51
|
Noisy Response to Antibiotic Stress Predicts Subsequent Single-Cell Survival in an Acidic Environment. Cell Syst 2017; 4:393-403.e5. [PMID: 28342718 DOI: 10.1016/j.cels.2017.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/14/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
Abstract
Antibiotics elicit drastic changes in microbial gene expression, including the induction of stress response genes. While certain stress responses are known to "cross-protect" bacteria from other stressors, it is unclear whether cellular responses to antibiotics have a similar protective role. By measuring the genome-wide transcriptional response dynamics of Escherichia coli to four antibiotics, we found that trimethoprim induces a rapid acid stress response that protects bacteria from subsequent exposure to acid. Combining microfluidics with time-lapse imaging to monitor survival and acid stress response in single cells revealed that the noisy expression of the acid resistance operon gadBC correlates with single-cell survival. Cells with higher gadBC expression following trimethoprim maintain higher intracellular pH and survive the acid stress longer. The seemingly random single-cell survival under acid stress can therefore be predicted from gadBC expression and rationalized in terms of GadB/C molecular function. Overall, we provide a roadmap for identifying the molecular mechanisms of single-cell cross-protection between antibiotics and other stressors.
Collapse
|
52
|
Mei GY, Tang J, Bach S, Kostrzynska M. Changes in Gene Transcription Induced by Hydrogen Peroxide Treatment of Verotoxin-Producing Escherichia coli O157:H7 and Non-O157 Serotypes on Romaine Lettuce. Front Microbiol 2017; 8:477. [PMID: 28377761 PMCID: PMC5359304 DOI: 10.3389/fmicb.2017.00477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Disease outbreaks of verotoxin-producing Escherichia coli (VTEC) O157:H7 and non-O157 serotypes associated with leafy green vegetables are becoming a growing concern. A better understanding of the behavior of VTEC, particularly non-O157 serotypes, on lettuce under stress conditions is necessary for designing more effective control strategies. Hydrogen peroxide (H2O2) can be used as a sanitizer to reduce the microbial load in leafy green vegetables, particularly in fresh produce destined for the organic market. In this study, we tested the hypothesis that H2O2 treatment of contaminated lettuce affects in the same manner transcription of stress-associated and virulence genes in VTEC strains representing O157 and non-O157 serotypes. Six VTEC isolates representing serotypes O26:H11, O103:H2, O104:H4, O111:NM, O145:NM, and O157:H7 were included in this study. The results indicate that 50 mM H2O2 caused a population reduction of 2.4-2.8 log10 (compared to non-treated control samples) in all six VTEC strains present on romaine lettuce. Following the treatment, the transcription of genes related to oxidative stress (oxyR and sodA), general stress (uspA and rpoS), starvation (phoA), acid stress (gadA, gadB, and gadW), and virulence (stx1A, stx2A, and fliC) were dramatically downregulated in all six VTEC serotypes (P ≤ 0.05) compared to not treated control samples. Therefore, VTEC O157:H7 and non-O157 serotypes on lettuce showed similar survival rates and gene transcription profiles in response to 50 mM H2O2 treatment. Thus, the results derived from this study provide a basic understanding of the influence of H2O2 treatment on the survival and virulence of VTEC O157:H7 and non-O157 serotypes on lettuce.
Collapse
Affiliation(s)
- Gui-Ying Mei
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Susan Bach
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada Summerland, BC, Canada
| | - Magdalena Kostrzynska
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| |
Collapse
|
53
|
Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12. J Bacteriol 2017; 199:JB.00755-16. [PMID: 28115545 DOI: 10.1128/jb.00755-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/12/2017] [Indexed: 01/31/2023] Open
Abstract
The alternative sigma factor RpoS is a central regulator of many stress responses in Escherichia coli The level of functional RpoS differs depending on the stress. The effect of these differing concentrations of RpoS on global transcriptional responses remains unclear. We investigated the effect of RpoS concentration on the transcriptome during stationary phase in rich media. We found that 23% of genes in the E. coli genome are regulated by RpoS, and we identified many RpoS-transcribed genes and promoters. We observed three distinct classes of response to RpoS by genes in the regulon: genes whose expression changes linearly with increasing RpoS level, genes whose expression changes dramatically with the production of only a little RpoS ("sensitive" genes), and genes whose expression changes very little with the production of a little RpoS ("insensitive"). We show that sequences outside the core promoter region determine whether an RpoS-regulated gene is sensitive or insensitive. Moreover, we show that sensitive and insensitive genes are enriched for specific functional classes and that the sensitivity of a gene to RpoS corresponds to the timing of induction as cells enter stationary phase. Thus, promoter sensitivity to RpoS is a mechanism to coordinate specific cellular processes with growth phase and may also contribute to the diversity of stress responses directed by RpoS.IMPORTANCE The sigma factor RpoS is a global regulator that controls the response to many stresses in Escherichia coli Different stresses result in different levels of RpoS production, but the consequences of this variation are unknown. We describe how changing the level of RpoS does not influence all RpoS-regulated genes equally. The cause of this variation is likely the action of transcription factors that bind the promoters of the genes. We show that the sensitivity of a gene to RpoS levels explains the timing of expression as cells enter stationary phase and that genes with different RpoS sensitivities are enriched for specific functional groups. Thus, promoter sensitivity to RpoS is a mechanism that coordinates specific cellular processes in response to stresses.
Collapse
|
54
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
55
|
Zea L, Prasad N, Levy SE, Stodieck L, Jones A, Shrestha S, Klaus D. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space. PLoS One 2016; 11:e0164359. [PMID: 27806055 PMCID: PMC5091764 DOI: 10.1371/journal.pone.0164359] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/24/2016] [Indexed: 11/18/2022] Open
Abstract
Bacteria behave differently in space, as indicated by reports of reduced lag phase, higher final cell counts, enhanced biofilm formation, increased virulence, and reduced susceptibility to antibiotics. These phenomena are theorized, at least in part, to result from reduced mass transport in the local extracellular environment, where movement of molecules consumed and excreted by the cell is limited to diffusion in the absence of gravity-dependent convection. However, to date neither empirical nor computational approaches have been able to provide sufficient evidence to confirm this explanation. Molecular genetic analysis findings, conducted as part of a recent spaceflight investigation, support the proposed model. This investigation indicated an overexpression of genes associated with starvation, the search for alternative energy sources, increased metabolism, enhanced acetate production, and other systematic responses to acidity-all of which can be associated with reduced extracellular mass transport.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Dept., University of Colorado, Boulder, CO, United States of America
| | - Nripesh Prasad
- Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Shawn E. Levy
- Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Louis Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences Dept., University of Colorado, Boulder, CO, United States of America
| | - Angela Jones
- Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Shristi Shrestha
- Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Biological Science, University of Alabama in Huntsville, Huntsville, AL, United States of America
| | - David Klaus
- BioServe Space Technologies, Aerospace Engineering Sciences Dept., University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
56
|
Youngquist JT, Korosh TC, Pfleger BF. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions. J Ind Microbiol Biotechnol 2016; 44:759-772. [PMID: 27738839 DOI: 10.1007/s10295-016-1846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022]
Abstract
Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.
Collapse
Affiliation(s)
- J Tyler Youngquist
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI, USA
| | - Travis C Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI, USA.,Graduate Program in Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
57
|
Rasmussen BB, Grotkjær T, D'Alvise PW, Yin G, Zhang F, Bunk B, Spröer C, Bentzon-Tilia M, Gram L. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid. Appl Environ Microbiol 2016; 82:4802-4810. [PMID: 27235441 PMCID: PMC4984299 DOI: 10.1128/aem.01047-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/24/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture. IMPORTANCE It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish pathogen. Therefore, we exposed the fish pathogen Vibrio anguillarum to increasing TDA concentrations over 3 months. We did not see the development of any resistance to TDA, and subsequent infection assays revealed that none of the TDA-exposed clones had increased virulence toward fish cells. Hence, this study supports the use of roseobacters as a non-risk-based disease control measure in aquaculture.
Collapse
Affiliation(s)
| | - Torben Grotkjær
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paul W D'Alvise
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Faxing Zhang
- Beijing Genomics Institute Europe, Copenhagen, Denmark
| | - Boyke Bunk
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Mikkel Bentzon-Tilia
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
58
|
The fitness effects of a point mutation in Escherichia coli change with founding population density. Genetica 2016; 144:417-24. [PMID: 27344657 DOI: 10.1007/s10709-016-9910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate.
Collapse
|
59
|
Wareham LK, Begg R, Jesse HE, Van Beilen JWA, Ali S, Svistunenko D, McLean S, Hellingwerf KJ, Sanguinetti G, Poole RK. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance. Antioxid Redox Signal 2016; 24:1013-28. [PMID: 26907100 PMCID: PMC4921903 DOI: 10.1089/ars.2015.6501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. RESULTS We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA-the response regulator-is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. INNOVATION This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. CONCLUSION This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013-1028.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Ronald Begg
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Helen E Jesse
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Johan W A Van Beilen
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Dimitri Svistunenko
- 4 Biomedical EPR Facility, School of Biological Sciences, University of Essex , Colchester, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Guido Sanguinetti
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
60
|
Lee HJ, Gottesman S. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res 2016; 44:6907-23. [PMID: 27137887 PMCID: PMC5001588 DOI: 10.1093/nar/gkw358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation of transcription factors contributes to regulatory circuits. We created translational reporter fusions for multiple central regulators in Escherichia coli and examined the effect of Hfq-dependent non-coding RNAs on these fusions. This approach yields an 'RNA landscape,' identifying Hfq-dependent sRNAs that regulate a given fusion. No significant sRNA regulation of crp or fnr was detected. hns was regulated only by DsrA, as previously reported. Lrp and SoxS were both found to be regulated post-transcriptionally. Lrp, ' L: eucine-responsive R: egulatory P: rotein,' regulates genes involved in amino acid biosynthesis and catabolism and other cellular functions. sRNAs DsrA, MicF and GcvB each independently downregulate the lrp translational fusion, confirming previous reports for MicF and GcvB. MicF and DsrA interact with an overlapping site early in the lrp ORF, while GcvB acts upstream at two independent sites in the long lrp leader. Surprisingly, GcvB was found to be responsible for significant downregulation of lrp after oxidative stress; MicF also contributed. SoxS, an activator of genes used to combat oxidative stress, is negatively regulated by sRNA MgrR. This study demonstrates that while not all global regulators are subject to sRNA regulation, post-transcriptional control by sRNAs allows multiple environmental signals to affect synthesis of the transcriptional regulator.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
61
|
Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE. J Bacteriol 2015; 198:394-409. [PMID: 26527649 DOI: 10.1128/jb.00556-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR. Investigating how these systems are regulated leads to an understanding of pathogenic behavior and novel strategies aimed at disease prevention and control.
Collapse
|
62
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
63
|
Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 2015; 81:8118-25. [PMID: 26386055 PMCID: PMC4651098 DOI: 10.1128/aem.02034-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.
Collapse
|
64
|
Ovchinnikov S, Kinch L, Park H, Liao Y, Pei J, Kim DE, Kamisetty H, Grishin NV, Baker D. Large-scale determination of previously unsolved protein structures using evolutionary information. eLife 2015; 4:e09248. [PMID: 26335199 PMCID: PMC4602095 DOI: 10.7554/elife.09248] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/30/2015] [Indexed: 12/18/2022] Open
Abstract
The prediction of the structures of proteins without detectable sequence similarity to any protein of known structure remains an outstanding scientific challenge. Here we report significant progress in this area. We first describe de novo blind structure predictions of unprecendented accuracy we made for two proteins in large families in the recent CASP11 blind test of protein structure prediction methods by incorporating residue-residue co-evolution information in the Rosetta structure prediction program. We then describe the use of this method to generate structure models for 58 of the 121 large protein families in prokaryotes for which three-dimensional structures are not available. These models, which are posted online for public access, provide structural information for the over 400,000 proteins belonging to the 58 families and suggest hypotheses about mechanism for the subset for which the function is known, and hypotheses about function for the remainder.
Collapse
Affiliation(s)
- Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hahnbeom Park
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Yuxing Liao
- Department of Biophysics, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - David E Kim
- Department of Biochemistry, University of Washington, Seattle, United States
| | | | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
65
|
Seo SW, Kim D, O'Brien EJ, Szubin R, Palsson BO. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat Commun 2015; 6:7970. [PMID: 26258987 PMCID: PMC4918353 DOI: 10.1038/ncomms8970] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. GadEWX regulons play a critical role in transcription regulation in response to acid stress. By reconstructing genome-wide GadEWX transcriptional network, here the authors show how GadEWX simultaneously coordinates many other cellular processes to produce the overall response of E. coli to acid stress.
Collapse
Affiliation(s)
- Sang Woo Seo
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Edward J O'Brien
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
66
|
Chattopadhyay MK, Keembiyehetty CN, Chen W, Tabor H. Polyamines Stimulate the Level of the σ38 Subunit (RpoS) of Escherichia coli RNA Polymerase, Resulting in the Induction of the Glutamate Decarboxylase-dependent Acid Response System via the gadE Regulon. J Biol Chem 2015; 290:17809-17821. [PMID: 26025365 DOI: 10.1074/jbc.m115.655688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 02/02/2023] Open
Abstract
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS(+)/gadE(+) cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE(+) and rpoS(+)/ΔgadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | | | - Weiping Chen
- Genomic Core Facility, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Herbert Tabor
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
67
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
68
|
Tillman GE, Simmons M, Wasilenko JL, Narang N, Cray WC, Bodeis-Jones S, Martin G, Gaines S, Seal BS. Development of a real-time PCR for Escherichia coli based on gadE, an acid response regulatory gene. Lett Appl Microbiol 2014; 60:196-202. [PMID: 25384850 DOI: 10.1111/lam.12359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/01/2022]
Abstract
Increasingly, molecular methods have become important in identification and confirmation of bacteria at the species level. Rapid molecular methods provide sensitivity and specificity while reducing cost and resources. The primary goal of this study was to develop a real-time PCR assay for identification of Escherichia coli from an agar plate. GadE (gadE) directly regulates the glutamate-dependent acid response system (GDAR) in E. coli and is responsible for survival of at pH 2. Based on gene sequence data, a real-time PCR assay targeting gadE was developed for this purpose. Seventy bacterial isolates recovered from ground beef enrichments and 714 isolates from caecal contents were identified biochemically and tested with the real-time PCR assay developed in this study. The PCR assay and the biochemical identification had 100% agreement on the tested isolates. The gadE real-time PCR assay was demonstrated in this study to be an inexpensive, reliable method for confirming E. coli colonies within 1.5 h from an agar plate, thereby saving on final identification time.
Collapse
Affiliation(s)
- G E Tillman
- United States Department of Agriculture, Food Safety and Inspection Service, Eastern Laboratory Outbreaks Section, Athens, GA, USA
| | - M Simmons
- United States Department of Agriculture, Food Safety and Inspection Service, Eastern Laboratory Outbreaks Section, Athens, GA, USA
| | - J L Wasilenko
- United States Department of Agriculture, Food Safety and Inspection Service, Eastern Laboratory Outbreaks Section, Athens, GA, USA
| | - N Narang
- United States Department of Agriculture, Food Safety and Inspection Service, Eastern Laboratory Outbreaks Section, Athens, GA, USA
| | - W C Cray
- United States Department of Agriculture, Food Safety and Inspection Service, Eastern Laboratory Outbreaks Section, Athens, GA, USA
| | - S Bodeis-Jones
- United States Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - G Martin
- United States Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - S Gaines
- United States Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - B S Seal
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, USA
| |
Collapse
|
69
|
Srinivasan R, Scolari VF, Lagomarsino MC, Seshasayee ASN. The genome-scale interplay amongst xenogene silencing, stress response and chromosome architecture in Escherichia coli. Nucleic Acids Res 2014; 43:295-308. [PMID: 25429971 PMCID: PMC4288151 DOI: 10.1093/nar/gku1229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gene expression state of exponentially growing Escherichia coli cells is manifested by high expression of essential and growth-associated genes and low levels of stress-related and horizontally acquired genes. An important player in maintaining this homeostasis is the H-NS-StpA gene silencing system. A Δhns-stpA deletion mutant results in high expression of otherwise-silent horizontally acquired genes, many located in the terminus-half of the chromosome, and an indirect downregulation of many highly expressed genes. The Δhns-stpA double mutant displays slow growth. Using laboratory evolution we address the evolutionary strategies that E. coli would adopt to redress this gene expression imbalance. We show that two global gene regulatory mutations-(i) point mutations inactivating the stress-responsive sigma factor RpoS or σ38 and (ii) an amplification of ∼40% of the chromosome centred around the origin of replication-converge in partially reversing the global gene expression imbalance caused by Δhns-stpA. Transcriptome data of these mutants further show a three-way link amongst the global gene regulatory networks of H-NS and σ38, as well as chromosome architecture. Increasing gene expression around the terminus of replication results in a decrease in the expression of genes around the origin and vice versa; this appears to be a persistent phenomenon observed as an association across ∼300 publicly-available gene expression data sets for E. coli. These global suppressor effects are transient and rapidly give way to more specific mutations, whose roles in reversing the growth defect of H-NS mutations remain to be understood.
Collapse
Affiliation(s)
- Rajalakshmi Srinivasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104, India
| | - Vittore Ferdinando Scolari
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104, India Genomic Physics Group, UMR 7238 CNRS Microorganism Genomics, UPMC, Paris, France
| | - Marco Cosentino Lagomarsino
- Genomic Physics Group, UMR 7238 CNRS Microorganism Genomics, UPMC, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 15 Rue de l'École de Médecine Paris, France CNRS, UMR 7238, Paris, France
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
70
|
Yamanaka Y, Oshima T, Ishihama A, Yamamoto K. Characterization of the YdeO regulon in Escherichia coli. PLoS One 2014; 9:e111962. [PMID: 25375160 PMCID: PMC4222967 DOI: 10.1371/journal.pone.0111962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD) system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.
Collapse
Affiliation(s)
- Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Taku Oshima
- Graduate School of Information Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
71
|
Vivijs B, Moons P, Aertsen A, Michiels CW. Acetoin synthesis acquisition favors Escherichia coli growth at low pH. Appl Environ Microbiol 2014; 80:6054-61. [PMID: 25063653 PMCID: PMC4178668 DOI: 10.1128/aem.01711-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/17/2014] [Indexed: 11/20/2022] Open
Abstract
Some members of the family Enterobacteriaceae ferment sugars via the mixed-acid fermentation pathway. This yields large amounts of acids, causing strong and sometimes even lethal acidification of the environment. Other family members employ the 2,3-butanediol fermentation pathway, which generates comparatively less acidic and more neutral end products, such as acetoin and 2,3-butanediol. In this work, we equipped Escherichia coli MG1655 with the budAB operon, encoding the acetoin pathway, from Serratia plymuthica RVH1 and investigated how this affected the ability of E. coli to cope with acid stress during growth. Acetoin fermentation prevented lethal medium acidification by E. coli in lysogeny broth (LB) supplemented with glucose. It also supported growth and higher stationary-phase cell densities in acidified LB broth with glucose (pH 4.10 to 4.50) and in tomato juice (pH 4.40 to 5.00) and reduced the minimal pH at which growth could be initiated. On the other hand, the acetoin-producing strain was outcompeted by the nonproducer in a mixed-culture experiment at low pH, suggesting a fitness cost associated with acetoin production. Finally, we showed that acetoin production profoundly changes the appearance of E. coli on several diagnostic culture media. Natural E. coli strains that have laterally acquired budAB genes may therefore have escaped detection thus far. This study demonstrates the potential importance of acetoin fermentation in the ecology of E. coli in the food chain and contributes to a better understanding of the microbiological stability and safety of acidic foods.
Collapse
Affiliation(s)
- Bram Vivijs
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Moons
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chris W Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
72
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
73
|
Puentes-Téllez PE, van Elsas JD. Differential stress resistance and metabolic traits underlie coexistence in a sympatrically evolved bacterial population. Environ Microbiol 2014; 17:889-900. [PMID: 24976459 DOI: 10.1111/1462-2920.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/18/2014] [Indexed: 12/01/2022]
Abstract
Following intermittent batch growth in Luria-Bertani (LB) broth for about 1000 generations, differentially evolved forms were found in a population of Escherichia coli cells. Studies on this population revealed the emergence of key polymorphisms, as evidenced by analysis of both whole genome sequences and transcription analysis. Here, we investigated the phenotypic nature of several key forms and found a remarkable (interactive) coexistence of forms which highlights the presence of different ecological roles pointing at a dichotomy in: (i) tolerance to environmental stresses and (ii) the capacity to utilize particular carbon sources such as galactose. Both forms differed from their common ancestor by different criteria. This apparent coexistence of two diverged forms points at the occurrence of niche partitioning as a consequence of dichotomous adaptive evolution. Remarkably, the two forms were shown to continue to coexist - in varying ratio's - in an experiment that cycled them through periods of nutrient feast (plentiful growth substrates) and famine (growth-restrictive - stress conditions). The results further indicated that the equilibrium of the coexistence was destroyed when one of the parameters was high tuned, jeopardizing the stability of the coexisting pair.
Collapse
|
74
|
Molecular Mechanism of Transcriptional Cascade Initiated by the EvgS/EvgA System inEscherichia coliK-12. Biosci Biotechnol Biochem 2014; 73:870-8. [DOI: 10.1271/bbb.80795] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
75
|
Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER, Searle MS, Heeb S, Rao J, Kulkarni RV. A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa. Nucleic Acids Res 2014; 42:6811-25. [PMID: 24782516 PMCID: PMC4066749 DOI: 10.1093/nar/gku309] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CsrA/RsmA homologs are an extensive family of ribonucleic acid (RNA)-binding proteins that function as global post-transcriptional regulators controlling important cellular processes such as secondary metabolism, motility, biofilm formation and the production and secretion of virulence factors in diverse bacterial species. While direct messenger RNA binding by CsrA/RsmA has been studied in detail for some genes, it is anticipated that there are numerous additional, as yet undiscovered, direct targets that mediate its global regulation. To assist in the discovery of these targets, we propose a sequence-based approach to predict genes directly regulated by these regulators. In this work, we develop a computer code (CSRA_TARGET) implementing this approach, which leads to predictions for several novel targets in Escherichia coli and Pseudomonas aeruginosa. The predicted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium carotovorum and Legionella pneumophila, also include global regulators that control virulence in these pathogens, unraveling intricate indirect regulatory roles for CsrA/RsmA. We have experimentally validated four predicted RsmA targets in P. aeruginosa. The sequence-based approach developed in this work can thus lead to several testable predictions for direct targets of CsrA homologs, thereby complementing and accelerating efforts to unravel global regulation by this important family of proteins.
Collapse
Affiliation(s)
- Prajna R Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tao Jia
- Social Cognitive Networks Academic Research Center, and Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sarah A Kuehne
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas M Kerkering
- Section of Infectious Diseases, Carilion Clinic/Virginia Tech Carilion School of Medicine/Jefferson College of Health Sciences, Roanoke, VA 24013, USA
| | - Elizabeth R Morris
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mark S Searle
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephan Heeb
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jayasimha Rao
- Section of Infectious Diseases, Carilion Clinic/Virginia Tech Carilion School of Medicine/Jefferson College of Health Sciences, Roanoke, VA 24013, USA
| | - Rahul V Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
76
|
Krin E, Cambray G, Mazel D. The superintegron integrase and the cassette promoters are co-regulated in Vibrio cholerae. PLoS One 2014; 9:e91194. [PMID: 24614503 PMCID: PMC3948777 DOI: 10.1371/journal.pone.0091194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/10/2014] [Indexed: 12/23/2022] Open
Abstract
Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI) and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter) partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Guillaume Cambray
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, UMR 3525, Paris, France
- * E-mail:
| |
Collapse
|
77
|
Aiso T, Kamiya S, Yonezawa H, Gamou S. Overexpression of an antisense RNA, ArrS, increases the acid resistance of Escherichia coli. MICROBIOLOGY-SGM 2014; 160:954-961. [PMID: 24600026 DOI: 10.1099/mic.0.075994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antisense RNA ArrS is complementary to a sequence in the 5' untranslated region of the gadE T3 mRNA, the largest transcript of gadE, which encodes a transcriptional activator of the glutamate-dependent acid resistance system in Escherichia coli. Expression of arrS is strongly induced during the stationary growth phase, particularly under acidic conditions, and transcription is dependent on σ(S) and GadE. The aim of the present study was to clarify the role of ArrS in controlling gadE expression by overexpressing arrS in E. coli. The results showed a marked increase in the survival of arrS-overexpressing cells at 2 h after a shift to pH 2.5. This was accompanied by increased expression of gadA, gadBC and gadE. The level of gadE T3 mRNA decreased markedly in response to arrS overexpression, and was accompanied by a marked increase in gadE mRNA T2. T2 mRNA had a monophosphorylated 5' terminus, which is usually found in cleaved mRNAs, and no T2 mRNA was observed in an RNase III-deficient cell strain. In addition, T2 mRNA was not generated by a P3-deleted gadE-luc translational fusion. These results suggest strongly that T2 mRNA is generated via the processing of T3 mRNA. Moreover, the T2 mRNA, which was abundant in arrS-overexpressing cells, was more stable than T3 mRNA in non-overexpressing cells. These results suggest that overexpression of ArrS positively regulates gadE expression in a post-transcriptional manner.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shinobu Gamou
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan
| |
Collapse
|
78
|
Cortés-Tolalpa L, Gutiérrez-Ríos RM, Martínez LM, de Anda R, Gosset G, Bolívar F, Escalante A. Global transcriptomic analysis of an engineered Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system during shikimic acid production in rich culture medium. Microb Cell Fact 2014; 13:28. [PMID: 24559297 PMCID: PMC4015609 DOI: 10.1186/1475-2859-13-28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Efficient production of SA in Escherichia coli has been achieved by modifying key genes of the central carbon metabolism and SA pathway, resulting in overproducing strains grown in batch- or fed-batch-fermentor cultures using a complex broth including glucose and YE. In this study, we performed a GTA to identify those genes significantly upregulated in an engineered E. coli strain, PB12.SA22, in mid EXP (5 h), early STA (STA1, 9 h), and late STA (STA2, 44 h) phases, grown in complex fermentation broth in batch-fermentor cultures. RESULTS Growth of E. coli PB12.SA22 in complex fermentation broth for SA production resulted in an EXP growth during the first 9 h of cultivation depending of supernatant available aromatic amino acids provided by YE because, when tryptophan was totally consumed, cells entered into a second, low-growth phase (even in the presence of glucose) until 26 h of cultivation. At this point, glucose was completely consumed but SA production continued until the end of the fermentation (50 h) achieving the highest accumulation (7.63 g/L of SA). GTA between EXP/STA1, EXP/STA2 and STA1/STA2 comparisons showed no significant differences in the regulation of genes encoding enzymes of central carbon metabolism as in SA pathway, but those genes encoding enzymes involved in sugar, amino acid, nucleotide/nucleoside, iron and sulfur transport; amino acid catabolism and biosynthesis; nucleotide/nucleoside salvage; acid stress response and modification of IM and OM were upregulated between comparisons. CONCLUSIONS GTA during SA production in batch-fermentor cultures of strain PB12.SA22 grown in complex fermentation broth during the EXP, STA1 and STA2 phases was studied. Significantly, upregulated genes during the EXP and STA1 phases were associated with transport, amino acid catabolism, biosynthesis, and nucleotide/nucleoside salvage. In STA2, upregulation of genes encoding transporters and enzymes involved in the synthesis and catabolism of Arg suggests that this amino acid could have a key role in the fuelling of carbon toward SA synthesis, whereas upregulation of genes involved in pH stress response, such as membrane modifications, suggests a possible response to environmental conditions imposed on the cell at the end of the fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av, Universidad 2001, Col, Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
79
|
Branchu P, Matrat S, Vareille M, Garrivier A, Durand A, Crépin S, Harel J, Jubelin G, Gobert AP. NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog 2014; 10:e1003874. [PMID: 24415940 PMCID: PMC3887101 DOI: 10.1371/journal.ppat.1003874] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/24/2013] [Indexed: 12/23/2022] Open
Abstract
Expression of genes of the locus of enterocyte effacement (LEE) is essential for adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells. Gut factors that may modulate LEE gene expression may therefore influence the outcome of the infection. Because nitric oxide (NO) is a critical effector of the intestinal immune response that may induce transcriptional regulation in enterobacteria, we investigated its influence on LEE expression in EHEC O157:H7. We demonstrate that NO inhibits the expression of genes belonging to LEE1, LEE4, and LEE5 operons, and that the NO sensor nitrite-sensitive repressor (NsrR) is a positive regulator of these operons by interacting directly with the RNA polymerase complex. In the presence of NO, NsrR detaches from the LEE1/4/5 promoter regions and does not activate transcription. In parallel, two regulators of the acid resistance pathway, GadE and GadX, are induced by NO through an indirect NsrR-dependent mechanism. In this context, we show that the NO-dependent LEE1 down-regulation is due to absence of NsrR-mediated activation and to the repressor effect of GadX. Moreover, the inhibition of expression of LEE4 and LEE5 by NO is due to loss of NsrR-mediated activation, to LEE1 down-regulation and to GadE up-regulation. Lastly, we establish that chemical or cellular sources of NO inhibit the adherence of EHEC to human intestinal epithelial cells. These results highlight the critical effect of NsrR in the regulation of the LEE pathogenicity island and the potential role of NO in the limitation of colonization by EHEC. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are food-borne pathogens for humans causing bloody diarrhea and, especially in children under five years old, kidney damages leading to death in 5% of cases. Antibiotics are contra-indicated because they are suspected to increase the severity of the disease. Therefore, it is crucial to develop alternative preventive or therapeutic strategies to fight EHEC infection. To reach this goal, a deeper knowledge of host-pathogen interaction is required. A critical step in EHEC infection is the adhesion of bacterial cells to intestinal epithelial cells. In response to the bacterial infection, the host triggers an immune response directed against the pathogen. The current study shows that a main effector of this immune response, nitric oxide (NO), dramatically reduces the capacity of EHEC to adhere to intestinal epithelial cells. We have investigated the molecular mechanisms involved and identified a NO-sensor regulator that controls the expression of the genes required for EHEC adhesion. This finding underlines that NO could be a potential protective factor limiting the development of EHEC-induced diseases and provides a new avenue of investigation for the development of therapeutic strategies against infections with O157:H7 bacteria.
Collapse
Affiliation(s)
- Priscilla Branchu
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | - Stéphanie Matrat
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | - Marjolaine Vareille
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | - Annie Garrivier
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | - Alexandra Durand
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | - Sébastien Crépin
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Grégory Jubelin
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | - Alain P. Gobert
- INRA, UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
- * E-mail:
| |
Collapse
|
80
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
81
|
Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 2013; 31:1039-46. [DOI: 10.1038/nbt.2689] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/09/2013] [Indexed: 12/20/2022]
|
82
|
Chattopadhyay MK, Tabor H. Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J Biol Chem 2013; 288:33559-33570. [PMID: 24097985 DOI: 10.1074/jbc.m113.510552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of our studies on the biological functions of polyamines, we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcriptional analysis on the effect of added polyamines. The most striking early response to the polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR) that is important for the survival of the bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate-γ-aminobutyrate antiporter (gadC) induced by the polyamine addition, but the various genes involved in the regulation of this system were also induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid survival. The effect of deletions of the regulatory genes on the GDAR system and the effects of overproduction of two of these genes were also studied. Strikingly, overproduction of the alternative σ factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Herbert Tabor
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
83
|
Jain PK, Jain V, Singh AK, Chauhan A, Sinha S. Evaluation on the responses of succinate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase and glucose-6-phosphate dehydrogenase to acid shock generated acid tolerance in Escherichia coli. Adv Biomed Res 2013; 2:75. [PMID: 24223390 PMCID: PMC3814565 DOI: 10.4103/2277-9175.115799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 11/08/2022] Open
Abstract
Background: Escherichia coli have an optimum pH range of 6-7 for growth and survival that's why, called neutrophiles. The ΔpH across the cytoplasmic membrane is linked to cellular bioenergetics and metabolism of the body which is the major supplier of the proton motive force, so homeostasis of cellular pH is essential. When challenged by low pH, protons enter the cytoplasm; as a result, mechanisms are required to alleviate the effects of lowered cytoplasmic pH. Materials and Methods: The activities of Succinate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase and glucose-6-phosphate dehydrogenase in acid shocked cells of E. coli DH5 α and E. coli W3110 subjected to pH 3, 4, and 5 by two types of acidification, like external (using 0.1 N HCl), external along with the monensin (1 μM) and cytoplasmic acidification using the sodium benzoate as an acid permeant (20 mM) which is coupled to the electron transport chain by the reducing power, as yet another system possessed by E. coli as an armor against harsh acidic environments. Result: Results showed that an exposure to acidic environment (pH 3, 4 and 5) for a short period of time increased the activities of these dehydrogenases in all types of acidification except cytoplasmic acidification, which shows that higher recycling of reducing power results in pumping out of protons from the cytoplasm through the electron transport chain complexes, thereby restoring the cytoplasmic pH of the bacteria in the range of 7.4-7.8. Conclusion: Study indicates that acid shocked E. coli for a period of 2 h can survive for a sustained period.
Collapse
|
84
|
Deng Z, Shan Y, Pan Q, Gao X, Yan A. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front Microbiol 2013; 4:194. [PMID: 23874328 PMCID: PMC3708157 DOI: 10.3389/fmicb.2013.00194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 12/28/2022] Open
Abstract
The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of Escherichia coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF in the operon has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798 bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full-length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.
Collapse
Affiliation(s)
- Ziqing Deng
- School of Biological Sciences, The University of Hong Kong Hong Kong, China
| | | | | | | | | |
Collapse
|
85
|
Myers KS, Yan H, Ong IM, Chung D, Liang K, Tran F, Keleş S, Landick R, Kiley PJ. Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 2013; 9:e1003565. [PMID: 23818864 PMCID: PMC3688515 DOI: 10.1371/journal.pgen.1003565] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/29/2013] [Indexed: 01/05/2023] Open
Abstract
FNR is a well-studied global regulator of anaerobiosis, which is widely conserved across bacteria. Despite the importance of FNR and anaerobiosis in microbial lifestyles, the factors that influence its function on a genome-wide scale are poorly understood. Here, we report a functional genomic analysis of FNR action. We find that FNR occupancy at many target sites is strongly influenced by nucleoid-associated proteins (NAPs) that restrict access to many FNR binding sites. At a genome-wide level, only a subset of predicted FNR binding sites were bound under anaerobic fermentative conditions and many appeared to be masked by the NAPs H-NS, IHF and Fis. Similar assays in cells lacking H-NS and its paralog StpA showed increased FNR occupancy at sites bound by H-NS in WT strains, indicating that large regions of the genome are not readily accessible for FNR binding. Genome accessibility may also explain our finding that genome-wide FNR occupancy did not correlate with the match to consensus at binding sites, suggesting that significant variation in ChIP signal was attributable to cross-linking or immunoprecipitation efficiency rather than differences in binding affinities for FNR sites. Correlation of FNR ChIP-seq peaks with transcriptomic data showed that less than half of the FNR-regulated operons could be attributed to direct FNR binding. Conversely, FNR bound some promoters without regulating expression presumably requiring changes in activity of condition-specific transcription factors. Such combinatorial regulation may allow Escherichia coli to respond rapidly to environmental changes and confer an ecological advantage in the anaerobic but nutrient-fluctuating environment of the mammalian gut. Regulation of gene expression by transcription factors (TFs) is key to adaptation to environmental changes. Our comprehensive, genome-scale analysis of a prototypical global TF, the anaerobic regulator FNR from Escherichia coli, leads to several novel and unanticipated insights into the influences on FNR binding genome-wide and the complex structure of bacterial regulons. We found that binding of NAPs restricts FNR binding at a subset of sites, suggesting that the bacterial genome is not freely accessible for FNR binding. Our finding that less than half of the predicted FNR binding sites were occupied in vivo further challenges the utility of using bioinformatic searches alone to predict regulon structure, reinforcing the need for experimental determination of TF binding. By correlating the occupancy data with transcriptomic data, we confirm that FNR serves as a global signal of anaerobiosis but expression of some operons in the FNR regulon require other regulators sensitive to alternative environmental stimuli. Thus, FNR binding and regulation appear to depend on both the nucleoprotein structure of the chromosome and on combinatorial binding of FNR with other regulators. Both of these phenomena are typical of TF binding in eukaryotes; our results establish that they are also features of bacterial TF binding.
Collapse
Affiliation(s)
- Kevin S. Myers
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Huihuang Yan
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dongjun Chung
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kun Liang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Frances Tran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RL); (PJK)
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RL); (PJK)
| |
Collapse
|
86
|
Ahmed SA, Awosika J, Baldwin C, Bishop-Lilly KA, Biswas B, Broomall S, Chain PSG, Chertkov O, Chokoshvili O, Coyne S, Davenport K, Detter JC, Dorman W, Erkkila TH, Folster JP, Frey KG, George M, Gleasner C, Henry M, Hill KK, Hubbard K, Insalaco J, Johnson S, Kitzmiller A, Krepps M, Lo CC, Luu T, McNew LA, Minogue T, Munk CA, Osborne B, Patel M, Reitenga KG, Rosenzweig CN, Shea A, Shen X, Strockbine N, Tarr C, Teshima H, van Gieson E, Verratti K, Wolcott M, Xie G, Sozhamannan S, Gibbons HS. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2. PLoS One 2012; 7:e48228. [PMID: 23133618 PMCID: PMC3486847 DOI: 10.1371/journal.pone.0048228] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/24/2012] [Indexed: 11/20/2022] Open
Abstract
In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.
Collapse
Affiliation(s)
- Sanaa A Ahmed
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol 2012; 114:11-24. [PMID: 22924898 DOI: 10.1111/j.1365-2672.2012.05434.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022]
Abstract
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular, it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homoeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally, the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolizing GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review.
Collapse
Affiliation(s)
- C Feehily
- Bacterial Stress Response Group, Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
88
|
Stauffer LT, Stauffer GV. Antagonistic Roles for GcvA and GcvB in hdeAB Expression in Escherichia coli. ISRN MICROBIOLOGY 2012; 2012:697308. [PMID: 23762759 PMCID: PMC3658693 DOI: 10.5402/2012/697308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
In E. coli, the periplasmic proteins HdeA and HdeB have chaperone-like functions, suppressing aggregation of periplasmic proteins under acidic conditions. A microarray analysis of RNA isolated from an E. coli wild type and a ΔgcvB strain grown to mid-log phase in Luria-Bertani broth indicated the hdeAB operon, encoding the HdeA and HdeB proteins, is regulated by the sRNA GcvB. We wanted to verify that GcvB and its coregulator Hfq play a role in regulation of the hdeAB operon. In this study, we show that GcvB positively regulates hdeA::lacZ and hdeB::lacZ translational fusions in cells grown in Luria-Bertani broth and in glucose minimal media + glycine. Activation also requires the Hfq protein. Although many sRNAs dependent on Hfq regulate by an antisense mechanism, GcvB regulates hdeAB either directly or indirectly at the level of transcription. GcvA, the activator of gcvB, negatively regulates hdeAB at the level of transcription. Although expression of gcvB is dependent on GcvA, activation of hdeAB by GcvB occurs independently of GcvA's ability to repress the operon. Cell survival and growth at low pH are consistent with GcvA negatively regulating and GcvB positively regulating the hdeAB operon.
Collapse
|
89
|
Involvement of PatE, a prophage-encoded AraC-like regulator, in the transcriptional activation of acid resistance pathways of enterohemorrhagic Escherichia coli strain EDL933. Appl Environ Microbiol 2012; 78:5083-92. [PMID: 22582067 DOI: 10.1128/aem.00617-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a lethal human intestinal pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome. EHEC is transmitted by the fecal-oral route and has a lower infectious dose than most other enteric bacterial pathogens in that fewer than 100 CFU are able to cause disease. This low infectious dose has been attributed to the ability of EHEC to survive in the acidic environment of the human stomach. In silico analysis of the genome of EHEC O157:H7 strain EDL933 revealed a gene, patE, for a putative AraC-like regulatory protein within the prophage island, CP-933H. Transcriptional analysis in E. coli showed that the expression of patE is induced during stationary phase. Data from microarray assays demonstrated that PatE activates the transcription of genes encoding proteins of acid resistance pathways. In addition, PatE downregulated the expression of a number of genes encoding heat shock proteins and the type III secretion pathway of EDL933. Transcriptional analysis and electrophoretic mobility shift assays suggested that PatE also activates the transcription of the gene for the acid stress chaperone hdeA by binding to its promoter region. Finally, assays of acid tolerance showed that increasing the expression of PatE in EHEC greatly enhanced the ability of the bacteria to survive in different acidic environments. Together, these findings indicate that EHEC strain EDL933 carries a prophage-encoded regulatory system that contributes to acid resistance.
Collapse
|
90
|
Monteiro C, Papenfort K, Hentrich K, Ahmad I, Le Guyon S, Reimann R, Grantcharova N, Römling U. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol 2012; 9:489-502. [PMID: 22336758 DOI: 10.4161/rna.19682] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The RNA chaperone Hfq and its associated small RNAs (sRNAs) regulate a variety of phenotypes in bacteria. In this work, we show that Hfq is a master regulator of biofilm formation in Salmonella enterica serovar Typhimurium. Hfq and two Hfq-dependent sRNAs (ArcZ and SdsR) are required for rdar morphotype expression in S. typhimurium. Hfq controls rdar biofilm formation through the major biofilm regulator CsgD. While csgD mRNA steady-state levels are altered in a sdsR mutant, ArcZ seems to work mainly at the post-transcriptional level. Overexpression of ArcZ complemented rdar morphotype formation of an hfq mutant under plate-grown conditions. Although ArcZ activates rpoS expression, its effect on csgD expression is mainly independent of RpoS. ArcZ does not only regulate rdar morphotype expression, but also the transition between sessility and motility and the timing of type 1 fimbriae vs. curli fimbriae surface-attachment at ambient temperature. Consequently, ArcZ is a major regulator of rdar biofilm development.
Collapse
Affiliation(s)
- Claudia Monteiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase. J Bacteriol 2012; 194:1659-67. [PMID: 22287520 DOI: 10.1128/jb.05982-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human pathogen Vibrio cholerae carries a chromosomal superintegron (SI). The SI contains an array of hundreds of gene cassettes organized in tandem which are stable under conditions when no particular stress is applied to bacteria (such as during laboratory growth). Rearrangements of these cassettes are catalyzed by the activity of the associated integron integrase. Understanding the regulation of integrase expression is pivotal to fully comprehending the role played by this genetic reservoir for bacterial adaptation and its connection with the development of antibiotic resistance. Our previous work established that the integrase is regulated by the bacterial SOS response and that it is induced during bacterial conjugation. Here, we show that transformation, another horizontal gene transfer (HGT) mechanism, also triggers integrase expression through SOS induction, underlining the importance of HGT in genome plasticity. Moreover, we report a new cyclic AMP (cAMP)-cAMP receptor protein (CRP)-dependent regulation mechanism of the integrase, highlighting the influence of the extracellular environment on chromosomal gene content. Altogether, our data suggest an interplay between different stress responses and regulatory pathways for the modulation of the recombinase expression, thus showing how the SI remodeling mechanism is merged into bacterial physiology.
Collapse
|
92
|
Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD, Pfleger BF. Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 2011; 77:8114-28. [PMID: 21948837 PMCID: PMC3208990 DOI: 10.1128/aem.05421-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/15/2011] [Indexed: 02/05/2023] Open
Abstract
Microbially produced fatty acids are potential precursors to high-energy-density biofuels, including alkanes and alkyl ethyl esters, by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversion of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium-chain-length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA-overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long-chain unsaturated fatty acid content greatly increased, and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability; however, little to no change in FFA titer was observed after 24 h of cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli.
Collapse
Affiliation(s)
- Rebecca M. Lennen
- Department of Chemical and Biological Engineering; University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
| | - Max A. Kruziki
- Department of Chemical and Biological Engineering; University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| | - Kritika Kumar
- Department of Chemical and Biological Engineering; University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| | - Robert A. Zinkel
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
- University of Wisconsin Biotechnology Center, 425 Henry Mall, Madison, Wisconsin 53706
| | - Kristin E. Burnum
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99353
| | - Mary S. Lipton
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99353
| | - Spencer W. Hoover
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
| | - Don R. Ranatunga
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
| | - Tyler M. Wittkopp
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
| | - Wesley D. Marner
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering; University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706
| |
Collapse
|
93
|
Stincone A, Daudi N, Rahman AS, Antczak P, Henderson I, Cole J, Johnson MD, Lund P, Falciani F. A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res 2011; 39:7512-28. [PMID: 21690099 PMCID: PMC3177180 DOI: 10.1093/nar/gkr338] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 11/16/2022] Open
Abstract
In order to develop an infection, diarrhogenic Escherichia coli has to pass through the stomach, where the pH can be as low as 1. Mechanisms that enable E. coli to survive in low pH are thus potentially relevant for pathogenicity. Four acid response systems involved in reducing the concentration of intracellular protons have been identified so far. However, it is still unclear to what extent the regulation of other important cellular functions may be required for survival in acid conditions. Here, we have combined molecular and phenotypic analysis of wild-type and mutant strains with computational network inference to identify molecular pathways underlying E. coli response to mild and strong acid conditions. The interpretative model we have developed led to the hypothesis that a complex transcriptional programme, dependent on the two-component system regulator OmpR and involving a switch between aerobic and anaerobic metabolism, may be key for survival. Experimental validation has shown that the OmpR is responsible for controlling a sizeable component of the transcriptional programme to acid exposure. Moreover, we found that a ΔompR strain was unable to mount any transcriptional response to acid exposure and had one of the strongest acid sensitive phenotype observed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francesco Falciani
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
94
|
RcsB is required for inducible acid resistance in Escherichia coli and acts at gadE-dependent and -independent promoters. J Bacteriol 2011; 193:3653-6. [PMID: 21571995 DOI: 10.1128/jb.05040-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RcsB interacts with GadE to mediate acid resistance in stationary-phase Escherichia coli K-12. We show here that RcsB is also required for inducible acid resistance in exponential phase and that it acts on promoters that are not GadE regulated. It is also required for acid resistance in E. coli O157:H7.
Collapse
|
95
|
Aiso T, Murata M, Gamou S. Transcription of an antisense RNA of a gadE mRNA is regulated by GadE, the central activator of the acid resistance system in Escherichia coli. Genes Cells 2011; 16:670-80. [PMID: 21501346 DOI: 10.1111/j.1365-2443.2011.01516.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
6H57, a 69-nucleotide-long small RNA, was isolated in shotgun cloning using an RNA sample derived from early stationary-phase cells. The 6H57 gene is located in a 798-bp intergenic region between two acid resistance-related genes, hdeD and gadE, and is encoded on the strand opposite these flanking genes. In this study, we carried out stringent Northern blotting to determine target mRNAs of 6H57. A band approximately 1300 nucleotides in length was detected using a probe containing a partial sequence of 6H57 and was confirmed to be the gadE mRNA T3, which has a 566-nucleotide-long 5' untranslated region. These results show that 6H57 is an antisense RNA of gadE mRNA T3 and can base pair with a -380 to -312 region of the translation initiation site of gadE. We analyzed the transcription of 6H57 and showed that 6H57 transcription is dependent on GadE in the early stationary phase. Furthermore, 6H57 is induced in the exponential growth phase by an acid stimulus of pH 5.5. A 189-bp DNA fragment containing the upstream region of the 6H57 gene showed clear promoter activities in these culture conditions. These results suggest that 6H57 plays several roles in acid resistance, and we renamed it acid resistance-related small RNA.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan.
| | | | | |
Collapse
|
96
|
Activators of the glutamate-dependent acid resistance system alleviate deleterious effects of YidC depletion in Escherichia coli. J Bacteriol 2011; 193:1308-16. [PMID: 21216990 DOI: 10.1128/jb.01209-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of the essential inner membrane protein (IMP) YidC in Escherichia coli has been studied for a limited number of model IMPs and primarily using targeted approaches. These studies suggested that YidC acts at the level of insertion, folding, and quality control of IMPs, both in the context of the Sec translocon and as a separate entity. To further our understanding of YidC's role in IMP biogenesis, we screened a random overexpression library for factors that rescued the growth of cells upon YidC depletion. We found that the overexpression of the GadX and GadY regulators of the glutamate-dependent acid resistance system complemented the growth defect of YidC-depleted cells. Evidence is presented that GadXY overexpression counteracts the deleterious effects of YidC depletion on at least two fronts. First, GadXY prepares the cells for the decrease in respiratory capacity upon the depletion of YidC. Most likely, GadXY-regulated processes reduce the drop in proton-motive force that impairs the fitness of YidC-depleted cells. Second, in GadXY-overproducing cells increased levels of the general chaperone GroEL cofractionate with the inner membranes, which may help to keep newly synthesized inner membrane proteins in an insertion-competent state when YidC levels are limiting.
Collapse
|
97
|
Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol 2010; 193:1222-8. [PMID: 21193607 DOI: 10.1128/jb.01124-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.
Collapse
|
98
|
Likhoshvai VA, Khlebodarova TM, Ree MT, Kolchanov NA. Metabolic engineering in silico. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810070021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Krin E, Danchin A, Soutourina O. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol 2010; 10:273. [PMID: 21034467 PMCID: PMC2984483 DOI: 10.1186/1471-2180-10-273] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/29/2010] [Indexed: 11/23/2022] Open
Abstract
Background H-NS regulates the acid stress resistance. The present study aimed to characterize the H-NS-dependent cascade governing the acid stress resistance pathways and to define the interplay between the different regulators. Results We combined mutational, phenotypic and gene expression analyses, to unravel the regulatory hierarchy in acid resistance involving H-NS, RcsB-P/GadE complex, HdfR, CadC, AdiY regulators, and DNA-binding assays to separate direct effects from indirect ones. RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways plays a central role in the regulatory cascade. However, H-NS also directly controls specific regulators of these pathways (e.g. cadC) and genes involved in general stress resistance (hdeAB, hdeD, dps, adiY). Finally, we found that in addition to H-NS and RcsB, a third regulator, HdfR, inversely controls glutamate-dependent acid resistance pathway and motility. Conclusions H-NS lies near the top of the hierarchy orchestrating acid response centred on RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Plasticité du Génome Bactérien, Institut Pasteur, France.
| | | | | |
Collapse
|
100
|
Altay G, Emmert-Streib F. Inferring the conservative causal core of gene regulatory networks. BMC SYSTEMS BIOLOGY 2010; 4:132. [PMID: 20920161 PMCID: PMC2955605 DOI: 10.1186/1752-0509-4-132] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
Abstract
Background Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. Results In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. Conclusions For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.
Collapse
Affiliation(s)
- Gökmen Altay
- Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|