51
|
Covelli JM, Althabegoiti MJ, López MF, Lodeiro AR. Swarming motility in Bradyrhizobium japonicum. Res Microbiol 2012; 164:136-44. [PMID: 23124116 DOI: 10.1016/j.resmic.2012.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022]
Abstract
Flagellar-driven bacterial motility is an important trait for colonization of natural environments. Bradyrhizobium japonicum is a soil species that possesses two different flagellar systems: one subpolar and the other lateral, each with a filament formed by a different set of flagellins. While synthesis of subpolar flagellins is constitutive, translation of lateral flagellins was detected in rhizobia grown with l-arabinose, but not with d-mannitol as sole carbon source, independently of whether bacteria were in liquid or semisolid medium. We characterized swarming of B. japonicum in semisolid medium and found that this motility was faster with l-arabinose than with d-mannitol. By using mutants with deletions in each flagellin set, we evaluated the contribution of each flagellum system to swarming in semisolid culture media, and in soil. Mutants devoid of either of the flagella were affected in swarming in culture media, with this impairment being stronger for mutants without lateral flagella. In sterile soil at 100% or 80% field capacity, flagellar-driven motility of mutants able to swim but impaired in swarming was similar to wild type, indicating that swimming was the predominant movement here.
Collapse
Affiliation(s)
- Julieta Mariana Covelli
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
52
|
Baluška F, Volkmann D, Menzel D, Barlow P. Strasburger's legacy to mitosis and cytokinesis and its relevance for the Cell Theory. PROTOPLASMA 2012; 249:1151-1162. [PMID: 22526203 DOI: 10.1007/s00709-012-0404-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Eduard Strasburger was one of the most prominent biologists contributing to the development of the Cell Theory during the nineteenth century. His major contribution related to the characterization of mitosis and cytokinesis and especially to the discovery of the discrete stages of mitosis, which he termed prophase, metaphase and anaphase. Besides his observations on uninucleate plant and animal cells, he also investigated division processes in multinucleate cells. Here, he emphasised the independent nature of mitosis and cytokinesis. We discuss these issues from the perspective of new discoveries in the field of cell division and conclude that Strasburger's legacy will in the future lead to a reformulation of the Cell Theory and that this will accommodate the independent and primary nature of the nucleus, together with its complement of perinuclear microtubules, for the organisation of the eukaryotic cell.
Collapse
|
53
|
Plasmid transformation of competent Bacillus subtilis by lysed protoplast DNA. J Biosci Bioeng 2012; 114:138-43. [DOI: 10.1016/j.jbiosc.2012.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/08/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022]
|
54
|
The C terminus of the flagellar muramidase SltF modulates the interaction with FlgJ in Rhodobacter sphaeroides. J Bacteriol 2012; 194:4513-20. [PMID: 22707709 DOI: 10.1128/jb.00460-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macromolecular structures such as the bacterial flagellum in Gram-negative bacteria must traverse the cell wall. Lytic transglycosylases are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. We have previously shown that in Rhodobacter sphaeroides SltF, the flagellar muramidase, and FlgJ, a flagellar scaffold protein, are separate entities that interact in the periplasm. In this study we show that the export of SltF to the periplasm is dependent on the SecA pathway. A deletion analysis of the C-terminal portion of SltF shows that this region is required for SltF-SltF interaction. These C terminus-truncated mutants lose the capacity to interact with themselves and also bind FlgJ with higher affinity than does the wild-type protein. We propose that this region modulates the interaction with the scaffold protein FlgJ during the assembly process.
Collapse
|
55
|
Zgair AK, Chhibber S. Immunological and biological relationship among flagellin of Pseudomonas aeruginosa, Burkholderia cepacia, and Stenotrophomonas maltophilia. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712030174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
56
|
Takeno M, Taguchi H, Akamatsu T. Role of ComEA in DNA uptake during transformation of competent Bacillus subtilis. J Biosci Bioeng 2012; 113:689-93. [PMID: 22398145 DOI: 10.1016/j.jbiosc.2012.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 12/01/2022]
Abstract
The role of the competence protein ComEA in DNA uptake during transformation of competent Bacillus subtilis was analyzed by lysed-protoplast transformation (LP transformation). A comEA deletion mutant was constructed by a fusion polymerase chain reaction. Transformants of the mutant were obtained by LP transformation at a frequency of 1.1 × 10(2) transformants per μg DNA, representing a low relative efficiency of transformation [RET (mutant/wild type)] of 2.7 × 10(-6). This implied an important role of the protein during DNA uptake. When analyzing LP transformation of comEA with a plasmid (5.7 kb), a similar RET (mutant/wild type) of 5.6 × 10(-5) was obtained. Following addition of DNA into the comEA mutant culture, the number of transformants increased at a rate of 0.5 transformants/min, which was very low compared with the wild-type (6.9×10(4) transformants/min). However, even in the comEA mutant, DNA uptake began immediately after addition of DNA. Using co-transformation analysis of the comEA mutant, short linkages at distances of 2-156 kb could be detected, but not long linkages at distances of 671-1662 kb. Taken together, the results indicate that ComEA plays an important role in the transfer of transforming DNA into the DNA channel and in controlling the rate of DNA uptake.
Collapse
Affiliation(s)
- Masaomi Takeno
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | | | | |
Collapse
|
57
|
Takeno M, Taguchi H, Akamatsu T. Essential involvement of the Bacillus subtilis ABC transporter, EcsB, in genetic transformation of purified DNA but not native DNA from protoplast lysates. J Biosci Bioeng 2011; 112:209-14. [DOI: 10.1016/j.jbiosc.2011.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/28/2022]
|
58
|
Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS One 2011; 6:e21479. [PMID: 21731763 PMCID: PMC3120886 DOI: 10.1371/journal.pone.0021479] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/02/2011] [Indexed: 01/17/2023] Open
Abstract
Shewanella oneidensis is a highly motile organism by virtue of a polar flagellum. Unlike most flagellated bacteria, it contains only one major chromosome segment encoding the components of the flagellum with the exception of the motor proteins. In this region, three genes encode flagellinsaccording to the original genome annotation. However, we find that only flaA and flaB encode functional filament subunits. Although these two genesare under the control of different promoters, they are actively transcribed and subsequently translated, producing a considerable number of flagellin proteins. Additionally, both flagellins are able to interact with their chaperon FliS and are subjected to feedback regulation. Furthermore, FlaA and FlaB are glycosylated by a pathwayinvolving a major glycosylating enzyme,PseB, in spite of the lack of the majority of theconsensus glycosylation sites. In conclusion, flagellar assembly in S. oneidensis has novel features despite the conservation of homologous genes across taxa.
Collapse
|
59
|
Role of ComFA in controlling the DNA uptake rate during transformation of competent Bacillus subtilis. J Biosci Bioeng 2011; 111:618-23. [PMID: 21397556 DOI: 10.1016/j.jbiosc.2011.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/08/2011] [Accepted: 02/12/2011] [Indexed: 11/24/2022]
Abstract
The roles of ComFA and ComEC in DNA uptake by competent Bacillus subtilis were analyzed by transformation with DNA in protoplast lysates (LP transformation). Deletion mutants of comFA and comEC and putative Walker A mutants (K152N, K152Q, K152E) of comFA were constructed by fusion polymerase chain reaction. Transformants of comEC mutant with purified DNA and DNA in protoplast lysate were not obtained, which shows a lack of transformation ability and backwards recombination of the mutant. Transformants of the comFA mutant were obtained by LP transformation (1.8 × 10(4) transformants/μg DNA). Low relative efficiency of transformation (RET) of comFA compared to wild type (4.3 × 10(-4)) showed an important role for comFA in DNA uptake. Walker A mutants showed 1.8-19 × 10(-4) RET, suggesting a dependence on ATPase activity for transformation. Co-transformation between short linkages was only detected in comFA mutants. The results demonstrated that ComFA controlled the DNA uptake rate. The interpretation was further supported by analyzing the plasmid used in LP transformation of the comFA mutant. The RET of comFA compared to the wild type was 2.7 × 10(-2), 60-fold higher than that with chromosomal DNA (4.3 × 10(-4)). Following addition of DNA into comFA culture, transformants were obtained after 15 min, with the number of transformants increasing over time. The kinetics strongly suggested that in comFA mutants, formation of another DNA uptake complex without ComFA would be a lengthy process.
Collapse
|
60
|
Van Gerven N, Waksman G, Remaut H. Pili and flagella biology, structure, and biotechnological applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:21-72. [PMID: 21999994 DOI: 10.1016/b978-0-12-415906-8.00005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural & Molecular Microbiology, VIB/Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
61
|
Genetic and mass spectrometry analyses of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J Bacteriol 2010; 193:804-14. [PMID: 21075925 DOI: 10.1128/jb.00822-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of pili from the archaeon Methanococcus maripaludis is unlike that of any bacterial pili. However, genetic analysis of the genes involved in the formation of these pili has been lacking until this study. Pili were isolated from a nonflagellated (ΔflaK) mutant and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to consist primarily of subunits with an apparent molecular mass of 17 kDa. In-frame deletions were created in three genes, MMP0233, MMP0236, and MMP0237, which encode proteins with bacterial type IV pilin-like signal peptides previously identified by in silico methodology as likely candidates for pilus structural proteins. Deletion of MMP0236 or MMP0237 resulted in mutant cells completely devoid of pili on the cell surface, while deletion of the third pilin-like gene, MMP0233, resulted in cells greatly reduced in the number of pili on the surface. Complementation with the deleted gene in each case returned the cells to a piliated state. Surprisingly, mass spectrometry analysis of purified pili identified the major structural pilin as another type IV pilin-like protein, MMP1685, whose gene is located outside the first pilus locus. This protein was found to be glycosylated with an N-linked branched pentasaccharide glycan. Deletion and complementation analysis confirmed that MMP1685 is required for piliation.
Collapse
|
62
|
Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity – Description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 2010; 33:328-36. [DOI: 10.1016/j.syapm.2010.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/23/2022]
|
63
|
Wada H, Netz RR. Hydrodynamics of helical-shaped bacterial motility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021921. [PMID: 19792165 DOI: 10.1103/physreve.80.021921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 06/04/2009] [Indexed: 05/28/2023]
Abstract
To reveal the underlying hydrodynamic mechanism for the directed propulsion of the bacterium Spiroplasma, we formulate a coarse-grained elastic polymer model with domains of alternating helicities along the contour. Using hydrodynamic simulations and analytic arguments, we show that the propagation of helical domain walls leads to the directed propulsion of the cell body opposite to the domain-wall traveling direction. Several key features of Spiroplasma motility are reproduced by our model. We in particular show that the helical pitch angle observed for Spiroplasma meliferum, psi=35 degrees , is optimized for maximal swimming speed and energy-conversion efficiency. Our analytic theory based on the slender-body hydrodynamic approximation agrees very well with our numerical data demonstrating how the chirality switch propagating along the helical cell body is converted to a translational thrust for the cell body itself. We in detail consider thermal effects on the propulsion efficiency in the form of orientational fluctuations and conformational fluctuations of the helix shape. The body length dependence of the cell motility is studied numerically and compared to our approximate analytic theory. For fixed pitch angle psi=35 degrees , the swimming speed is maximized at a ratio of cell-body length to domain length of about 2-3, which are typical values for real cells. We also propose simple analytic arguments for an enhancement of the swimming velocity with increasing solution viscosity by taking into account the effects of transient confinement of a helical cell body in a polymeric meshwork. Comparison with a generalized theory for the swimming speed of flagellated bacteria in polymeric meshworks shows that the presence of a finite-sized bacterial head gives rise to a maximal swimming speed at a finite solution viscosity, whereas in the absence of a head the swimming speed monotonically increases with increasing viscosity.
Collapse
Affiliation(s)
- Hirofumi Wada
- Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502 Kyoto, Japan
| | | |
Collapse
|
64
|
Nzoughet JK, Hamilton JTG, Botting CH, Douglas A, Devine L, Nelson J, Elliott CT. Proteomics identification of azaspiracid toxin biomarkers in blue mussels, Mytilus edulis. Mol Cell Proteomics 2009; 8:1811-22. [PMID: 19390117 PMCID: PMC2722768 DOI: 10.1074/mcp.m800561-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/04/2009] [Indexed: 01/09/2023] Open
Abstract
Azaspiracids are a class of recently discovered algae-derived shellfish toxins. Their distribution globally is on the increase with mussels being most widely implicated in azaspiracid-related food poisoning events. Evidence that these toxins were bound to proteins in contaminated mussels has been shown recently. In the present study characterization of these proteins in blue mussels, Mytilus edulis, was achieved using a range of advanced proteomics tools. Four proteins present only in the hepatopancreas of toxin-contaminated mussels sharing identity or homology with cathepsin D, superoxide dismutase, glutathione S-transferase Pi, and a bacterial flagellar protein have been characterized. Several of the proteins are known to be involved in self-defense mechanisms against xenobiotics or up-regulated in the presence of carcinogenic agents. These findings would suggest that azaspiracids should now be considered and evaluated as potential tumorigenic compounds. The presence of a bacterial protein only in contaminated mussels was an unexpected finding and requires further investigation. The proteins identified in this study should assist with development of urgently required processes for the rapid depuration of azaspiracid-contaminated shellfish. Moreover they may serve as early warning indicators of shellfish exposed to this family of toxins.
Collapse
Affiliation(s)
- Judith K Nzoughet
- Institute of Agri-food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
65
|
Simple quantification of bacterial envelope-associated extracellular materials. J Microbiol Methods 2009; 78:302-6. [PMID: 19583986 DOI: 10.1016/j.mimet.2009.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 11/22/2022]
Abstract
We have developed a simple method for distinguishing between bacterial cultures that produce different amount of exopolysaccharide. It is based upon small differences in pellet volume formed by those cultures upon centrifugation. For that we have constructed a special centrifugation tube consisting of two connected chambers: an upper 12 ml chamber connected to a lower capillary chamber. Cells are applied to the upper chamber and following centrifugation, sink to its bottom and are forced into the capillary so that the height they fill can be measured. This procedure has been developed in order to demonstrate differences in volume of centrifugation pellet formed by similar number of Escherichia coli K12 wild type, rpoS mutant and yjbG rpoS double mutant cells. These differences are further shown to be a result of overproduction of colanic acid exopolysaccharide in the mutant strains. We suggest that this simple method can be employed to detect differences in other cell surface structures and to estimate biomass when optical density measurement or microscopic count is not applicable.
Collapse
|
66
|
The Helicobacter pylori anti-sigma factor FlgM is predominantly cytoplasmic and cooperates with the flagellar basal body protein FlhA. J Bacteriol 2009; 191:4824-34. [PMID: 19465658 DOI: 10.1128/jb.00018-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori requires flagellar motility and orientation to persist actively in its habitat. A particular feature of flagella in most Helicobacter species including H. pylori is a membraneous flagellar sheath. The anti-sigma factor FlgM of H. pylori is unusual, since it lacks an N-terminal domain present in other FlgM homologs, e.g., FlgM of Salmonella spp., whose regulatory function is intimately coupled to its secretion through the flagellar type III secretion system. The aim of the present study was to characterize the localization and secretion of the short H. pylori FlgM in the presence of a flagellar sheath and to elucidate its interaction with other flagellar proteins, such as the basal body protein FlhA, which was previously shown to cooperate with FlgM for regulation. H. pylori FlgM was only released into the medium in minor amounts in wild-type bacteria, where the bulk amount of the protein was retained in the cytoplasm. Some FlgM was detected in the flagellar fraction. FlgM was expressed in flhA mutants and was less soluble and differentially localized in bacterial fractions of the flhA mutant in comparison to wild-type bacteria. FlgM-green fluorescent protein and FlgM-V5 translational fusions were generated and expressed in H. pylori. FlgM displayed a predominantly polar distribution and interacted with the C-terminal domain of FlhA (FlhA(C)). We suggest that, in H. pylori, FlgM secretion may not be paramount for its regulatory function and that protein interactions at the flagellar basal body may determine the turnover and localization of functional FlgM.
Collapse
|
67
|
Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducens. J Bacteriol 2009; 191:4207-17. [PMID: 19395486 DOI: 10.1128/jb.00057-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron transfer from cells to metals and electrodes by the Fe(III)-reducing anaerobe Geobacter sulfurreducens requires proper expression of redox proteins and attachment mechanisms to interface bacteria with surfaces and neighboring cells. We hypothesized that transposon mutagenesis would complement targeted knockout studies in Geobacter spp. and identify novel genes involved in this process. Escherichia coli mating strains and plasmids were used to develop a conjugation protocol and deliver mini-Himar transposons, creating a library of over 8,000 mutants that was anaerobically arrayed and screened for a range of phenotypes, including auxotrophy for amino acids, inability to reduce Fe(III) citrate, and attachment to surfaces. Following protocol validation, mutants with strong phenotypes were further characterized in a three-electrode system to simultaneously quantify attachment, biofilm development, and respiratory parameters, revealing mutants defective in Fe(III) reduction but unaffected in electron transfer to electrodes (such as an insertion in GSU1330, a putative metal export protein) or defective in electrode reduction but demonstrating wild-type biofilm formation (due to an insertion upstream of the NHL domain protein GSU2505). An insertion in a putative ATP-dependent transporter (GSU1501) eliminated electrode colonization but not Fe(III) citrate reduction. A more complex phenotype was demonstrated by a mutant containing an insertion in a transglutaminase domain protein (GSU3361), which suddenly ceased to respire when biofilms reached approximately 50% of the wild-type levels. As most insertions were not in cytochromes but rather in transporters, two-component signaling proteins, and proteins of unknown function, this collection illustrates how biofilm formation and electron transfer are separate but complementary phenotypes, controlled by multiple loci not commonly studied in Geobacter spp.
Collapse
|
68
|
Li H, Kristensen DM, Coleman MK, Mushegian A. Detection of biochemical pathways by probabilistic matching of phyletic vectors. PLoS One 2009; 4:e5326. [PMID: 19390636 PMCID: PMC2670198 DOI: 10.1371/journal.pone.0005326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/10/2009] [Indexed: 11/18/2022] Open
Abstract
A phyletic vector, also known as a phyletic (or phylogenetic) pattern, is a binary representation of the presences and absences of orthologous genes in different genomes. Joint occurrence of two or more genes in many genomes results in closely similar binary vectors representing these genes, and this similarity between gene vectors may be used as a measure of functional association between genes. Better understanding of quantitative properties of gene co-occurrences is needed for systematic studies of gene function and evolution. We used the probabilistic iterative algorithm Psi-square to find groups of similar phyletic vectors. An extended Psi-square algorithm, in which pseudocounts are implemented, shows better sensitivity in identifying proteins with known functional links than our earlier hierarchical clustering approach. At the same time, the specificity of inferring functional associations between genes in prokaryotic genomes is strongly dependent on the pathway: phyletic vectors of the genes involved in energy metabolism and in de novo biosynthesis of the essential precursors tend to be lumped together, whereas cellular modules involved in secretion, motility, assembly of cell surfaces, biosynthesis of some coenzymes, and utilization of secondary carbon sources tend to be identified with much greater specificity. It appears that the network of gene coinheritance in prokaryotes contains a giant connected component that encompasses most biosynthetic subsystems, along with a series of more independent modules involved in cell interaction with the environment.
Collapse
Affiliation(s)
- Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
| | | | | | | |
Collapse
|
69
|
Schlesner M, Miller A, Streif S, Staudinger WF, Müller J, Scheffer B, Siedler F, Oesterhelt D. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol 2009; 9:56. [PMID: 19291314 PMCID: PMC2666748 DOI: 10.1186/1471-2180-9-56] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/16/2009] [Indexed: 11/21/2022] Open
Abstract
Background Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown. Results Using protein-protein interaction analysis, we have identified three proteins in Halobacterium salinarum that interact with the chemotaxis (Che) proteins CheY, CheD, and CheC2, as well as the flagella accessory (Fla) proteins FlaCE and FlaD. Two of the proteins belong to the protein family DUF439, the third is a HEAT_PBS family protein. In-frame deletion strains for all three proteins were generated and analyzed as follows: a) photophobic responses were measured by a computer-based cell tracking system b) flagellar rotational bias was determined by dark-field microscopy, and c) chemotactic behavior was analyzed by a swarm plate assay. Strains deleted for the HEAT_PBS protein or one of the DUF439 proteins proved unable to switch the direction of flagellar rotation. In these mutants, flagella rotate only clockwise, resulting in exclusively forward swimming cells that are unable to respond to tactic signals. Deletion of the second DUF439 protein had only minimal effects. HEAT_PBS proteins could be identified in the chemotaxis gene regions of all motile haloarchaea sequenced so far, but not in those of other archaeal species. Genes coding for DUF439 proteins, however, were found to be integral parts of chemotaxis gene regions across the archaeal domain, and they were not detected in other genomic context. Conclusion Altogether, these results demonstrate that, in the archaeal domain, previously unrecognized archaea-specific Che proteins are essential for relaying taxis signaling to the flagellar apparatus.
Collapse
Affiliation(s)
- Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Pyatibratov MG, Beznosov SN, Rachel R, Tiktopulo EI, Surin AK, Syutkin AS, Fedorov OV. Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui. Can J Microbiol 2009; 54:835-44. [PMID: 18923552 DOI: 10.1139/w08-076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many Archaea use rotation of helical flagellar filaments for swimming motility. We isolated and characterized the flagellar filaments of Haloarcula marismortui, an archaeal species previously considered to be nonmotile. Two Haloarcula marismortui phenotypes were discriminated--their filaments are composed predominantly of either FlaB or FlaA2 flagellin, and the corresponding genes are located on different replicons. FlaB and FlaA2 filaments differ in antigenicity and thermostability. FlaA2 filaments are distinctly thicker (20-22 nm) than FlaB filaments (16-18 nm). The observed filaments are nearly twice as thick as those of other characterized euryarchaeal filaments. The results suggest that the helicity of Haloarcula marismortui filaments is provided by a mechanism different from that in the related haloarchaeon Halobacterium salinarum, where 2 different flagellin molecules present in comparable quantities are required to form a helical filament.
Collapse
Affiliation(s)
- Michael G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | | | | | | | | | | | | |
Collapse
|
71
|
Dienst D, Dühring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A. The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2008; 154:3134-3143. [PMID: 18832319 DOI: 10.1099/mic.0.2008/020222-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ssr3341 locus was previously suggested to encode an orthologue of the RNA chaperone Hfq in the cyanobacterium Synechocystis sp. strain PCC 6803. Insertional inactivation of this gene resulted in a mutant that was not naturally transformable and exhibited a non-phototactic phenotype compared with the wild-type. The loss of motility was complemented by reintroduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knockout mutant compared with the wild-type cells. Among the most strongly affected genes, slr1667, slr1668, slr2015, slr2016 and slr2018 stood out, as they belong to two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein SYCRP1. This suggests a link between cAMP signalling, motility and possibly the involvement of RNA-based regulation. This is believed to be the first report demonstrating a functional role of an Hfq orthologue in cyanobacteria, establishing a new factor in the control of motility.
Collapse
Affiliation(s)
- Dennis Dienst
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | - Ulf Dühring
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | | | - Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Golecki
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Justus-Liebig University Giessen, Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.,Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| |
Collapse
|
72
|
|
73
|
Affiliation(s)
- Dylan M. Morris
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
74
|
|
75
|
SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 2008; 190:2851-7. [PMID: 18281397 DOI: 10.1128/jb.01904-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces by an unknown mechanism. Transposon insertions in sprB resulted in cells that were defective in gliding. SprB is a highly repetitive 669-kDa cell surface protein, and antibodies against SprB inhibited the motility of wild-type cells. Polystyrene microspheres coated with antibodies against SprB attached to and were rapidly propelled along the cell surface, suggesting that SprB is one of the outermost components of the motility machinery. The movement of SprB along the cell surface supports a model of gliding motility in which motors anchored to the cell wall rapidly propel cell surface adhesins.
Collapse
|
76
|
Craig L, Li J. Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 2008; 18:267-77. [PMID: 18249533 DOI: 10.1016/j.sbi.2007.12.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 01/24/2023]
Abstract
Type IV pili are filaments on the surfaces of many Gram-negative bacteria that mediate an extraordinary array of functions, including adhesion, motility, microcolony formation and secretion of proteases and colonization factors. Their prominent display on the surfaces of many bacterial pathogens, their vital role in virulence, and their ability to elicit an immune response make Type IV pilus structures particularly relevant for study as targets for component vaccines and therapies. Structural studies of the pili and components of the pilus assembly apparatus have proven extremely challenging, but new approaches and methods have produced important breakthroughs that are advancing our understanding of pilus functions and their complex assembly mechanism. These structures provide insights into the biology of Type IV pili as well as that of the related bacterial secretion and archaeal flagellar systems. This review will summarize the most recent structural advances on Type IV pili and their assembly components and highlight their significance.
Collapse
Affiliation(s)
- Lisa Craig
- Molecular Biology and Biochemistry Department, Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
77
|
Chapter 2 Biomimetic Design of Dynamic Self-Assembling Systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1571-0831(07)00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
78
|
Hsiao A, Toscano K, Zhu J. Post-transcriptional cross-talk between pro- and anti-colonization pili biosynthesis systems in Vibrio cholerae. Mol Microbiol 2007; 67:849-60. [PMID: 18179420 DOI: 10.1111/j.1365-2958.2007.06091.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathogen Vibrio cholerae modulates the expression of many genes in order to transition from its environmental reservoir to its niche in the human host. Among these are genes encoding two related Type IV pili, the mannose-sensitive haemagglutinin (MSHA) pilus, which aids V. cholerae persistence in aquatic environments but causes clearance of bacteria by host immune defences, and the toxin co-regulated pilus (TCP) required for colonization. These antagonistic effects are resolved transcriptionally by the regulator ToxT, which represses msh genes while activating tcp genes during infection. We show that these two pili systems are also intertwined post-transcriptionally through the ToxT-regulated pre-pilin peptidase TcpJ. We found that the major MSHA pilin, MshA, was degraded in V. cholerae in a TcpJ-dependent fashion. In a heterologous Escherichia coli system, TcpJ can recognize both MshA and its cognate substrate, the TCP subunit TcpA, but that processing by TcpJ causes the degradation of MshA. Through site-directed mutagenesis and chimeric pilin analysis, we show that this process targets a combination of MshA N-terminal motifs and depends on the proteolytic activity of TcpJ. Moreover, overexpression of tcpJ partially restored the ability of bacteria unable to transcriptionally downregulate msh genes to colonize infant mice. These findings describe co-ordinated proteolysis as a regulatory mechanism in V. cholerae and illustrate this organism's adaptability in the face of dramatic environmental changes.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
79
|
Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 2007; 190:48-60. [PMID: 17981974 DOI: 10.1128/jb.01407-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium responsible for the production of severe histotoxic and gastrointestinal diseases in humans and animals. In silico analysis of the three available genome-sequenced C. perfringens strains (13, SM101, and ATCC13124) revealed that genes that encode flagellar proteins and genes involved in chemotaxis are absent. However, those strains exhibit type IV pilus (TFP)-dependent gliding motility. Since carbon catabolite regulation has been implicated in the control of different bacterial behaviors, we investigated the effects of glucose and other readily metabolized carbohydrates on C. perfringens gliding motility. Our results demonstrate that carbon catabolite regulation constitutes an important physiological regulatory mechanism that reduces the proficiencies of the gliding motilities of a large number of unrelated human- and animal-derived pathogenic C. perfringens strains. Glucose produces a strong dose-dependent inhibition of gliding development without affecting vegetative growth. Maximum gliding inhibition was observed at a glucose concentration (1%) previously reported to also inhibit other important behaviors in C. perfringens, such as spore development. The inhibition of gliding development in the presence of glucose was due, at least in part, to the repression of the genes pilT and pilD, whose products are essential for TFP-dependent gliding proficiency. The inhibitory effects of glucose on pilT and pilD expression were under the control of the key regulatory protein CcpA (catabolite control protein A). The deficiency in CcpA activity of a ccpA knockout C. perfringens mutant strain restored the expressions of pilT and pilD and gliding proficiency in the presence of 1% glucose. The carbon catabolite repression of the gliding motility of the ccpA mutant strain was restored after the introduction of a complementing plasmid harboring a wild-type copy of ccpA. These results point to a central role for CcpA in orchestrating the negative effect of carbon catabolite regulation on C. perfringens gliding motility. Furthermore, we discovered a novel positive role for CcpA in pilT and pilD expression and gliding proficiency in the absence of catabolite regulation. Carbon catabolite repression of gliding motility and the dual role of CcpA, either as repressor or as activator of gliding, are analyzed in the context of the different social behaviors and diseases produced by C. perfringens.
Collapse
|
80
|
Chaban B, Ng SYM, Kanbe M, Saltzman I, Nimmo G, Aizawa SI, Jarrell KF. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol Microbiol 2007; 66:596-609. [PMID: 17887963 DOI: 10.1111/j.1365-2958.2007.05913.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The archaeal flagellum is a unique motility apparatus in the prokaryotic domain, distinct from the bacterial flagellum. Most of the currently recognized archaeal flagella-associated genes fall into a single fla operon that contains the genes for the flagellin proteins (two or more genes designated as flaA or flaB), some variation of a set of conserved proteins of unknown function (flaC, flaD, flaE, flaF, flaG and flaH), an ATPase (flaI) and a membrane protein (flaJ). In addition, the flaD gene has been demonstrated to encode two proteins: a full-length gene product and a truncated product derived from an alternate, internal start site. A systematic deletion approach was taken using the methanogen Methanococcus maripaludis to investigate the requirement and a possible role for these proposed flagella-associated genes. Markerless in-frame deletion strains were created for most of the genes in the M. maripaludis fla operon. In addition, a strain lacking the truncated FlaD protein [FlaD M(191)I] was also created. DNA sequencing and Southern blot analysis confirmed each mutant strain, and the integrity of the remaining operon was confirmed by immunoblot. With the exception of the DeltaFlaB3 and FlaD M(191)I strains, all mutants were non-motile by light microscopy and non-flagellated by electron microscopy. A detailed examination of the DeltaFlaB3 mutant flagella revealed that these structures had no hook region, while the FlaD M(191)I strain appeared identical to wild type. Each deletion strain was complemented, and motility and flagellation was restored. Collectively, these results demonstrate for first time that these fla operon genes are directly involved and critically required for proper archaeal flagella assembly and function.
Collapse
Affiliation(s)
- Bonnie Chaban
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada, K7L3 N6
| | | | | | | | | | | | | |
Collapse
|
81
|
Huitema E, Viollier PH. Break on through to the other side: outer membrane penetration of the nascent flagellum by a stop-polymerization mechanism. Genes Dev 2007; 21:2253-7. [PMID: 17875662 DOI: 10.1101/gad.1600807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Edgar Huitema
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
82
|
Paul CJ, Tran S, Tam KJ, Austin JW. A unique restriction site in the flaA gene allows rapid differentiation of group I and group II Clostridium botulinum strains by PCR-restriction fragment length polymorphism analysis. J Food Prot 2007; 70:2133-9. [PMID: 17900093 DOI: 10.4315/0362-028x-70.9.2133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clostridium botulinum produces the potent botulinum neurotoxin, the causative agent of botulism. Based on distinctive physiological traits, strains of C. botulinum can be divided into four groups: however, only groups I and II are associated with human illness. Alignment of the flaA gene sequences from 40 group I and 40 group II strains identified a single BsrG1 restriction cut site that was present at base pair 283 in all group II flaA sequences and was not found in any group I sequence. The flaA gene was amplified by rapid colony PCR from 22 group I strains and 18 group II strains and digested with BsrGI restriction enzyme. Standard agarose gel electrophoresis with ethidium bromide staining showed two fragments, following restriction digestion of group II flaA gene amplicons with BsrGI, but only a single band of uncut flaA from group I strains. Combining rapid colony PCR with BsrGI restriction digest of the flaA gene at 60 degrees C is a significant improvement over current methods, such as meat digestion or amplified fragment length polymorphism, as a strain can be identified as either group I or group II in under 5 h when starting with a visible plated C. botulinum colony.
Collapse
Affiliation(s)
- Catherine J Paul
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Sir Frederick G. Banting Research Centre, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K0A 0K9
| | | | | | | |
Collapse
|
83
|
Abstract
Forty-one flagellated species representing 11 bacterial phyla were used to investigate the origin of secondary flagellar systems and the structure and formation of flagellar gene operons over the course of bacterial evolution. Secondary (i.e., lateral) flagellar systems, which are harbored by five of the proteobacterial species considered, originated twice, once in the alphaproteobacterial lineage and again in the common ancestor of the Beta- and Gammaproteobacteria. The order and organization of flagellar genes have undergone extensive shuffling and rearrangement among lineages, and based on the phylogenetic distributions of flagellar gene complexes, the flagellar gene operons existed as small, usually two-gene units in the ancestor of Bacteria and have expanded through the recruitment of new genes and fusion of gene units. In contrast to the evolutionary trend towards larger flagellar gene complexes, operon structures have been highly disrupted through gene disassociation and rearrangements in the Epsilon- and Alphaproteobacteria. These results demonstrate that the genetic basis of this ancient and structurally conserved organelle has been subject to many lineage-specific modifications.
Collapse
Affiliation(s)
- Renyi Liu
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
84
|
Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ. Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J Bacteriol 2007; 189:7145-50. [PMID: 17644580 PMCID: PMC2045224 DOI: 10.1128/jb.00892-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium johnsoniae cells glide rapidly over surfaces by an unknown mechanism. Transposon-induced sprA mutants formed nonspreading colonies on agar, and the cells examined in wet mounts were deficient in attachment to surfaces and were almost completely nonmotile. Exposure of intact cells to proteinase K cleaved the 270-kDa SprA into several large peptides, suggesting that it is partially exposed on the cell surface.
Collapse
Affiliation(s)
- Shawn S Nelson
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
| | | | | | | | | |
Collapse
|
85
|
Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evol Biol 2007; 7:106. [PMID: 17605801 PMCID: PMC1914349 DOI: 10.1186/1471-2148-7-106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 07/02/2007] [Indexed: 11/10/2022] Open
Abstract
Background As bacteria, motile archaeal species swim by means of rotating flagellum structures driven by a proton gradient force. Interestingly, experimental data have shown that the archaeal flagellum is non-homologous to the bacterial flagellum either in terms of overall structure, components and assembly. The growing number of complete archaeal genomes now permits to investigate the evolution of this unique motility system. Results We report here an exhaustive phylogenomic analysis of the components of the archaeal flagellum. In all complete archaeal genomes, the genes coding for flagellum components are co-localized in one or two well-conserved genomic clusters showing two different types of organizations. Despite their small size, these genes harbor a good phylogenetic signal that allows reconstruction of their evolutionary histories. These support a history of mainly vertical inheritance for the components of this unique motility system, and an interesting possible ancient horizontal gene transfer event (HGT) of a whole flagellum-coding gene cluster between Euryarchaeota and Crenarchaeota. Conclusion Our study is one of the few exhaustive phylogenomics analyses of a non-informational cell machinery from the third domain of life. We propose an evolutionary scenario for the evolution of the components of the archaeal flagellum. Moreover, we show that the components of the archaeal flagellar system have not been frequently transferred among archaeal species, indicating that gene fixation following HGT can also be rare for genes encoding components of large macromolecular complexes with a structural role.
Collapse
|
86
|
Malapaka VRR, Barrese AA, Tripp BC, Tripp BC. High-Throughput Screening for Antimicrobial Compounds Using a 96-Well Format Bacterial Motility Absorbance Assay. ACTA ACUST UNITED AC 2007; 12:849-54. [PMID: 17644774 DOI: 10.1177/1087057107304478] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is a pressing need to develop new antimicrobial drugs because of the increasing resistance of pathogenic bacteria to existing antibiotics. The preliminary development and validation of a novel methodology for the high-throughput screening of antimicrobial compounds and inhibitors of bacterial motility is described. This method uses a bacterial motility swarming agar assay, combined with the use of offset inoculation of the wells in a standard, clear, 96-well plate, to enable rapid screening of compounds for potential antibiotic and antimotility properties with a standard absorbance microplate reader. Thus, the methodology should be compatible with 96-well laboratory automation technology used in drug discovery and chemical biology studies. To validate the screening method, the Genesis Plus structurally diverse library of 960 biologically active compounds was screened against a motile strain of the gram-negative bacterial pathogen Salmonella typhimurium. The average Z′ value for the positive and negative motility controls on all 12 compound plates was 0.67 ± 0.14, and the signal-to-baseline ratio calculated from the positive and negative controls was 5.9 ± 1.1. A collection of 70 compounds with well-known antimicrobial properties was successfully identified using this assay. ( Journal of Biomolecular Screening 2007:849-854)
Collapse
|
87
|
Abstract
Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. The bacterial flagellum is a primary example of a complex apparatus whose origins and evolutionary history have proven difficult to reconstruct. The gene clusters encoding the components of the flagellum can include >50 genes, but these clusters vary greatly in their numbers and contents among bacterial phyla. To investigate how this diversity arose, we identified all homologs of all flagellar proteins encoded in the complete genome sequences of 41 flagellated species from 11 bacterial phyla. Based on the phylogenetic occurrence and histories of each of these proteins, we could distinguish an ancient core set of 24 structural genes that were present in the common ancestor to all Bacteria. Within a genome, many of these core genes show sequence similarity only to other flagellar core genes, indicating that they were derived from one another, and the relationships among these genes suggest the probable order in which the structural components of the bacterial flagellum arose. These results show that core components of the bacterial flagellum originated through the successive duplication and modification of a few, or perhaps even a single, precursor gene.
Collapse
Affiliation(s)
- Renyi Liu
- Departments of *Biochemistry and Molecular Biophysics and
| | - Howard Ochman
- Departments of *Biochemistry and Molecular Biophysics and
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
88
|
Szabó Z, Sani M, Groeneveld M, Zolghadr B, Schelert J, Albers SV, Blum P, Boekema EJ, Driessen AJM. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 2007; 189:4305-9. [PMID: 17416662 PMCID: PMC1913377 DOI: 10.1128/jb.00042-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellation in archaea is widespread and is involved in swimming motility. Here, we demonstrate that the structural flagellin gene from the crenarchaeaon Sulfolobus solfataricus is highly expressed in stationary-phase-grown cells and under unfavorable nutritional conditions. A mutant in a flagellar auxiliary gene, flaJ, was found to be nonmotile. Electron microscopic imaging of the flagellum indicates that the filaments are composed of right-handed helices.
Collapse
Affiliation(s)
- Zalán Szabó
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Paul CJ, Twine SM, Tam KJ, Mullen JA, Kelly JF, Austin JW, Logan SM. Flagellin diversity in Clostridium botulinum groups I and II: a new strategy for strain identification. Appl Environ Microbiol 2007; 73:2963-75. [PMID: 17351097 PMCID: PMC1892883 DOI: 10.1128/aem.02623-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region.
Collapse
Affiliation(s)
- Catherine J Paul
- Bureau of Microbial Hazards, HFPB, Health Canada, Sir Frederick G. Banting Research Centre, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
90
|
Silva KT, Abreu F, Almeida FP, Keim CN, Farina M, Lins U. Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes. Microsc Res Tech 2007; 70:10-7. [PMID: 17019700 DOI: 10.1002/jemt.20380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria orient and migrate along geomagnetic field lines. Each cell contains membrane-enclosed, nano-scale, iron-mineral particles called magnetosomes that cause alignment of the cell in the geomagnetic field as the bacteria swim propelled by flagella. In this work we studied the ultrastructure of the flagellar apparatus in many-celled magnetotactic prokaryotes (MMP) that consist of several Gram-negative cells arranged radially around an acellular compartment. Flagella covered the organism surface, and were observed exclusively at the portion of each cell that faced the environment. The flagella were helical tubes never as long as a complete turn of the helix. Flagellar filaments varied in length from 0.9 to 3.8 micro m (average 2.4 +/- 0.5 micro m, n = 150) and in width from 12.0 to 19.5 nm (average 15.9 +/- 1.4 nm, n = 52), which is different from previous reports for similar microorganisms. At the base of the flagella, a curved hook structure slightly thicker than the flagellar filaments was observed. In freeze-fractured samples, macromolecular complexes about 50 nm in diameter, which possibly corresponded to part of the flagella basal body, were observed in both the P-face of the cytoplasmic membrane and the E-face of the outer membrane. Transmission electron microscopy showed that magnetosomes occurred in planar groups in the cytoplasm close and parallel to the organism surface. A striated structure, which could be involved in maintaining magnetosomes fixed in the cell, was usually observed running along magnetosome chains. The coordinated movement of the MMP depends on the interaction between the flagella of each cell with the flagella of adjacent cells of the microorganism.
Collapse
Affiliation(s)
- Karen Tavares Silva
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
91
|
Yamagata A, Tainer JA. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J 2007; 26:878-90. [PMID: 17255937 PMCID: PMC1794398 DOI: 10.1038/sj.emboj.7601544] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 12/14/2006] [Indexed: 11/08/2022] Open
Abstract
The secretion superfamily ATPases are conserved motors in key microbial membrane transport and filament assembly machineries, including bacterial type II and IV secretion, type IV pilus assembly, natural competence, and archaeal flagellae assembly. We report here crystal structures and small angle X-ray scattering (SAXS) solution analyses of the Archaeoglobus fulgidus secretion superfamily ATPase, afGspE. AfGspE structures in complex with ATP analogue AMP-PNP and Mg(2+) reveal for the first time, alternating open and closed subunit conformations within a hexameric ring. The closed-form active site with bound Mg(2+) evidently reveals the catalytically active conformation. Furthermore, nucleotide binding results and SAXS analyses of ADP, ATPgammaS, ADP-Vi, and AMP-PNP-bound states in solution showed that asymmetric assembly involves ADP binding, but clamped closed conformations depend on both ATP gamma-phosphate and Mg(2+) plus the conserved motifs, arginine fingers, and subdomains of the secretion ATPase superfamily. Moreover, protruding N-terminal domain shifts caused by the closed conformation suggest a unified piston-like, push-pull mechanism for ATP hydrolysis-dependent conformational changes, suitable to drive diverse microbial secretion and assembly processes by a universal mechanism.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John A Tainer
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Biology, MB 4, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 Torrey Pines Road, La Jolla, CA 92037, USA. Tel.: +1 858 784 8119; Fax: +1 858 784 2277; E-mail:
| |
Collapse
|
92
|
Malapaka RRV, Adebayo LO, Tripp BC. A Deletion Variant Study of the Functional Role of the Salmonella Flagellin Hypervariable Domain Region in Motility. J Mol Biol 2007; 365:1102-16. [PMID: 17109884 DOI: 10.1016/j.jmb.2006.10.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 01/17/2023]
Abstract
The eubacterial flagellum is a complex structure with an elongated extracellular filament that is composed primarily of many subunits of a flagellin protein. The highly conserved N and C termini of flagellin are important in its export and self-assembly, whereas the middle sequence region varies greatly in size and composition in different species and is known to be deletion-tolerant. In Salmonella typhimurium phase 1 flagellin, this "hypervariable" region encodes two solvent-exposed domains, D2 and D3, that form a knob-like feature on flagella fibers. The functional role of this structural feature in motility remains unclear. We investigated the structural and physiological role of the hypervariable region in flagella assembly, stability and cellular motility. A library of random internal deletion variants of S. typhimurium flagellin was constructed and screened for functional variants using a swarming agar motility assay. The relative cellular motility and propulsive force of ten representative variants were determined in semi-solid and liquid medium using colony swarming motility assays, video microscopy and optical trapping of single cells. All ten variants exhibited diminished motility, with varying extents of motility observed for internal deletions less than 75 residues and nearly complete loss of motility for deletions greater than 100 residues. The mechanical stability of the variant flagella fibers also decreased with increasing size of deletion. Comparison of the variant sequences with the wild-type sequence and structure indicated that all deletions involved loss of hydrophobic core residues, and removal of both partial and complete segments of secondary structure in the D2 and D3 domains. Homology modeling predicted disruptions of secondary structures in each variant. The hypervariable region D2 and D3 domains appear to stabilize the folded conformation of the flagellin protein and contribute to the mechanical stability and propulsive force of the flagella fibers.
Collapse
Affiliation(s)
- Raghu Ram V Malapaka
- Department of Biological Sciences, College of Arts and Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | | | |
Collapse
|
93
|
Jyot J, Sonawane A, Wu W, Ramphal R. Genetic mechanisms involved in the repression of flagellar assembly by
Pseudomonas aeruginosa
in human mucus. Mol Microbiol 2006; 63:1026-38. [PMID: 17238927 DOI: 10.1111/j.1365-2958.2006.05573.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa downregulates flagellin transcription when it is grown in purulent mucus from patients with cystic fibrosis (CF) and non-CF bronchiectasis. This response possibly abrogates the potent inflammatory response mediated by the interaction of flagellin with Toll-like receptor 5. The molecular mechanisms involved are thus far unknown. Known flagellar transcriptional regulators were not involved, thus Tn5 mutagenesis was used to ascertain whether novel regulators existed. Five clones with independent Tn5 insertions in flgM showed derepression of flagellin synthesis, suggesting that FlgM was involved in this phenomenon. Furthermore, examination of mucus-grown bacteria showed FlgM accumulation and overexpression of fliA in mucus-grown bacteria reversed the repression of flagellin synthesis. A related study from our laboratory had identified neutrophil elastase in mucus as the molecule responsible for fliC repression, therefore we examined whether loss of the flagellar hook (FlgE), by proteolysis was involved, because the flagellar hook is required for FlgM export. Western immunoblot of membranes from mucus-grown bacteria showed the absence of FlgE, despite the fact that the protein is made and the operon encoding FlgE is upregulated in mucus. A model is proposed wherein neutrophil elastase in mucus proteolytically cleaves the flagellar hook, thus completion of the hook basal body is never sensed, resulting in FlgM accumulation within the cell, causing repression of flagellin synthesis. We speculate that the cyclical bouts of inflammation observed in CF patients may result from flagellin synthesis and its repression, caused by presence of neutrophils at the site of infection.
Collapse
Affiliation(s)
- Jeevan Jyot
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
94
|
Affiliation(s)
- Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
| |
Collapse
|
95
|
Trachtenberg S, Cohen-Krausz S. The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J Mol Microbiol Biotechnol 2006; 11:208-20. [PMID: 16983196 DOI: 10.1159/000094055] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Common prokaryotic motility modes are swimming by means of rotating internal or external flagellar filaments or gliding by means of retracting pili. The archaeabacterial flagellar filament differs significantly from the eubacterial flagellum: (1) Its diameter is 10-14 nm, compared to 18-24 nm for eubacterial flagellar filaments. (2) It has 3.3 subunits/turn of a 1.9 nm pitch left-handed helix compared to 5.5 subunits/turn of a 2.6 nm pitch right-handed helix for plain eubacterial flagellar filaments. (3) The archaeabacterial filament is glycosylated, which is uncommon in eubacterial flagella and is believed to be one of the key elements for stabilizing proteins under extreme conditions. (4) The amino acid composition of archaeabacterial flagellin, although highly conserved within the group, seems unrelated to the highly conserved eubacterial flagellins. On the other hand, the archaeabacterial flagellar filament shares some fundamental properties with type IV pili: (1) The hydrophobic N termini are largely homologous with the oligomerization domain of pilin. (2) The flagellin monomers follow a different mode of transport and assembly. They are synthesized as pre-flagellin and have a cleavable signal peptide, like pre-pilin and unlike eubacterial flagellin. (3) The archaeabacterial flagellin, like pilin, is glycosylated. (4) The filament lacks a central channel, consistent with polymerization occurring at the cell-proximal end. (5) The diameter of type IV pili, 6-9 nm, is closer to that of the archaeabacterial filament, 10-14 nm. A large body of data on the biochemistry and molecular biology of archaeabacterial flagella has accumulated in recent years. However, their structure and symmetry is only beginning to unfold. Here, we review the structure of the archaeabacterial flagellar filament in reference to the structures of type IV pili and eubacterial flagellar filaments, with which it shares structural and functional similarities, correspondingly.
Collapse
Affiliation(s)
- Shlomo Trachtenberg
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
96
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|
97
|
Murray TS, Kazmierczak BI. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 2006; 188:6995-7004. [PMID: 16980502 PMCID: PMC1595508 DOI: 10.1128/jb.00790-06] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FlhF is a signal recognition particle-like protein present in monotrichous bacteria. The loss of FlhF in various bacteria results in decreased transcription of class II, III, or IV flagellar genes, leads to diminished or absent motility, and results in the assembly of flagella at nonpolar locations on the cell surface. In this work, we demonstrate that the loss of FlhF results in defective swimming and swarming motility of Pseudomonas aeruginosa. The FlhF protein localizes to the flagellar pole; in the absence of FlhF, flagellar assembly occurs but is no longer restricted to the pole. DeltaflhF bacteria swim at lower velocities than wild-type bacteria in liquid media and can no longer swarm when assayed under standard swarming conditions (0.5% agar). However, DeltaflhF bacteria regain swarming behavior when plated on 0.3% agar. DeltaflhF organisms show decreased transcription and expression of flagellin (FliC) both in liquid media and on swarming plates compared to wild-type bacteria. However, changes in flagellin expression do not explain the different motility patterns observed for DeltaflhF bacteria. Instead, the aberrant placement of flagella in DeltaflhF bacteria may reduce their ability to move this rod-shaped organism effectively.
Collapse
Affiliation(s)
- Thomas S Murray
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
98
|
Näther DJ, Rachel R, Wanner G, Wirth R. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J Bacteriol 2006; 188:6915-23. [PMID: 16980494 PMCID: PMC1595509 DOI: 10.1128/jb.00527-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrococcus furiosus ("rushing fireball") was named for the ability of this archaeal coccus to rapidly swim at its optimal growth temperature, around 100 degrees C. Early electron microscopic studies identified up to 50 cell surface appendages originating from one pole of the coccus, which have been called flagella. We have analyzed these putative motility organelles and found them to be composed primarily (>95%) of a glycoprotein that is homologous to flagellins from other archaea. Using various electron microscopic techniques, we found that these flagella can aggregate into cable-like structures, forming cell-cell connections between ca. 5% of all cells during stationary growth phase. P. furiosus cells could adhere via their flagella to carbon-coated gold grids used for electron microscopic analyses, to sand grains collected from the original habitat (Porto di Levante, Vulcano, Italy), and to various other surfaces. P. furiosus grew on surfaces in biofilm-like structures, forming microcolonies with cells interconnected by flagella and adhering to the solid supports. Therefore, we concluded that P. furiosus probably uses flagella for swimming but that the cell surface appendages also enable this archaeon to form cable-like cell-cell connections and to adhere to solid surfaces.
Collapse
Affiliation(s)
- Daniela J Näther
- Lehrstuhl für Microbiology, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
99
|
Hansen JK, Forest KT. Type IV Pilin Structures: Insights on Shared Architecture, Fiber Assembly, Receptor Binding and Type II Secretion. J Mol Microbiol Biotechnol 2006; 11:192-207. [PMID: 16983195 DOI: 10.1159/000094054] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Type IV pili are long, flexible filaments that extend from the surface of Gram-negative bacteria and are formed by the polymerization of pilin subunits. This review focuses on the structural information available for each pilin subclass, type IVa and type IVb, highlighting the contributions crystal and nuclear magnetic resonance structures have made in understanding pilus function and assembly. In addition, the type II secretion pseudopilus subunit structure and helical assembly is compared to that of the type IV pilus. The pilin subunits adopt an alphabeta-roll fold formed by the hydrophobic packing of the C-terminal half of a long alpha-helix against an antiparallel beta-sheet. The conserved N-terminal half of the same alpha-helix, as well as two sequence- and structurally-variable regions, protrude from this globular head domain. Filament models have a hydrophobic core formed by the signature long alpha-helices, with variable regions at the filament surface.
Collapse
Affiliation(s)
- Johanna K Hansen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
100
|
Logan SM. Flagellar glycosylation - a new component of the motility repertoire? MICROBIOLOGY-SGM 2006; 152:1249-1262. [PMID: 16622043 DOI: 10.1099/mic.0.28735-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biosynthesis, assembly and regulation of the flagellar apparatus has been the subject of extensive studies over many decades, with considerable attention devoted to the peritrichous flagella of Escherichia coli and Salmonella enterica. The characterization of flagellar systems from many other bacterial species has revealed subtle yet distinct differences in composition, regulation and mode of assembly of this important subcellular structure. Glycosylation of the major structural protein, the flagellin, has been shown most recently to be an important component of numerous flagellar systems in both Archaea and Bacteria, playing either an integral role in assembly or for a number of bacterial pathogens a role in virulence. This review focuses on the structural diversity in flagellar glycosylation systems and demonstrates that as a consequence of the unique assembly processes, the type of glycosidic linkage found on archaeal and bacterial flagellins is distinctive.
Collapse
Affiliation(s)
- Susan M Logan
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A OR6, Canada
| |
Collapse
|