and glycerol, in contrast to the porin MspA. Uptake rates of these solutes were unchanged in an ompATb operon mutant of M. tuberculosis indicating that OmpATb is not a general porin. Chemical analysis of low-pH culture filtrates showed that the proteins encoded by the ompATb operon are involved in generating a rapid ammonia burst, which neutralized medium pH and preceded exponential growth of M. tuberculosis. Addition of ammonia accelerated growth of the ompATb operon mutant demonstrating that ammonia secretion is indeed a mechanism by which M. tuberculosis neutralizes acidic environments. Infection experiments revealed that the ompATb operon was not required for full virulence in mice suggesting that M. tuberculosis has multiple mechanisms of resisting phagosomal acidification. Taken together, these results show that the ompATb operon is necessary for rapid ammonia secretion and adaptation of M. tuberculosis to acidic environments in vitro but not in mice.
Collapse
Affiliation(s)
- Houhui Song
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Sharma AK, Ye L, Baer CE, Shanmugasundaram K, Alber T, Alper SL, Rigby AC. Solution structure of the guanine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. J Biol Chem 2010; 286:8534-8544. [PMID: 21190940 DOI: 10.1074/jbc.m110.165449] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The structure and intrinsic activities of conserved STAS domains of the ubiquitous SulP/SLC26 anion transporter superfamily have until recently remained unknown. Here we report the heteronuclear, multidimensional NMR spectroscopy solution structure of the STAS domain from the SulP/SLC26 putative anion transporter Rv1739c of Mycobacterium tuberculosis. The 0.87-Å root mean square deviation structure revealed a four-stranded β-sheet with five interspersed α-helices, resembling the anti-σ factor antagonist fold. Rv1739c STAS was shown to be a guanine nucleotide-binding protein, as revealed by nucleotide-dependent quench of intrinsic STAS fluorescence and photoaffinity labeling. NMR chemical shift perturbation analysis partnered with in silico docking calculations identified solvent-exposed STAS residues involved in nucleotide binding. Rv1739c STAS was not an in vitro substrate of mycobacterial kinases or anti-σ factors. These results demonstrate that Rv1739c STAS binds guanine nucleotides at physiological concentrations and undergoes a ligand-induced conformational change but, unlike anti-σ factor antagonists, may not mediate signals via phosphorylation.
Collapse
Affiliation(s)
- Alok K Sharma
- From the Divison of Molecular and Vascular Medicine,; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215 and
| | - Liwen Ye
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215 and; Renal Division
| | - Christina E Baer
- the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Kumaran Shanmugasundaram
- From the Divison of Molecular and Vascular Medicine,; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215 and
| | - Tom Alber
- the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Seth L Alper
- From the Divison of Molecular and Vascular Medicine,; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215 and; Renal Division,.
| | - Alan C Rigby
- From the Divison of Molecular and Vascular Medicine,; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215 and.
| |
Collapse
|
96
|
Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010; 78:5178-94. [PMID: 20876295 DOI: 10.1128/iai.00834-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's "stealth pathogenicity," we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.
Collapse
|
97
|
Mah N, Perez-Iratxeta C, Andrade-Navarro MA. Outer membrane pore protein prediction in mycobacteria using genomic comparison. Microbiology (Reading) 2010; 156:2506-2515. [DOI: 10.1099/mic.0.040089-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins responsible for outer membrane transport across the unique membrane structure of Mycobacterium spp. are attractive drug targets in the treatment of human diseases caused by the mycobacterial pathogens, Mycobacterium tuberculosis, M. bovis, M. leprae and M. ulcerans. In contrast with Escherichia coli, relatively few outer-membrane proteins (OMPs) have been identified in Mycobacterium spp., largely due to the difficulties in isolating mycobacterial membrane proteins and our incomplete understanding of secretion mechanisms and cell wall structure in these organisms. To further expand our knowledge of these elusive proteins in mycobacteria, we have improved upon our previous method of OMP prediction in mycobacteria by taking advantage of genomic data from seven mycobacteria species. Our improved algorithm suggests 4333 sequences as putative OMPs in seven species with varying degrees of confidence. The most virulent pathogenic mycobacterial species are slightly enriched in these selected sequences. We present examples of predicted OMPs involved in horizontal transfer and paralogy expansion. Analysis of local secondary structure content allowed identification of small domains predicted to perform as OMPs; some examples show their involvement in events of tandem duplication and domain rearrangements. We discuss the taxonomic distribution of these discovered families and architectures, often specific to mycobacteria or the wider taxonomic class of Actinobacteria. Our results suggest that OMP functionality in mycobacteria is richer than expected and provide a resource to guide future research of these understudied proteins.
Collapse
Affiliation(s)
- Nancy Mah
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | |
Collapse
|
98
|
Sträuber H, Müller S. Viability states of bacteria-Specific mechanisms of selected probes. Cytometry A 2010; 77:623-34. [DOI: 10.1002/cyto.a.20920] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
99
|
Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 2010; 8:401-12. [PMID: 20453875 DOI: 10.1038/nrmicro2351] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New technologies such as high-throughput methods and 13C-isotopologue-profiling analysis are beginning to provide us with insight into the in vivo metabolism of microorganisms, especially in the host cell compartments that are colonized by intracellular bacterial pathogens. In this Review, we discuss the recent progress made in determining the major carbon sources and metabolic pathways used by model intracellular bacterial pathogens that replicate either in the cytosol or in vacuoles of infected host cells. Furthermore, we highlight the possible links between intracellular carbon metabolism and the expression of virulence genes.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
100
|
Mycobacterial outer membranes: in search of proteins. Trends Microbiol 2010; 18:109-16. [PMID: 20060722 DOI: 10.1016/j.tim.2009.12.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/01/2009] [Accepted: 12/09/2009] [Indexed: 01/29/2023]
Abstract
The cell wall is a major virulence factor of Mycobacterium tuberculosis and contributes to its intrinsic drug resistance. Recently, cryo-electron microscopy showed that mycobacterial cell wall lipids form an unusual outer membrane. Identification of the components of the uptake and secretion machinery across this membrane will be crucial for understanding the physiology and pathogenicity of M. tuberculosis and for the development of better anti-tuberculosis drugs. Although the genome of M. tuberculosis appears to encode over 100 putative outer membrane proteins, only a few have been identified and characterized. Here, we summarize the current knowledge on the structure of the mycobacterial outer membrane and its known proteins. Through comparison to transport processes in Gram-negative bacteria, we highlight several hypothetical outer membrane proteins of M. tuberculosis that await discovery.
Collapse
|