51
|
Proença JT, Coleman HM, Nicoll MP, Connor V, Preston CM, Arthur J, Efstathiou S. An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 2011; 92:2575-2585. [PMID: 21752961 PMCID: PMC3541806 DOI: 10.1099/vir.0.034728-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/11/2011] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus (HSV) type-1 establishes lifelong latency in sensory neurones and it is widely assumed that latency is the consequence of a failure to initiate virus immediate-early (IE) gene expression. However, using a Cre reporter mouse system in conjunction with Cre-expressing HSV-1 recombinants we have previously shown that activation of the IE ICP0 promoter can precede latency establishment in at least 30% of latently infected cells. During productive infection of non-neuronal cells, IE promoter activation is largely dependent on the transactivator VP16 a late structural component of the virion. Of significance, VP16 has recently been shown to exhibit altered regulation in neurones; where its de novo synthesis is necessary for IE gene expression during both lytic infection and reactivation from latency. In the current study, we utilized the Cre reporter mouse model system to characterize the full extent of viral promoter activity compatible with cell survival and latency establishment. In contrast to the high frequency activation of representative IE promoters prior to latency establishment, cell marking using a virus recombinant expressing Cre under VP16 promoter control was very inefficient. Furthermore, infection of neuronal cultures with VP16 mutants reveals a strong VP16 requirement for IE promoter activity in non-neuronal cells, but not sensory neurones. We conclude that only IE promoter activation can efficiently precede latency establishment and that this activation is likely to occur through a VP16-independent mechanism.
Collapse
Affiliation(s)
- João T. Proença
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Heather M. Coleman
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Michael P. Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Viv Connor
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Christopher M. Preston
- MRC–University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, UK
| | - Jane Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Microbiology and Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, Adelaide 5000, Australia
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
52
|
Wuest T, Zheng M, Efstathiou S, Halford WP, Carr DJJ. The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathog 2011; 7:e1002278. [PMID: 21998580 PMCID: PMC3188529 DOI: 10.1371/journal.ppat.1002278] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/02/2011] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes. Herpes simplex virus-type 1 is the leading cause of infectious corneal blindness in the industrialized world. Most of the morbidity associated with the virus is due to the host response to episodic reactivation of latent virus. Corneal immunologic privilege is associated with a number of factors including the absence of blood and lymphatic vessels. Conversely, corneal hem (blood)- and lymph-angiogenesis driven by inflammation correlate with the loss of privilege. Neovascularization is a common phenomenon in HSV-1 keratitis that correlates with poor prognosis. We have previously discovered HSV-1 elicits corneal lymphangiogenesis through a unique mechanism involving vascular endothelial growth factor (VEGF)-A independent of that described for other insults including transplantation or bacterial infection. However, the viral-encoded product(s) that elicit host production of VEGF-A is(are) unknown. In this paper, we have identified infected cell protein-4 (ICP4) as the primary virus-encoded product that drives VEGF-A expression. As VEGF-A is involved in driving neovascularization associated with tumor growth and metastasis, proteins that influence transcriptional regulation of VEGF-A may be useful in the development of adjunct therapy for such disparate diseases as cancer and HSV-1 keratitis.
Collapse
MESH Headings
- Animals
- Cell Line
- Eye/pathology
- Eye/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence/methods
- Neovascularization, Pathologic/genetics
- Plasmids
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Todd Wuest
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Min Zheng
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stacey Efstathiou
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - William P. Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Daniel J. J. Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
53
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
54
|
Stevenson PG, May JS, Connor V, Efstathiou S. Vaccination against a hit-and-run viral cancer. J Gen Virol 2010; 91:2176-85. [PMID: 20573854 PMCID: PMC3052515 DOI: 10.1099/vir.0.023507-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/21/2010] [Indexed: 11/18/2022] Open
Abstract
Cancers with viral aetiologies can potentially be prevented by antiviral vaccines. Therefore, it is important to understand how viral infections and cancers might be linked. Some cancers frequently carry gammaherpesvirus genomes. However, they generally express the same viral genes as non-transformed cells, and differ mainly in also carrying oncogenic host mutations. Infection, therefore, seems to play a triggering or accessory role in disease. The hit-and-run hypothesis proposes that cumulative host mutations can allow viral genomes to be lost entirely, such that cancers remaining virus-positive represent only a fraction of those to which infection contributes. This would have considerable implications for disease control. However, the hit-and-run hypothesis has so far lacked experimental support. Here, we tested it by using Cre-lox recombination to trigger transforming mutations in virus-infected cells. Thus, 'floxed' oncogene mice were infected with Cre recombinase-positive murid herpesvirus-4 (MuHV-4). The emerging cancers showed the expected genetic changes but, by the time of presentation, almost all lacked viral genomes. Vaccination with a non-persistent MuHV-4 mutant nonetheless conferred complete protection. Equivalent human gammaherpesvirus vaccines could therefore potentially prevent not only viral genome-positive cancers, but possibly also some cancers less suspected of a viral origin because of viral genome loss.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cancer Vaccines/pharmacology
- DNA Primers/genetics
- Genes, p53
- Genes, ras
- Genome, Viral
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/prevention & control
- Herpesviridae Infections/virology
- Humans
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Models, Biological
- Mutagenesis, Insertional
- Mutation
- Rhadinovirus/genetics
- Rhadinovirus/immunology
- Rhadinovirus/pathogenicity
- Sarcoma, Experimental/genetics
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/prevention & control
- Sarcoma, Experimental/virology
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
- Tumor Virus Infections/prevention & control
- Tumor Virus Infections/virology
- Vaccination/methods
- Viral Vaccines/pharmacology
Collapse
|
55
|
Stevenson PG, Simas JP, Efstathiou S. Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 2009; 90:2317-2330. [PMID: 19605591 DOI: 10.1099/vir.0.013300-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many acute viral infections can be controlled by vaccination; however, vaccinating against persistent infections remains problematic. Herpesviruses are a classic example. Here, we discuss their immune control, particularly that of gamma-herpesviruses, relating the animal model provided by murid herpesvirus-4 (MuHV-4) to human infections. The following points emerge: (i) CD8(+) T-cell evasion by herpesviruses confers a prominent role in host defence on CD4(+) T cells. CD4(+) T cells inhibit MuHV-4 lytic gene expression via gamma-interferon (IFN-gamma). By reducing the lytic secretion of immune evasion proteins, they may also help CD8(+) T cells to control virus-driven lymphoproliferation in mixed lytic/latent lesions. Similarly, CD4(+) T cells specific for Epstein-Barr virus lytic antigens could improve the impact of adoptively transferred, latent antigen-specific CD8(+) T cells. (ii) In general, viral immune evasion necessitates multiple host effectors for optimal control. Thus, subunit vaccines, which tend to prime single effectors, have proved less successful than attenuated virus mutants, which prime multiple effectors. Latency-deficient mutants could make safe and effective gamma-herpesvirus vaccines. (iii) The antibody response to MuHV-4 infection helps to prevent disease but is suboptimal for neutralization. Vaccinating virus carriers with virion fusion complex components improves their neutralization titres. Reducing the infectivity of herpesvirus carriers in this way could be a useful adjunct to vaccinating naive individuals with attenuated mutants.
Collapse
Affiliation(s)
- P G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - J P Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - S Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, UK
| |
Collapse
|