51
|
Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol 2008; 82:8349-61. [PMID: 18562515 DOI: 10.1128/jvi.00306-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) core protein has shown to be localized in the detergent-resistant membrane (DRM), which is distinct from the classical raft fraction including caveolin, although the biological significance of the DRM localization of the core protein has not been determined. The HCV core protein is cleaved off from a precursor polyprotein at the lumen side of Ala(191) by signal peptidase and is then further processed by signal peptide peptidase (SPP) within the transmembrane region. In this study, we examined the role of SPP in the localization of the HCV core protein in the DRM and in viral propagation. The C terminus of the HCV core protein cleaved by SPP in 293T cells was identified as Phe(177) by mass spectrometry. Mutations introduced into two residues (Ile(176) and Phe(177)) upstream of the cleavage site of the core protein abrogated processing by SPP and localization in the DRM fraction. Expression of a dominant-negative SPP or treatment with an SPP inhibitor, L685,458, resulted in reductions in the levels of processed core protein localized in the DRM fraction. The production of HCV RNA in cells persistently infected with strain JFH-1 was impaired by treatment with the SPP inhibitor. Furthermore, mutant JFH-1 viruses bearing SPP-resistant mutations in the core protein failed to propagate in a permissive cell line. These results suggest that intramembrane processing of HCV core protein by SPP is required for the localization of the HCV core protein in the DRM and for viral propagation.
Collapse
|
52
|
Poumbourios P, Drummer HE. Recent advances in our understanding of receptor binding, viral fusion and cell entry of hepatitis C virus: new targets for the design of antiviral agents. Antivir Chem Chemother 2008; 18:169-89. [PMID: 17907376 DOI: 10.1177/095632020701800402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Improvements to antiviral therapies for the treatment of hepatitis C virus (HCV) infections will require the use of multiple drugs that target viral proteins essential for replication. The discovery of anti-HCV compounds has been severely hampered by the lack of cell culture replication systems. Since the late 1990s, the advent of sub-genomic replicons that model the intracellular events leading to HCV genome replication have enabled the discovery of HCV protease and polymerase inhibitors, but did not allow the study of HCV entry or entry inhibitors. More recently, retroviral pseudotyping of the viral glycoproteins and the development of a cell culture-based system that recapitulates the entire HCV replication cycle were achieved. These new experimental systems have enabled a rapid advance in our knowledge of how HCV glycoproteins, E1 and E2, mediate receptor binding and viral entry. These systems have facilitated the discovery of a range of viral receptors. Evidence is emerging that CD81, scavenger receptor class B type I, claudin-1 and the low-density lipoprotein receptor are involved in viral entry. In addition, DC-SIGN and L-SIGN may function to internalize virus into dendritic or endothelial cells, facilitating the transport of virions to sites of infection such as the liver. This review focuses on the interaction between the HCV glycoproteins and cellular receptors, and our current understanding of the viral entry pathway. In addition, key questions on the role that these receptors play in viral entry are raised and potential avenues for the discovery of new antiviral agents are highlighted.
Collapse
Affiliation(s)
- Pantelis Poumbourios
- Viral Fusion Laboratory, Macfarlane Burnet Institute for Medical Research and Public Health Limited, Melbourne, Australia
| | | |
Collapse
|
53
|
Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 2008; 18:290-301. [PMID: 18227861 PMCID: PMC7091891 DOI: 10.1038/cr.2008.15] [Citation(s) in RCA: 529] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While severe acute respiratory syndrome coronavirus (SARS-CoV) was initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.
Collapse
Affiliation(s)
- Hongliang Wang
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
54
|
Reynolds GM, Harris HJ, Jennings A, Hu K, Grove J, Lalor PF, Adams DH, Balfe P, Hübscher SG, McKeating JA. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 2008; 47:418-27. [PMID: 18085708 DOI: 10.1002/hep.22028] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED The principal site of hepatitis C virus (HCV) replication is the liver. HCV pseudoparticles infect human liver derived cell lines and this suggests that liver-specific receptors contribute to defining HCV hepatotropism. At least three host cell molecules have been reported to be important for HCV entry: the tetraspanin CD81, scavenger receptor class B member I (SR-BI), and the tight junction (TJ) protein Claudin 1 (CLDN1). Hepatocytes in liver tissue coexpress CD81, SR-BI, and CLDN1, consistent with their ability to support HCV entry. CLDN1 localized at the apical-canalicular TJ region and at basolateral-sinusoidal hepatocyte surfaces in normal tissue and colocalized with CD81 at both sites. In contrast, CLDN1 appeared to colocalize with SR-BI at the basolateral-sinusoidal surface. CLDN1 expression was increased on basolateral hepatocyte membranes in HCV-infected and other chronically inflamed liver tissue compared with normal liver. In contrast, CLDN4 hepatocellular staining was comparable in normal and diseased liver tissue. CONCLUSION HCV infection of Huh-7.5 hepatoma cells in vitro significantly increased CLDN1 expression levels, consistent with a direct modulation of CLDN1 by virus infection. In HCV infected livers, immunohistochemical studies revealed focal patterns of CLDN1 staining, suggesting localized areas of increased CLDN1 expression in vivo which may potentiate local viral spread within the liver.
Collapse
Affiliation(s)
- Gary M Reynolds
- Liver Laboratories, Institute for Biomedical Research, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Yang W, Qiu C, Biswas N, Jin J, Watkins SC, Montelaro RC, Coyne CB, Wang T. Correlation of the tight junction-like distribution of Claudin-1 to the cellular tropism of hepatitis C virus. J Biol Chem 2008; 283:8643-53. [PMID: 18211898 DOI: 10.1074/jbc.m709824200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Claudin-1 (CLDN1), a tight junction (TJ) protein, has recently been identified as an entry co-receptor for hepatitis C virus (HCV). Ectopic expression of CLDN1 rendered several non-hepatic cell lines permissive to HCV infection. However, little is known about the mechanism by which CLDN1 mediates HCV entry. It is believed that an additional entry receptor(s) is required because ectopic expression of CLDN1 in both HeLa and NIH3T3 cells failed to confer susceptibility to viral infection. Here we found that CLDN1 was co-immunoprecipitated with both HCV envelope proteins when expressed in 293T cells. Results from biomolecular fluorescence complementation assay showed that overexpressed CLDN1 also formed complexes with CD81 and low density lipoprotein receptor. Subsequent imaging analysis revealed that CLDN1 was highly enriched at sites of cell-cell contact in permissive cell lines, co-localizing with the TJ marker, ZO-1. However, in both HeLa and NIH3T3 cells the ectopically expressed CLDN1 appeared to reside predominantly in intracellular vesicles. The CLDN1-CD81 complex formed in HeLa cells was also exclusively distributed intracellularly, co-localizing with EEA1, an early endosomal marker. Correspondingly, transepithelial electric resistance, obtained from the naturally susceptible human liver cell line, Huh7, was much higher than that of the HeLa-CLDN1 cell line, suggesting that Huh7 is likely to form functional tight junctions. Finally, the disruption of TJ-enriched CLDN1 by tumor necrosis factor-alpha treatment markedly reduced the susceptibility of Huh7.5.1 cells to HCV infection. Our results suggest that the specific localization pattern of CLDN1 may be crucial in the regulation of HCV cellular tropism.
Collapse
Affiliation(s)
- Wei Yang
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, Cosset FL, Wakita T, Jaeck D, Doffoel M, Royer C, Soulier E, Schvoerer E, Schuster C, Stoll-Keller F, Bartenschlager R, Pietschmann T, Barth H, Baumert TF. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 2007; 46:1722-31. [PMID: 18000990 DOI: 10.1002/hep.21994] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide. Scavenger receptor class B type I (SR-BI) has been shown to bind HCV envelope glycoprotein E2, participate in entry of HCV pseudotype particles, and modulate HCV infection. However, the functional role of SR-BI for productive HCV infection remains unclear. In this study, we investigated the role of SR-BI as an entry factor for infection of human hepatoma cells using cell culture-derived HCV (HCVcc). Anti-SR-BI antibodies directed against epitopes of the human SR-BI extracellular loop specifically inhibited HCVcc infection in a dose-dependent manner. Down-regulation of SR-BI expression by SR-BI-specific short interfering RNAs (siRNAs) markedly reduced the susceptibility of human hepatoma cells to HCVcc infection. Kinetic studies demonstrated that SR-BI acts predominately after binding of HCV at an entry step occurring at a similar time point as CD81-HCV interaction. Although the addition of high-density lipoprotein (HDL) enhanced the efficiency of HCVcc infection, anti-SR-BI antibodies and SR-BI-specific siRNA efficiently inhibited HCV infection independent of lipoprotein. CONCLUSION Our data suggest that SR-BI (i) represents a key host factor for HCV entry, (ii) is implicated in the same HCV entry pathway as CD81, and (iii) targets an entry step closely linked to HCV-CD81 interaction.
Collapse
Affiliation(s)
- Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U748, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zeisel MB, Fafi-Kremer S, Fofana I, Barth H, Stoll-Keller F, Doffoel M, Baumert TF. Neutralizing antibodies in hepatitis C virus infection. World J Gastroenterol 2007; 13:4824-30. [PMID: 17828813 PMCID: PMC4611760 DOI: 10.3748/wjg.v13.i36.4824] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and hepatocellular carcinoma. Spontaneous viral clearance occurs in about 20%-30% of acutely infected individuals and results in resolution of infection without sequaelae. Both viral and host factors appear to play an important role for resolution of acute infection. A large body of evidence suggests that a strong, multispecific and long-lasting cellular immune response appears to be important for control of viral infection in acute hepatitis C. Due too the lack of convenient neutralization assays, the impact of neutralizing responses for control of viral infection had been less defined. In recent years, the development of robust tissue culture model systems for HCV entry and infection has finally allowed study of antibody-mediated neutralization and to gain further insights into viral targets of host neutralizing responses. In addition, detailed analysis of antibody-mediated neutralization in individual patients as well as cohorts with well defined viral isolates has enabled the study of neutralizing responses in the course of HCV infection and characterization of the impact of neutralizing antibodies for control of viral infection. This review will summarize recent progress in the understanding of the molecular mechanisms of antibody-mediated neutralization and its impact for HCV pathogenesis.
Collapse
Affiliation(s)
- Mirjam-B Zeisel
- Inserm Unite 748, Universite Louis Pasteur, 3 Rue Koeberle, Strasbourg F-67000, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM. Studying hepatitis C virus: making the best of a bad virus. J Virol 2007; 81:8853-67. [PMID: 17522203 PMCID: PMC1951464 DOI: 10.1128/jvi.00753-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
59
|
Drummer HE, Boo I, Poumbourios P. Mutagenesis of a conserved fusion peptide-like motif and membrane-proximal heptad-repeat region of hepatitis C virus glycoprotein E1. J Gen Virol 2007; 88:1144-1148. [PMID: 17374757 DOI: 10.1099/vir.0.82567-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The E1E2 glycoprotein heterodimer of Hepatitis C virus mediates viral entry. E2 attaches the virus to cellular receptors; however, the function of E1 is unknown. We tested the hypothesis that E1 is a truncated class II fusion protein. We mutated amino acids within a predicted fusion peptide (residues 276-286) and a truncated C-terminal stem-like motif, containing a membrane-proximal heptad-repeat sequence (residues 330-347). The fusion peptide mutation F285A abolished viral entry, while mutation of other hydrophobic residues had no effect. Alanine replacement of heptad-repeat residues blocked entry in three of five cases, whereas substitution with the helix breaker, Pro, led to loss of entry function in all cases. The mutations did not affect glycoprotein expression, heterodimerization with E2 or global folding, in contrast to the effects of mutations in the fusion motifs of prototypical class II fusion proteins. Our data suggest that E1 is unlikely to function in an analogous manner to other class II fusion glycoproteins.
Collapse
Affiliation(s)
- Heidi E Drummer
- Macfarlane Burnet Institute for Medical Research and Public Health Ltd, GPO Box 2284, Melbourne 3001, Australia
| | - Irene Boo
- Macfarlane Burnet Institute for Medical Research and Public Health Ltd, GPO Box 2284, Melbourne 3001, Australia
| | - Pantelis Poumbourios
- Macfarlane Burnet Institute for Medical Research and Public Health Ltd, GPO Box 2284, Melbourne 3001, Australia
| |
Collapse
|
60
|
Grove J, Huby T, Stamataki Z, Vanwolleghem T, Meuleman P, Farquhar M, Schwarz A, Moreau M, Owen JS, Leroux-Roels G, Balfe P, McKeating JA. Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. J Virol 2007; 81:3162-9. [PMID: 17215280 PMCID: PMC1866051 DOI: 10.1128/jvi.02356-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/03/2007] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) enters cells via a pH- and clathrin-dependent endocytic pathway. Scavenger receptor BI (SR-BI) and CD81 are important entry factors for HCV internalization into target cells. The SR-BI gene gives rise to at least two mRNA splice variants, SR-BI and SR-BII, which differ in their C termini. SR-BI internalization remains poorly understood, but SR-BII is reported to endocytose via a clathrin-dependent pathway, making it an attractive target for HCV internalization. We demonstrate that HCV soluble E2 can interact with human SR-BI and SR-BII. Increased expression of SR-BI and SR-BII in the Huh-7.5 hepatoma cell line enhanced HCV strain J6/JFH and JFH infectivity, suggesting that endogenous levels of these receptors limit infection. Elevated expression of SR-BI, but not SR-BII, increased the rate of J6/JFH infection, which may reflect altered intracellular trafficking of the splice variants. In human plasma, HCV particles have been reported to be complexed with lipoproteins, suggesting an indirect interaction of the virus with SR-BI and other lipoprotein receptors. Plasma from J6/JFH-infected uPA-SCID mice transplanted with human hepatocytes demonstrates an increased infectivity for SR-BI/II-overexpressing Huh-7.5 cells. Plasma-derived J6/JFH infectivity was inhibited by an anti-E2 monoclonal antibody, suggesting that plasma virus interaction with SR-BI was glycoprotein dependent. Finally, anti-SR-BI antibodies inhibited the infectivity of cell culture- and plasma-derived J6/JFH, suggesting a critical role for SR-BI/II in HCV infection.
Collapse
Affiliation(s)
- Joe Grove
- Division of Immunity and Infection, Institute for Biomedical Research, The Medical School, Birmingham University, Edgbaston B14 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kapadia SB, Barth H, Baumert T, McKeating JA, Chisari FV. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol 2007; 81:374-83. [PMID: 17050612 PMCID: PMC1797271 DOI: 10.1128/jvi.01134-06] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 10/05/2006] [Indexed: 12/12/2022] Open
Abstract
In the past several years, a number of cellular proteins have been identified as candidate entry receptors for hepatitis C virus (HCV) by using surrogate models of HCV infection. Among these, the tetraspanin CD81 and scavenger receptor B type I (SR-BI), both of which localize to specialized plasma membrane domains enriched in cholesterol, have been suggested to be key players in HCV entry. In the current study, we used a recently developed in vitro HCV infection system to demonstrate that both CD81 and SR-BI are required for authentic HCV infection in vitro, that they function cooperatively to initiate HCV infection, and that CD81-mediated HCV entry is, in part, dependent on membrane cholesterol.
Collapse
Affiliation(s)
- Sharookh B Kapadia
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
62
|
Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 2006; 80:11571-8. [PMID: 17005647 PMCID: PMC1642584 DOI: 10.1128/jvi.01717-06] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen associated with life-threatening liver disease. Entry into hepatocytes requires CD81 and a putative second receptor. In this study, we elucidated the postreceptor attachment stages of HCV entry using HCV pseudoparticles (HCVpp) as a model system. By means of dominant-negative mutants and short interfering RNAs of various cellular proteins, we showed that HCVpp enter via clathrin-coated vesicles and require delivery to early but not to late endosomes. However, the kinetics of HCV envelope glycoprotein-mediated fusion are delayed compared to those of other viruses that enter in early endosomes. Entry of HCVpp can be efficiently blocked by bafilomycin A1, which neutralizes the pH in early endosomes and impairs progression of endocytosis beyond this stage. However, low-pH exposure of bafilomycin A1-treated target cells does not induce entry of HCVpp at the plasma membrane or in the early stages of endocytosis. These observations indicate that, subsequent to internalization, HCVpp entry necessitates additional, low-pH-dependent interactions, modifications, or trafficking, and that these events are irreversibly disrupted by bafilomycin A1 treatment.
Collapse
Affiliation(s)
- Laurent Meertens
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Jack & Pearl Resnick Campus, 1300 Morris Park Avenue, Golding B1, Bronx, NY 10461, USA
| | | | | |
Collapse
|