51
|
Chen C, Hu J, Yang C, Zhang Y, Wang F, Mu Q, Pan F, Xu H, Lu JR. Amino acid side chains affect the bioactivity of designed short peptide amphiphiles. J Mater Chem B 2016; 4:2359-2368. [PMID: 32263231 DOI: 10.1039/c6tb00155f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The artificially designed amphiphilic peptide G(IIKK)3I-NH2 has been shown to be highly effective at killing bacteria and inhibiting the growth of tumor cells whilst remaining benign to normal mammalian cells. Herein we report how the side chain length and branching of constituent amino acids affect these bioactivities. Two peptide groups were designed by utilizing G(IIKK)3I-NH2 as the base template. In Group 1, hydrophobic residues were replaced from Ile to Leu, Nle (norleucine), or Val. It was found that an increase in the side chain carbon number from 3 (Val) to 4 (Leu, Ile or Nle) substantially enhanced their antibacterial and antitumor activities, but different branching in the butyl side chain showed very different cytotoxicities to host mammalian cells, with the γ-branching in Leu eliciting the highest potency. Group 2 covered those cationic Lys residues which were replaced by synthetic homologues with shorter side chains, namely, Orn, Dab and Dap containing 3, 2 and 1 methylene units, respectively. The replacement did not affect their antibacterial activities much, but their anticancer activities were maximized in Orn and Dab. On the other hand, their cytotoxicities also became higher, indicating a multi-faceted role played by the cationic residues. Thus, changes in both the side chain length and branching strongly affected the amphiphilicity of the short peptides and their interactions with different membranes. This work has revealed a strong relationship among side chain structures, amphiphilicity and selective bioactivities of the short peptide amphiphiles.
Collapse
Affiliation(s)
- Cuixia Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang J, Chou S, Xu L, Zhu X, Dong N, Shan A, Chen Z. High specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Sci Rep 2015; 5:15963. [PMID: 26530005 PMCID: PMC4632126 DOI: 10.1038/srep15963] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022] Open
Abstract
We used a template-assisted approach to develop synthetic antimicrobial peptides, which differ from naturally occurring antimicrobial peptides that can compromise host natural defenses. Previous researches have demonstrated that symmetrical distribution patterns of amino acids contribute to the antimicrobial activity of natural peptides. However, there is little research describing such design ideas for synthetic α-helical peptides. Therefore, here, we established a centrosymmetric α-helical sequence template (y + hhh + y)n (h, hydrophobic amino acid; +, cationic amino acid; y, Gly or hydrophobic amino acid), which contributed to amphipathicity, and a series of centrosymmetric peptides was designed with pairs of small amino acids (Ala and Gly), which were utilized to modulate the biological activity. The centrosymmetric peptides with 3 repeat units exhibited strong antimicrobial activity; in particular, the Gly-rich centrosymmetric peptide GG3 showed stronger selectivity for gram-negative bacteria without hemolysis. Furthermore, beyond our expectation, fluorescence spectroscopy and electron microscopy analyses indicated that the GG3, which possessed poor α-helix conformation, dramatically exhibited marked membrane destruction via inducing bacterial membrane permeabilization, pore formation and disruption, even bound DNA to further exert antimicrobial activity. Collectively, the Gly-rich centrosymmetric peptide GG3 was an ideal candidate for commercialization as a clinical therapeutic to treat gram-negative bacterial infections.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lin Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xin Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhihui Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
53
|
Rational design of mirror-like peptides with alanine regulation. Amino Acids 2015; 48:403-17. [DOI: 10.1007/s00726-015-2094-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
|
54
|
Chernysh S, Gordya N, Suborova T. Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria. PLoS One 2015; 10:e0130788. [PMID: 26177023 PMCID: PMC4503414 DOI: 10.1371/journal.pone.0130788] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
In recent decades much attention has been paid to antimicrobial peptides (AMPs) as natural antibiotics, which are presumably protected from resistance development in bacteria. However, experimental evolution studies have revealed prompt resistance increase in bacteria to any individual AMP tested. Here we demonstrate that naturally occurring compounds containing insect AMP complexes have clear advantage over individual peptide and small molecule antibiotics in respect of drug resistance development. As a model we have used the compounds isolated from bacteria challenged maggots of Calliphoridae flies. The compound isolated from blow fly Calliphora vicina was found to contain three distinct families of cell membrane disrupting/permeabilizing peptides (defensins, cecropins and diptericins), one family of proline rich peptides and several unknown antimicrobial substances. Resistance changes under long term selective pressure of the compound and reference antibiotics cefotaxime, meropenem and polymyxin B were tested using Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii clinical strains. All the strains readily developed resistance to the reference antibiotics, while no signs of resistance growth to the compound were registered. Similar results were obtained with the compounds isolated from 3 other fly species. The experiments revealed that natural compounds containing insect AMP complexes, in contrast to individual AMP and small molecule antibiotics, are well protected from resistance development in bacteria. Further progress in the research of natural AMP complexes may provide novel solutions to the drug resistance problem.
Collapse
Affiliation(s)
- Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
- * E-mail:
| | - Natalia Gordya
- Laboratory of Insect Biopharmacology and Immunology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana Suborova
- Research Center of Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
55
|
Xu L, Chou S, Wang J, Shao C, Li W, Zhu X, Shan A. Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides. Amino Acids 2015; 47:2385-97. [PMID: 26088720 DOI: 10.1007/s00726-015-2029-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides (AMPs) with amphipathic β-hairpin structures have been demonstrated to possess potent antimicrobial activities and great cell selectivities. However, our understanding of β-hairpin antimicrobial peptides lags behind that of α-helices, mainly because it is difficult for short peptides to form robust β-hairpin structures. Tryptophan zipper (trpzip) peptides are among the most stable β-hairpin peptides known to fold spontaneously without requiring covalent disulfide constraint or metal binding. To develop model β-hairpin AMPs with small size and remarkable stability, a series of amphiphilic linear peptides were designed based on the trpzip motif. The sequence of designed peptides is (WK) n (D) PG(KW) n -NH2 (n = 1, 2, 3, 4, 5), and the antimicrobial activity and membrane interaction mechanism of the peptides were evaluated. The results showed that these peptides readily fold into β-hairpin structures in aqueous and membrane-mimicking environments and exhibit broad-spectrum antimicrobial activities against both gram-positive and gram-negative bacteria. The antibacterial potency of the peptides initially increased and then decreased with increasing chain length. WK3, a 14-residue peptide, displayed excellent antimicrobial activity with minimal hemolytic activity and cytotoxicity, suggesting that it possesses great cell selectivity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescence spectroscopy, and flow cytometry indicated that representative peptides WK3 and WK4 exert their activities by permeabilizing the microbial membrane and damaging cell membrane integrity. This study reveals the application potential of the designed peptides as promising antimicrobial agents for the control of infectious diseases, and it also provides new insights into the design and optimization of highly stable β-hairpin AMPs with great antimicrobial activities and cell selectivities.
Collapse
Affiliation(s)
- Lin Xu
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.,Heilongjiang Polytechnic, 5 Xuefu Road, Harbin, 150080, China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Weizhong Li
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xin Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
56
|
Lofton H, Anwar N, Rhen M, Andersson DI. Fitness of Salmonella mutants resistant to antimicrobial peptides. J Antimicrob Chemother 2014; 70:432-40. [DOI: 10.1093/jac/dku423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
57
|
Chen C, Hu J, Zeng P, Chen Y, Xu H, Lu JR. High cell selectivity and low-level antibacterial resistance of designed amphiphilic peptide G(IIKK)(3)I-NH(2). ACS APPLIED MATERIALS & INTERFACES 2014; 6:16529-16536. [PMID: 25210781 DOI: 10.1021/am504973d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
On the basis of cell cultures involving bacterial strains (Escherichia coli 5α and Bacillus subtilis 168) and a mammalian cell line (NIH 3T3), the potent antibacterial activity and distinct selectivity from designed amphiphilic peptides G(IIKK)nI-NH2 (n = 2-4) have been demonstrated. This work extends these studies to multidrug resistant pathogens (ESBL-producing E. coli) and primary human cells (HDFa), followed by the in vivo mouse model investigation of ESBL-producing bacterial infection. G(IIKK)3I-NH2 exhibits high antibacterial activity against the pathogenic strain both in vitro and in vivo while displaying low toxicity toward the primary cells and the mice. Peptide molecules can kill bacteria by selectively interacting with bacterial membranes, causing structural disruptions. Furthermore, multidrug resistant ESBL-producing bacteria do not develop resistance after multiple treatments with G(IIKK)3I-NH2. The high cellular selectivity, low toxicity toward mammalian hosts and noninducing bacterial resistance indicate great potential for developing the peptides as anti-infection agents.
Collapse
Affiliation(s)
- Cuixia Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | | | | | | | | | | |
Collapse
|
58
|
Rapsch K, Bier FF, von Nickisch-Rosenegk M. Rational design of artificial β-strand-forming antimicrobial peptides with biocompatible properties. Mol Pharm 2014; 11:3492-502. [PMID: 25192319 DOI: 10.1021/mp500271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Because the intensive use of antibiotics has led to a large variety of resistant bacterial strains, therapeutic measures have become increasingly challenging. In order to ensure reliable treatment of diseases, alternative antimicrobial agents need to be explored. In this context, antimicrobial peptides have been discussed as novel bioactive molecules, which, however, may be limited in their applicability due to their high manufacturing costs and poor pharmacokinetic properties. Consequently, the design of artificial antimicrobial peptides featuring two flanking cationic regions and a hydrophobic center is presented. These sequences led to distinct antimicrobial activity on the same order of magnitude as that of naturally occurring reference peptides but with less cytotoxic or cytostatic drawbacks. Furthermore, a deletion and substitution library revealed the minimal sequence requirements. By analysis of the computed 3D structures of these peptides, a single characteristic β-strand was identified. This structural motif was pivotal for antimicrobial activity. Consequently, an optimized peptide sequence with antimicrobial and biocompatible properties was derived, and its application was demonstrated in a mixed culture experiment. Thus, it was shown that the optimized artificial antimicrobial peptide is suitable as a therapeutic agent and may be used as template for the development of new antimicrobial peptides with unique secondary structures.
Collapse
Affiliation(s)
- Karsten Rapsch
- Fraunhofer Institute for Biomedical Engineering IBMT , Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam, Germany
| | | | | |
Collapse
|
59
|
Muñoz F, Caracciolo PC, Daleo G, Abraham GA, Guevara MG. Evaluation of in vitro cytotoxic activity of mono-PEGylated StAP3 ( Solanum tuberosum aspartic protease 3) forms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:1-7. [PMID: 28626641 PMCID: PMC5466107 DOI: 10.1016/j.btre.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
StAP3 is a plant aspartic protease with cytotoxic activity toward a broad spectrum of pathogens, including potato and human pathogen microorganisms, and cancer cells, but not against human T cells, human red blood cells or plant cells. For this reason, StAP3 could be a promising and potential drug candidate for future therapies. In this work, the improvement of the performance of StAP3 was achieved by means of a modification with PEG. The separation of a mono-PEGylated StAP3 fraction was easily performed by gel filtration chromatography. The mono-PEGylated StAP3 fraction was studied in terms of in vitro antimicrobial activity, exhibiting higher antimicrobial activity against Fusarium solani spores and Bacillus cereus, but slightly lower activity against Escherichia coli than native protein. Such increase in antifungal activity has not been reported previously for a PEGylated plant protein. In addition, PEGylation did not affect the selective cytotoxicity of StAP3, since no hemolytic activity was observed.
Collapse
Key Words
- AMPPs, antimicrobial proteins and peptides
- ATCC, American Type Culture Collection
- Antimicrobial protein
- BSA, bovine serum albumin
- DTT, dithiothreitol
- PBS, phosphate buffered saline
- PDA, potato dextrose agar
- PEG, polyethylene glycol
- PEGylation
- Plant aspartic protease
- SDS, sodium dodecyl sulphate
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Selective cytotoxicity
- StAP3, Solanum tuberosum aspartic protease 3
- StAsp-PSI, plant-specific insert of potato aspartic protease
- hRBC, Fresh human red blood cells
- mPEG-SVA, succinimidyl valerate monomethoxy polyethylene glycol
Collapse
Affiliation(s)
- Fernando Muñoz
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - Gustavo Daleo
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - M. Gabriela Guevara
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
60
|
Dobson AJ, Purves J, Rolff J. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host. Evol Appl 2014; 7:905-12. [PMID: 25469169 PMCID: PMC4211720 DOI: 10.1111/eva.12184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/20/2014] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of 'arming the enemy': bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the 'arming the enemy' hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts.
Collapse
Affiliation(s)
- Adam J Dobson
- Animal & Plant Sciences, University of Sheffield, Western BankSheffield, UK
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
| | - Joanne Purves
- Animal & Plant Sciences, University of Sheffield, Western BankSheffield, UK
- School of Life Sciences, Centre for Biomolecular Science, University of NottinghamNottingham, UK
| | - Jens Rolff
- Animal & Plant Sciences, University of Sheffield, Western BankSheffield, UK
- Institute of Biology, Free University BerlinBerlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)Berlin, Germany
| |
Collapse
|
61
|
Dong N, Zhu X, Lv YF, Ma QQ, Jiang JG, Shan AS. Cell specificity and molecular mechanism of antibacterial and antitumor activities of carboxyl-terminal RWL-tagged antimicrobial peptides. Amino Acids 2014; 46:2137-54. [DOI: 10.1007/s00726-014-1761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
62
|
Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 2013; 4:412. [PMID: 24427156 PMCID: PMC3876575 DOI: 10.3389/fmicb.2013.00412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/15/2013] [Indexed: 11/13/2022] Open
Abstract
The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.
Collapse
Affiliation(s)
| | - Carolina S. F. Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | | | - Vânia L. da Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Cláudio G. Diniz
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Marcelo O. Santos
- Department of Biology, University of Juiz de ForaJuiz de Fora, Brazil
| |
Collapse
|
63
|
Khara JS, Wang Y, Ke XY, Liu S, Newton SM, Langford PR, Yang YY, Ee PLR. Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials 2013; 35:2032-8. [PMID: 24314557 DOI: 10.1016/j.biomaterials.2013.11.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/13/2013] [Indexed: 12/28/2022]
Abstract
The rapid emergence of multi-drug resistant tuberculosis (TB) and the lack of effective therapies have prompted the development of compounds with novel mechanisms of action to tackle this growing public health concern. In this study, a series of synthetic cationic α-helical antimicrobial peptides (AMPs) modified with different hydrophobic amino acids was investigated for their anti-mycobacterial activity, both alone and in synergistic combinations with the frontline anti-tuberculosis drug rifampicin. The addition of thiol groups by incorporating cysteine residues in the AMPs did not improve anti-mycobacterial activity against drug-susceptible and drug-resistant Mycobacterium tuberculosis, while the enhancement of peptide hydrophobicity by adding methionine residues increased the efficacy of the primary peptide against all strains tested, including clinically isolated multidrug-resistant mycobacteria. The peptide with the optimal composition M(LLKK)2M was bactericidal, and eradicated mycobacteria via a membrane-lytic mechanism as demonstrated by confocal microscopic studies. Mycobacteria did not develop resistance after multiple exposures to sub-lethal doses of the peptide. In addition, the peptide displayed synergism with rifampicin against both Mycobacterium smegmatis and Mycobacterium bovis BCG and additivity against M. tuberculosis. Moreover, such combination therapy is effective in delaying the emergence of rifampicin resistance. The ability to potentiate anti-TB drug activity, kill drug-resistant bacteria and prevent drug resistance highlights the potential utility of the peptide in combating multidrug-resistant TB.
Collapse
Affiliation(s)
- Jasmeet S Khara
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Ying Wang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Xi-Yu Ke
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Sandra M Newton
- Section of Paediatrics, Division of Medicine, St Mary's Campus, Imperial College, London W2 1PG, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Division of Medicine, St Mary's Campus, Imperial College, London W2 1PG, United Kingdom
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore.
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
64
|
Dobson AJ, Purves J, Kamysz W, Rolff J. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One 2013; 8:e76521. [PMID: 24204634 PMCID: PMC3799789 DOI: 10.1371/journal.pone.0076521] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/01/2013] [Indexed: 11/18/2022] Open
Abstract
With a diminishing number of effective antibiotics, there has been interest in developing antimicrobial peptides (AMPs) as drugs. However, any new drug faces potential bacterial resistance evolution. Here, we experimentally compare resistance evolution in Staphylococcus aureus selected by three AMPs (from mammals, amphibians and insects), a combination of two AMPs, and two antibiotics: the powerful last-resort vancomycin and the classic streptomycin. We find that resistance evolves readily against single AMPs and against streptomycin, with no detectable fitness cost. However the response to selection from our combination of AMPs led to extinction, in a fashion qualitatively similar to vancomycin. This is consistent with the hypothesis that simultaneous release of multiple AMPs during immune responses is a factor which constrains evolution of AMP resistant pathogens.
Collapse
Affiliation(s)
- Adam J. Dobson
- Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Joanne Purves
- Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
- School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Wojciech Kamysz
- Faculty of Pharmacy, Gdansk University of Medicine, Gdansk, Poland
| | - Jens Rolff
- Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Biology, Free University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
65
|
Adaptive evolution of Escherichia coli to an α-peptide/β-peptoid peptidomimetic induces stable resistance. PLoS One 2013; 8:e73620. [PMID: 24040003 PMCID: PMC3764026 DOI: 10.1371/journal.pone.0073620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/29/2013] [Indexed: 01/20/2023] Open
Abstract
Antimicrobial peptides (AMPs) and synthetic analogues thereof target conserved structures of bacterial cell envelopes and hence, development of resistance has been considered an unlikely event. However, recently bacterial resistance to AMPs has been observed, and the aim of the present study was to determine whether bacterial resistance may also evolve against synthetic AMP analogues, e.g. α-peptide/β-peptoid peptidomimetics. E. coli ATCC 25922 was exposed to increasing concentrations of a peptidomimetic (10 lineages), polymyxin B (10 lineages), or MilliQ water (4 lineages) in a re-inoculation culturing setup covering approx. 500 generations. All 10 lineages exposed to the peptidomimetic adapted to 32×MIC while this occurred for 8 out of 10 of the polymyxin B-exposed lineages. All lineages exposed to 32×MIC of either the peptidomimetic or polymyxin B had a significantly increased MIC (16–32×) to the selection agent. Five transfers (∼35 generations) in unsupplemented media did not abolish resistance indicating that resistance was heritable. Single isolates from peptidomimetic-exposed lineage populations displayed MICs against the peptidomimetic from wild-type MIC to 32×MIC revealing heterogeneous populations. Resistant isolates showed no cross-resistance against a panel of membrane-active AMPs. These isolates were highly susceptible to blood plasma antibacterial activity and were killed when plasma concentrations exceeded ∼30%. Notably, MIC of the peptidomimetic against resistant isolates returned to wild-type level upon addition of 25% plasma. Whole-genome sequencing of twenty isolates from four resistant lineages revealed mutations, in murein transglycosylase D (mltD) and outer-membrane proteins, which were conserved within and between lineages. However, no common resistance-conferring mutation was identified. We hypothesise that alterations in cell envelope structure result in peptidomimetic resistance, and that this may occur via several distinct mechanisms. Interestingly, this type of resistance result in a concomitant high susceptibility towards plasma, and therefore the present study does not infer additional concern for peptidomimetics as future therapeutics.
Collapse
|
66
|
Lofton H, Pränting M, Thulin E, Andersson DI. Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS One 2013; 8:e68875. [PMID: 23894360 PMCID: PMC3720879 DOI: 10.1371/journal.pone.0068875] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/02/2013] [Indexed: 12/04/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a potential new class of antimicrobial drugs with potent and broad-spectrum activities. However, knowledge about the mechanisms and rates of resistance development to AMPs and the resulting effects on fitness and cross-resistance is limited. We isolated antimicrobial peptide (AMP) resistant Salmonella typhimurium LT2 mutants by serially passaging several independent bacterial lineages in progressively increasing concentrations of LL-37, CNY100HL and Wheat Germ Histones. Significant AMP resistance developed in 15/18 independent bacterial lineages. Resistance mutations were identified by whole genome sequencing in two-component signal transduction systems (pmrB and phoP) as well as in the LPS core biosynthesis pathway (waaY, also designated rfaY). In most cases, resistance was associated with a reduced fitness, observed as a decreased growth rate, which was dependent on growth conditions and mutation type. Importantly, mutations in waaY decreased bacterial susceptibility to all tested AMPs and the mutant outcompeted the wild type parental strain at AMP concentrations below the MIC for the wild type. Our data suggests that resistance to antimicrobial peptides can develop rapidly through mechanisms that confer cross-resistance to several AMPs. Importantly, AMP-resistant mutants can have a competitive advantage over the wild type strain at AMP concentrations similar to those found near human epithelial cells. These results suggest that resistant mutants could both be selected de novo and maintained by exposure to our own natural repertoire of defence molecules.
Collapse
Affiliation(s)
- Hava Lofton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Pränting
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Thulin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
67
|
Differential adaptive responses of Staphylococcus aureus to in vitro selection with different antimicrobial peptides. Antimicrob Agents Chemother 2013; 57:5134-7. [PMID: 23856775 DOI: 10.1128/aac.00780-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We subjected Staphylococcus aureus ATCC 29213 to serial passage in the presence of subinhibitory concentrations of magainin 2 and gramicidin D for several hundred generations. We obtained S. aureus strains with induced resistance to magainin 2 (strain 55MG) and gramicidin D (strain 55GR) that showed different phenotypic changes in membrane properties. Both exhibited a change in membrane phospholipid content and an increase in membrane rigidity, while an alteration in net charge compared to that of the control occurred only in the case of 55MG.
Collapse
|
68
|
Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5780-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
69
|
Xu H, Chen CX, Hu J, Zhou P, Zeng P, Cao CH, Lu JR. Dual modes of antitumor action of an amphiphilic peptide A(9)K. Biomaterials 2013; 34:2731-7. [PMID: 23352040 DOI: 10.1016/j.biomaterials.2012.12.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/30/2012] [Indexed: 12/19/2022]
Abstract
Following our recent report of attractive antibacterial properties of a designed amphiphilic peptide, A(9)K, we have investigated its antitumor activities by examining the modes of its action against different mammalian cell types. The peptide strongly inhibited the growth of cancerous HeLa cells and human promyelocytic leukemia HL60 cells whilst remaining benign to the host cells, including Cos 7 cells, mouse fibroblast NIH3T3 cells and human red blood cells. Images from SEM and fluorescence microscopy showed that A(9)K penetrated HeLa cell membranes and disrupted membrane structures, a feature broadly similar to that observed from its bactericidal actions. Further interactions of A(9)K with inner cellular membranes caused mitochondrial dysfunction associated with the F-actin reorganization and the decreased transcription of bcl-2 and c-myc genes, resulting in HeLa cell apoptosis in a mitochondria-induced apoptosis pathway. Thus A(9)K has high selectivity against cancerous cells and kills them by dual modes of action: membrane disruption and cell apoptosis. In addition, the peptide does not induce non-specific immunological effects and is not degraded by proteases. These features are crucial for developing their applications in future research.
Collapse
Affiliation(s)
- Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum East China, Qingdao 266555, China.
| | | | | | | | | | | | | |
Collapse
|
70
|
Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials 2012; 34:237-50. [PMID: 23046754 DOI: 10.1016/j.biomaterials.2012.09.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) have attracted considerable attention for their broad-spectrum antimicrobial activity and reduced tendency to cause bacterial resistance. Emerging concerns over the host cytotoxicity of AMPs, however, may ultimately compromise their development as pharmaceuticals. In order to optimize AMPs with potent cell specificity and anti-inflammatory activity, we designed β-hairpin hybrid peptides based upon progetrin-1, bovine lactoferricin and cecropin A. The synthetic hybrid peptides LB-PG and CA-PG demonstrated high selectivity over a wide range of microbes from Gram-positive and Gram-negative bacteria in porcine red blood cells. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that these peptides kill microbial cells by penetrating the cell membrane and damaging the membrane envelope. Gel retardation demonstrates that the peptides have a high affinity for DNA, indicating an additional possible intracellular bactericidal mechanism. Moreover, the hybrid peptides inhibit the expression of LPS-induced proinflammatory cytokines and chemokines, such as tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1α (MIP-1α) and monocyte chemoattractant protein 1(MCP-1), following LPS stimulation in RAW264.7 cells. Our results indicate that these hybrid peptides have considerable potential for future development as antimicrobial and anti-inflammatory agents.
Collapse
|
71
|
Melo MN, Castanho MARB. The Mechanism of Action of Antimicrobial Peptides: Lipid Vesicles vs. Bacteria. Front Immunol 2012; 3:236. [PMID: 22876247 PMCID: PMC3410519 DOI: 10.3389/fimmu.2012.00236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 07/16/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manuel N Melo
- Groningen Biotechnological and Biomolecular Institute, University of Groningen Groningen, Netherlands
| | | |
Collapse
|
72
|
Anaya-López JL, López-Meza JE, Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 2012; 39:180-95. [PMID: 22799636 DOI: 10.3109/1040841x.2012.699025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring cationic antimicrobial peptides (CAMPs) have been considered as promising candidates to treat infections caused by pathogenic bacteria to animals and humans. This assumption is based on their mechanism of action, which is mainly performed through electrostatic membrane interactions. Unfortunately, the rise in the reports that describe bacterial resistance to CAMPs has redefined their role as therapeutic agents. In this review, we describe the state of the art of the most common resistance mechanisms developed by bacteria to CAMPs, making special emphasis on resistance selection. Considering most of the resistance mechanisms here reviewed, the emergence of resistance is unlikely in the short term, however we also described evidences that show the evolution of resistance to CAMPs, reevaluating their use as good antibacterial agents. Finally, the knowledge related to the description of CAMP resistance mechanisms may provide useful information for improving strategies to control infections.
Collapse
Affiliation(s)
- José Luis Anaya-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Unidad de Biotecnología, Celaya, México
| | | | | |
Collapse
|
73
|
Schlusselhuber M, Jung S, Bruhn O, Goux D, Leippe M, Leclercq R, Laugier C, Grötzinger J, Cauchard J. In vitro potential of equine DEFA1 and eCATH1 as alternative antimicrobial drugs in rhodococcosis treatment. Antimicrob Agents Chemother 2012; 56:1749-55. [PMID: 22232283 PMCID: PMC3318344 DOI: 10.1128/aac.05797-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/30/2011] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi, the causal agent of rhodococcosis, is a severe pathogen of foals but also of immunodeficient humans, causing bronchopneumonia. The pathogen is often found together with Klebsiella pneumoniae or Streptococcus zooepidemicus in foals. Of great concern is the fact that some R. equi strains are already resistant to commonly used antibiotics. In the present study, we evaluated the in vitro potential of two equine antimicrobial peptides (AMPs), eCATH1 and DEFA1, as new drugs against R. equi and its associated pathogens. The peptides led to growth inhibition and death of R. equi and S. zooepidemicus at low micromolar concentrations. Moreover, eCATH1 was able to inhibit growth of K. pneumoniae. Both peptides caused rapid disruption of the R. equi membrane, leading to cell lysis. Interestingly, eCATH1 had a synergic effect together with rifampin. Furthermore, eCATH1 was not cytotoxic against mammalian cells at bacteriolytic concentrations and maintained its high killing activity even at physiological salt concentrations. Our data suggest that equine AMPs, especially eCATH1, may be promising candidates for alternative drugs to control R. equi in mono- and coinfections.
Collapse
Affiliation(s)
- Margot Schlusselhuber
- Bacteriology and Parasitology Unit, Dozulé Laboratory for Equine Diseases, ANSES, Goustranville, Dozulé, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Habets MGJL, Brockhurst MA. Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 2012; 8:416-8. [PMID: 22279153 DOI: 10.1098/rsbl.2011.1203] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a promising new class of antimicrobials despite warnings that therapeutic use could drive the evolution of pathogens resistant to our own immunity peptides. Using experimental evolution, we demonstrate that Staphylococcus aureus rapidly evolved resistance to pexiganan, a drug-candidate for diabetic leg ulcer infections. Evolved resistance was costly in terms of impaired growth rate, but costs-of-resistance were completely ameliorated by compensatory adaptation. Crucially, we show that, in some populations, experimentally evolved resistance to pexiganan provided S. aureus with cross-resistance to human-neutrophil-defensin-1, a key component of the innate immune response to infection. This unintended consequence of therapeutic use could drastically undermine our innate immune system's ability to control and clear microbial infections. Our results therefore highlight grave potential risks of AMP therapies, with implications for their development.
Collapse
|
75
|
Wiradharma N, Khan M, Yong LK, Hauser CA, Seow SV, Zhang S, Yang YY. The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra. Biomaterials 2011; 32:9100-8. [DOI: 10.1016/j.biomaterials.2011.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/08/2011] [Indexed: 12/27/2022]
|
76
|
Chen C, Hu J, Zhang S, Zhou P, Zhao X, Xu H, Zhao X, Yaseen M, Lu JR. Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials 2011; 33:592-603. [PMID: 21986402 DOI: 10.1016/j.biomaterials.2011.09.059] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022]
Abstract
Biomimicry of antimicrobial peptides secreted by innate immune systems represents a major strategy in developing novel antibacterial treatments. There are however emerging concerns over the possible compromise of host natural defenses by these biomimetic peptides due to their structural similarity. In our recent work we have extended the search by exploring the potential from unnatural synthetic antimicrobial peptides. Here we show that a series of surfactant-like peptides (A(m)K(n), m ≥ 3, n = 1, 2) can kill not only bacteria but also cancerous HeLa cells in similar manner. Under the same experimental conditions, however, these peptides showed little affinity to NIH 3T3 cells and human red blood cells (hRBCs), thus demonstrating high biocompatibility in selective responses to host mammalian cells and low hemolysis. A(9)K(1) was most effective in killing HeLa cells, a trend consistent with their bactericidal effects against Escherichia coli and Bacillus subtilis. Mechanistic investigations through combined studies of SEM and fluorescence assays revealed that the killing of bacteria and cancerous cells was caused by disrupting cell membranes, initiated by electrostatic interactions between cationic peptides and negatively charged cell membranes. In contrast, the absence of such interactions in the case of NIH 3T3 and hRBCs over the same peptide concentration range rendered low cytotoxicity. The most effective killing power of A(9)K(1) within this series benefited from the combined effects of several factors including modest micellar concentration and balanced amphiphilicity, consistent with its propensity of self-assembly and effective membrane lytic power.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266555, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X, Lu JR. Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules 2011; 12:3839-43. [PMID: 21955251 DOI: 10.1021/bm201098j] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a new class of cationic amphiphilic peptides with short sequences, G(IIKK)(n)I-NH(2) (n = 1-4), that can kill Gram-positive and Gram-negative bacteria as effectively as several well-known antimicrobial peptides and antibiotics. In addition, some of these peptides possess potent antitumor activities against cancer cell lines. Moreover, their hemolytic activities against human red blood cells (hRBCs) remain remarkably low even at some 10-fold bactericidal minimum inhibitory concentrations (MICs). When bacteria or tumor cells are cocultured with NIH 3T3 fibroblast cells, G(IIKK)(3)I-NH(2) showed fast and strong selectivity against microbial or tumor cells, without any adverse effect on NIH 3T3 cells. The high selectivity and associated features are attributed to two design tactics: the use of Ile residues rather than Leu and the perturbation of the hydrophobic face of the helical structure with the insertion of a positively charged Lys residue. This class of simple peptides hence offers new opportunities in the development of cost-effective and highly selective antimicrobial and antitumor peptide-based treatments.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, PR China
| | | | | | | | | | | | | |
Collapse
|
78
|
Baltzer SA, Brown MH. Antimicrobial Peptides – Promising Alternatives to Conventional Antibiotics. J Mol Microbiol Biotechnol 2011; 20:228-35. [DOI: 10.1159/000331009] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
79
|
Abstract
AIMS The goal of this review is to identify the antimicrobial proteins in the oral fluids, saliva and gingival crevicular fluid and identify functional families and candidates for antibacterial treatment. RESULTS Periodontal biofilms initiate a cascade of inflammatory and immune processes that lead to the destruction of gingival tissues and ultimately alveolar bone loss and tooth loss. Treatment of periodontal disease with conventional antibiotics does not appear to be effective in the absence of mechanical debridement. An alternative treatment may be found in antimicrobial peptides and proteins, which can be bactericidal and anti-inflammatory and block the inflammatory effects of bacterial toxins. The peptides have co-evolved with oral bacteria, which have not developed significant peptide resistance. Over 45 antibacterial proteins are found in human saliva and gingival crevicular fluid. The proteins and peptides belong to several different functional families and offer broad protection from invading microbes. Several antimicrobial peptides and proteins (AMPs) serve as templates for the development of therapeutic peptides and peptide mimetics, although to date none have demonstrated efficacy in human trials. CONCLUSIONS Existing and newly identified AMPs may be developed for therapeutic use in periodontal disease or can serve as templates for peptide and peptide mimetics with improved therapeutic indices.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
80
|
Hendry AP, Kinnison MT, Heino M, Day T, Smith TB, Fitt G, Bergstrom CT, Oakeshott J, Jørgensen PS, Zalucki MP, Gilchrist G, Southerton S, Sih A, Strauss S, Denison RF, Carroll SP. Evolutionary principles and their practical application. Evol Appl 2011; 4:159-83. [PMID: 25567966 PMCID: PMC3352551 DOI: 10.1111/j.1752-4571.2010.00165.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 02/01/2023] Open
Abstract
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Collapse
Affiliation(s)
- Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| | | | - Mikko Heino
- Department of Biology, University of Bergen Bergen, Norway ; International Institute for Applied Systems Analysis Laxenburg, Austria ; Institute of Marine Research Bergen, Norway
| | - Troy Day
- Departments of Mathematics and Statistics and Biology, Queen's University Kingston, ON, Canada
| | - Thomas B Smith
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Gary Fitt
- CSIRO Entomology and Cotton Catchment Communities CRC, Long Pocket Laboratories Indooroopilly, Qld, Australia
| | - Carl T Bergstrom
- Department of Biology, University of Washington Seattle, WA, USA
| | - John Oakeshott
- CSIRO Entomology, Black Mountain Canberra, ACT, Australia
| | - Peter S Jørgensen
- Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland Brisbane, Qld, Australia
| | - George Gilchrist
- Division of Environmental Biology, National Science Foundation Arlington, VA, USA
| | | | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Sharon Strauss
- Section of Evolution and Ecology, University of California Davis, CA, USA
| | - Robert F Denison
- Ecology Evolution and Behavior, University of Minnesota Saint Paul, MN, USA
| | - Scott P Carroll
- Institute for Contemporary Evolution Davis, CA, USA ; Department of Entomology, University of California Davis, CA, USA
| |
Collapse
|
81
|
Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 2011; 162:363-74. [PMID: 21320593 DOI: 10.1016/j.resmic.2011.02.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/20/2011] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides (AMPs) are ribosomally synthesized natural antibiotics that are crucial effectors of innate immune systems in all living organisms. AMPs are diverse peptides, differing in their amino acid composition and structure, that generally display rapid killing and broad-spectrum antimicrobial activities. Therefore, AMPs have high potential for therapeutic use in healthcare and agriculture. This review focuses on in vivo studies relating how organisms - bacteria, plants, insects and mammals - employ AMPs in their interactions with microbial competitors, pathogens and symbionts.
Collapse
Affiliation(s)
- Gergely Maróti
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltán Foundation for Applied Research, Derkovits fasor 2, Szeged 6726, Hungary.
| | | | | | | |
Collapse
|
82
|
Wiradharma N, Khoe U, Hauser CAE, Seow SV, Zhang S, Yang YY. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials 2010; 32:2204-12. [PMID: 21168911 DOI: 10.1016/j.biomaterials.2010.11.054] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Antimicrobial peptides (AMPs) secreted by the innate immune system are prevalent as the effective first-line of defense to overcome recurring microbial invasions. They have been widely accepted as the blueprints for the development of new antimicrobial agents for the treatment of drug resistant infections. However, there is also a growing concern that AMPs with a sequence that is too close to the host organism's AMP may inevitably compromise its own natural defense. In this study, we design a series of synthetic (non-natural) short α-helical AMPs to expand the arsenal of the AMP families and to gain further insights on their antimicrobial activities. These cationic and amphiphilic peptides have a general sequence of (XXYY)(n) (X: hydrophobic residue, Y: cationic residue, and n: the number of repeat units), and are designed to mimic the folding behavior of the naturally-occurring α-helical AMPs. The synthetic α-helical AMPs with 3 repeat units, (FFRR)(3), (LLRR)(3), and (LLKK)(3), are found to be more selective towards microbial cells than rat red blood cells, with minimum inhibitory concentration (MIC) values that are more than 10 times lower than their 50% hemolytic concentrations (HC(50)). They are effective against Gram-positive B. subtilis and yeast C. albicans; and the studies using scanning electron microscopy (SEM) have elucidated that these peptides possess membrane-lytic activities against microbial cells. Furthermore, non-specific immune stimulation assays of a typical peptide shows negligible IFN-α, IFN-γ, and TNF-α inductions in human peripheral blood mononuclear cells, which implies additional safety aspects of the peptide for both systemic and topical use. Therefore, the peptides designed in this study can be promising antimicrobial agents against the frequently-encountered Gram-positive bacteria- or yeast-induced infections.
Collapse
Affiliation(s)
- Nikken Wiradharma
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | | | | | | | | | | |
Collapse
|
83
|
Pränting M, Andersson DI. Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2. J Antimicrob Chemother 2010; 65:876-87. [DOI: 10.1093/jac/dkq059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
84
|
|
85
|
Brown SP, West SA, Diggle SP, Griffin AS. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc Lond B Biol Sci 2009; 364:3157-68. [PMID: 19805424 PMCID: PMC2781867 DOI: 10.1098/rstb.2009.0055] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease.
Collapse
Affiliation(s)
- Sam P. Brown
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Stuart A. West
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Stephen P. Diggle
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ashleigh S. Griffin
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
86
|
Mendieta JR, Fimognari C, Daleo GR, Hrelia P, Guevara MG. Cytotoxic effect of potato aspartic proteases (StAPs) on Jurkat T cells. Fitoterapia 2009; 81:329-35. [PMID: 19825400 DOI: 10.1016/j.fitote.2009.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022]
Abstract
StAPs are potato aspartic proteases with cytotoxic activity against plant pathogens and spermatozoa. StAPs cytotoxic activity is selective, since these proteins do not exert toxic effect on plant cells and erythrocytes. In this work, we investigated the capacity of StAPs to exert cytotoxicity on human leukaemia cells. Obtained results show that StAPs induce apoptosis on Jurkat T cells after a short time of incubation in a dose-dependent manner. However, no significative effect on the T lymphocytes viability was observed at all StAPs incubation times and concentrations tested. These results suggest that StAPs can be conceptually promising leads for cancer therapy.
Collapse
Affiliation(s)
- Julieta R Mendieta
- Institute of Biological Research, University of Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
87
|
Alizon S, van Baalen M. Acute or chronic? Within-host models with immune dynamics, infection outcome, and parasite evolution. Am Nat 2009; 172:E244-56. [PMID: 18999939 DOI: 10.1086/592404] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is ample theoretical and experimental evidence that virulence evolution depends on the immune response of the host. In this article, we review a number of recent studies that attempt to explicitly incorporate the dynamics of the immune system (instead of merely representing it by a single black box parameter) in models for the evolution of parasite virulence. A striking observation is that the type of infection (acute or chronic) is invariably considered to be a constraint that model assumptions have to satisfy rather than as a potential outcome of the interaction of the parasite with its host's immune system. We argue that avoiding making assumptions about the type of infection will lead to a better understanding of infectious diseases, even though a number of fundamental and technical problems remain. Dynamical modeling of the immune system opens a wide range of perspectives: for understanding how the immune system eradicates a parasite (which it does for most pathogens but not for all, HIV being a notorious example of a virus that is not completely eliminated), for studying multiple infections through concomitant immunity, for understanding the emergence and evolution of the immune system in animals, and for evolutionary epidemiology in general (e.g., predicting evolutionary consequences of new therapies and public health policies). We conclude by discussing new approaches based on embedded (or nested) models and identify future perspectives for the modeling of infectious diseases.
Collapse
Affiliation(s)
- Samuel Alizon
- Ecole Normale Supérieure, Unité Mixte de Recherche 7625 Fonctionnement et Evolution des Systèmes Ecologiques, Paris F-75005, France.
| | | |
Collapse
|
88
|
The PhoQ-activating potential of antimicrobial peptides contributes to antimicrobial efficacy and is predictive of the induction of bacterial resistance. Antimicrob Agents Chemother 2007; 51:4374-81. [PMID: 17938183 DOI: 10.1128/aac.00854-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are among the leading candidates to replace antibiotics which have been rendered ineffective by the evolution of resistant bacterial strains. Concerns do exist, however, that the therapeutic administration of AMPs may also select for resistant strains but with much more dire consequences, as these peptides represent an endogenous and essential component of host immune defense. The recent demonstration that AMPs function as ligands for the bacterial sensory kinase PhoQ for the initiation of virulence and adaptive responses lends credence to these concerns. While the ability to serve as PhoQ ligands suggests that the therapeutic administration of AMPs could (i) exacerbate infections by promoting bacterial virulence and (ii) select resistant mutants by encouraging adaptive behaviors, it also provides a rational basis for AMP selection and optimization. Here, we demonstrate that derivatives of a representative AMP have differential abilities to serve as PhoQ ligands and that this correlates with the ability to induce bacterial adaptive responses. We propose that PhoQ-activating potential is a logical parameter for AMP optimization and introduce a novel strategy for the treatment of minimal bactericidal concentration data that permits the discrimination and quantification of the contributions of PhoQ-activating potential and direct antimicrobial activity to net antimicrobial efficiency.
Collapse
|
89
|
Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. Nature 2006; 443:867-9. [PMID: 17051220 DOI: 10.1038/nature05233] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 09/04/2006] [Indexed: 11/09/2022]
Abstract
Antimicrobial peptides (AmPs) are small proteins that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. There is mounting evidence that these peptides are less susceptible to bacterial resistance than traditional antibiotics and could form the basis for a new class of therapeutic agents. Here we report the rational design of new AmPs that show limited homology to naturally occurring proteins but have strong bacteriostatic activity against several species of bacteria, including Staphylococcus aureus and Bacillus anthracis. These peptides were designed using a linguistic model of natural AmPs: we treated the amino-acid sequences of natural AmPs as a formal language and built a set of regular grammars to describe this language. We used this set of grammars to create new, unnatural AmP sequences. Our peptides conform to the formal syntax of natural antimicrobial peptides but populate a previously unexplored region of protein sequence space.
Collapse
Affiliation(s)
- Christopher Loose
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
90
|
Perron GG, Zasloff M, Bell G. Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 2006; 273:251-6. [PMID: 16555795 PMCID: PMC1560030 DOI: 10.1098/rspb.2005.3301] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 08/24/2005] [Indexed: 11/12/2022] Open
Abstract
A novel class of antibiotics based on the antimicrobial properties of immune peptides of multicellular organisms is attracting increasing interest as a major weapon against resistant microbes. It has been claimed that cationic antimicrobial peptides exploit fundamental features of the bacterial cell so that resistance is much less likely to evolve than in the case of conventional antibiotics. Population models of the evolutionary genetics of resistance have cast doubt on this claim. We document the experimental evolution of resistance to a cationic antimicrobial peptide through continued selection in the laboratory. In this selection experiment, 22/24 lineages of Escherichia coli and Pseudomonas fluorescens independently evolved heritable mechanisms of resistance to pexiganan, an analogue of magainin, when propagated in medium supplemented with this antimicrobial peptide for 600-700 generations.
Collapse
Affiliation(s)
- Gabriel G Perron
- Department of Biology Mc Gill University1205 Avenue Dr Penfield, Montreal, Que H3A 1B1, Canada
| | - Michael Zasloff
- Faculty of Research and Translational Science Georgetown University Medical CenterGeorgetown, Washington, DC 20057, USA
| | - Graham Bell
- Department of Biology Mc Gill University1205 Avenue Dr Penfield, Montreal, Que H3A 1B1, Canada
| |
Collapse
|
91
|
Abstract
All sequenced peptide toxins of the cecropin, pleurocidin and dermaceptin/ceratotoxin families in the National Center for Biotechnology Information (NCBI) database as of May 2005 were identified and shown to comprise a single superfamily. The peptide sequences were multiply aligned, revealing conserved residues that may play roles in structure and function. Signature sequences were derived for each of the 3 constituent families. Phylogenetic analyses revealed the relationships of these peptides to each other, and average hydropathy/amphipathicity studies provided structural information. This study serves to characterize a large superfamily of toxic peptides that perform host defense functions in a range of animal kingdoms.
Collapse
Affiliation(s)
- Dorjee G Tamang
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA
| | | |
Collapse
|
92
|
|
93
|
Samuelsen O, Haukland HH, Jenssen H, Krämer M, Sandvik K, Ulvatne H, Vorland LH. Induced resistance to the antimicrobial peptide lactoferricin B inStaphylococcus aureus. FEBS Lett 2005; 579:3421-6. [PMID: 15946666 DOI: 10.1016/j.febslet.2005.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/21/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.
Collapse
Affiliation(s)
- Orjan Samuelsen
- Department of Medical Microbiology, University Hospital of North Norway, P.O. Box 56, N-9038 Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
94
|
Affiliation(s)
- J Andy Tincu
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, 8602 La Jolla Shores Dr., MC 0204, San Diego, La Jolla, CA 92093-0204.
| | | |
Collapse
|
95
|
Affiliation(s)
- Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|