51
|
Hundt J, Li Z, Liu Q. Post-translational modifications of hepatitis C viral proteins and their biological significance. World J Gastroenterol 2013; 19:8929-8939. [PMID: 24379618 PMCID: PMC3870546 DOI: 10.3748/wjg.v19.i47.8929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
Replication of hepatitis C virus (HCV) depends on the interaction of viral proteins with various host cellular proteins and signalling pathways. Similar to cellular proteins, post-translational modifications (PTMs) of HCV proteins are essential for proper protein function and regulation, thus, directly affecting viral life cycle and the generation of infectious virus particles. Cleavage of the HCV polyprotein by cellular and viral proteases into more than 10 proteins represents an early protein modification step after translation of the HCV positive-stranded RNA genome. The key modifications include the regulated intramembranous proteolytic cleavage of core protein, disulfide bond formation of core, glycosylation of HCV envelope proteins E1 and E2, methylation of nonstructural protein 3 (NS3), biotinylation of NS4A, ubiquitination of NS5B and phosphorylation of core and NS5B. Other modifications like ubiquitination of core and palmitoylation of core and NS4B proteins have been reported as well. For some modifications such as phosphorylation of NS3 and NS5A and acetylation of NS3, we have limited understanding of their effects on HCV replication and pathogenesis while the impact of other modifications is far from clear. In this review, we summarize the available information on PTMs of HCV proteins and discuss their relevance to HCV replication and pathogenesis.
Collapse
|
52
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
53
|
Nasheri N, Joyce M, Rouleau Y, Yang P, Yao S, Tyrrell DL, Pezacki JP. Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. ACTA ACUST UNITED AC 2013; 20:570-82. [PMID: 23601646 DOI: 10.1016/j.chembiol.2013.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/22/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) induces alterations of host cells to facilitate its life cycle. Fatty acid synthase (FASN) is a multidomain enzyme that plays a key role in the biosynthesis of fatty acids and is upregulated during HCV infection. Herein, we applied activity-based protein profiling (ABPP) that allows for the identification of differentially active enzymes in complex proteomic samples, to study the changes in activity of FASN during HCV replication. For this purpose, we used an activity-based probe based on the FASN inhibitor Orlistat, and observed an increase in the activity of FASN in the presence of a subgenomic and a genomic HCV replicon as well as in chimeric SCID/Alb-uPA mice infected with HCV genotype 1a. To study the molecular basis for this increase in FASN activity, we overexpressed individual HCV proteins in Huh7 cells and observed increased expression and activity of FASN in the presence of core and NS4B, as measured by western blots and ABPP, respectively. Triglyceride levels were also elevated in accordance with FASN expression and activity. Lastly, immunofluorescence and ABPP imaging analyses demonstrated that while the abundance and activity of FASN increases significantly in the presence of HCV, its localization does not change. Together these data suggest that the HCV-induced production of fatty acids and neutral lipids is provided by an increase in FASN abundance and activity that is sufficient to allow HCV propagation without transporting FASN to the replication complexes.
Collapse
Affiliation(s)
- Neda Nasheri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | | | | | | | | |
Collapse
|
54
|
Imran M, Manzoor S, Khattak NM, Khalid M, Ahmed QL, Parvaiz F, Tariq M, Ashraf J, Ashraf W, Azam S, Ashraf M. Current and future therapies for hepatitis C virus infection: from viral proteins to host targets. Arch Virol 2013; 159:831-46. [DOI: 10.1007/s00705-013-1803-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
|
55
|
Clément S, Fauvelle C, Branche E, Kaddai V, Conzelmann S, Boldanova T, Bartosch B, Minehira K, Negro F. Role of seipin in lipid droplet morphology and hepatitis C virus life cycle. J Gen Virol 2013; 94:2208-2214. [PMID: 23907395 DOI: 10.1099/vir.0.054593-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infectious hepatitis C virus (HCV) particle assembly starts at the surface of lipid droplets, cytoplasmic organelles responsible for neutral fat storage. We analysed the relationship between HCV and seipin, a protein involved in lipid droplet maturation. Although seipin overexpression did not affect the total mean volume occupied by lipid droplets nor the total triglyceride and cholesterol ester levels per cell, it caused an increase in the mean diameter of lipid droplets by 60 %, while decreasing their total number per cell. The latter two effects combined resulted in a 34 % reduction of the total outer surface area of lipid droplets per cell, with a proportional decrease in infectious viral particle production, probably due to a defect in particle assembly. These results suggest that the available outer surface of lipid droplets is a critical factor for HCV release, independent of the neutral lipid content of the cell.
Collapse
Affiliation(s)
- Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Catherine Fauvelle
- Department of Immunology and Pathology, Faculty of Medicine, University of Geneva, Switzerland
| | - Emilie Branche
- Department of Immunology and Pathology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vincent Kaddai
- Department of Immunology and Pathology, Faculty of Medicine, University of Geneva, Switzerland
| | - Stéphanie Conzelmann
- Department of Immunology and Pathology, Faculty of Medicine, University of Geneva, Switzerland
| | - Tujana Boldanova
- Department of Biomedicine, University Hospital Basel, Switzerland
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, University of Lyon, France
| | - Kaori Minehira
- Department of Physiology, University of Lausanne, Switzerland
| | - Francesco Negro
- Gastroenterology and Hepatology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland.,Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
56
|
Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses 2013; 5:1292-324. [PMID: 23698400 PMCID: PMC3712309 DOI: 10.3390/v5051292] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects.
Collapse
|
57
|
Hepatitis C virus replication is modulated by the interaction of nonstructural protein NS5B and fatty acid synthase. J Virol 2013; 87:4994-5004. [PMID: 23427160 DOI: 10.1128/jvi.02526-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) that acts as a key player in the HCV replication complex. Understanding the interplay between the viral and cellular components of the HCV replication complex could provide new insight for prevention of the progression of HCV-associated hepatocellular carcinoma (HCC). In this study, the NS5B protein was used as the bait in a pulldown assay to screen for NS5B-interacting proteins that are present in Huh7 hepatoma cell lysates. After mass spectrophotometric analysis, fatty acid synthase (FASN) was found to interact with NS5B. Coimmunoprecipitation and double staining assays further confirmed the direct binding between NS5B and FASN. The domain of NS5B that interacts with FASN was also determined. Moreover, FASN was associated with detergent-resistant lipid rafts and colocalized with NS5B in active HCV replication complexes. In addition, overexpression of FASN enhanced HCV expression in Huh7/Rep-Feo cells, while transfection of FASN small interfering RNA (siRNA) or treatment with FASN-specific inhibitors decreased HCV replication and viral production. Notably, FASN directly increased HCV NS5B RdRp activity in vitro. These results together indicate that FASN interacts with NS5B and modulates HCV replication through a direct increase of NS5B RdRp activity. FASN may thereby serve as a target for the treatment of HCV infection and the prevention of HCV-associated HCC progression.
Collapse
|
58
|
Roingeard P. Hepatitis C virus diversity and hepatic steatosis. J Viral Hepat 2013; 20:77-84. [PMID: 23301542 DOI: 10.1111/jvh.12035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is closely associated with lipid metabolism defects throughout the viral lifecycle, with hepatic steatosis frequently observed in patients with chronic HCV infection. Hepatic steatosis is most common in patients infected with genotype 3 viruses, possibly due to direct effects of genotype 3 viral proteins. Hepatic steatosis in patients infected with other genotypes is thought to be mostly due to changes in host metabolism, involving insulin resistance in particular. Specific effects of the HCV genotype 3 core proteins have been observed in cellular models in vitro: mechanisms linked with a decrease in microsomal triglyceride transfer protein activity, decreases in the levels of peroxisome proliferator-activating receptors, increases in the levels of sterol regulatory element-binding proteins, and phosphatase and tensin homologue downregulation. Functional differences between the core proteins of genotype 3 viruses and viruses of other genotypes may reflect differences in amino acid sequences. However, bioclinical studies have failed to identify specific 'steatogenic' sequences in HCV isolates from patients with hepatic steatosis. It is therefore difficult to distinguish between viral and metabolic steatosis unambiguously, and host and viral factors are probably involved in both HCV genotype 3 and nongenotype 3 steatosis.
Collapse
Affiliation(s)
- P Roingeard
- INSERM U966, Université François Rabelais & CHRU de Tours, Tours, France.
| |
Collapse
|
59
|
|
60
|
García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, González-Gallego J, Sánchez-Campos S. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. J Transl Med 2012; 92:1191-202. [PMID: 22641099 DOI: 10.1038/labinvest.2012.88] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular mechanisms contributing to hepatitis C virus (HCV)-associated steatosis are not well established, although HCV gene expression has been shown to alter host cell cholesterol/lipid metabolism. As liver X receptors (LXRs) play a role as key modulators of metabolism signaling in the development of steatosis, we aimed to investigate in an HCV in vitro model the effect of HCV NS5A protein, core protein, and viral replication on the intracellular lipid accumulation and the LXRα-regulated expression of lipogenic genes. The effects of LXRα siRNA or agonist GW3965 treatment on lipogenesis and HCV replication capacity in our HCV replicon system were also examined. NS5A- and core-expressing cells and replicon-containing cells exhibited an increase of lipid accumulation by inducing the gene expression and the transcriptional activity of LXRα, and leading to an increased expression of its lipogenic target genes sterol regulatory element binding protein-1c, peroxisome proliferator-activated receptor-γ, and fatty acid synthase. Transcriptional induction by NS5A protein, core protein, and viral replication occurred via LXR response element activation in the lipogenic gene promoter. No physical association between HCV proteins and LXRα was observed, whereas NS5A and core proteins indirectly upregulated LXRα through the phosphatidylinositol 3-kinase pathway. Finally, it was found that LXRα knockdown or agonist-mediated LXRα induction directly regulated HCV-induced lipogenesis and HCV replication efficiency in replicon-containing cells. Combined, our data suggest that LXRα-mediated regulation of lipogenesis by core and NS5A proteins may contribute to HCV-induced liver steatosis and to the efficient replication of HCV.
Collapse
|
61
|
Wu Q, Liu Q. Do hepatitis B virus and hepatitis C virus co-infections increase hepatocellular carcinoma occurrence through synergistically modulating lipogenic gene expression? Hepatol Res 2012; 42:733-40. [PMID: 22487144 DOI: 10.1111/j.1872-034x.2012.00994.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections cause a wide range of liver diseases including hepatocellular carcinoma (HCC). Because of the similar modes of transmission, HBV HCV co-infections are found in approximately 7-20 million people globally. Compared with HBV or HCV mono-infections, co-infections are associated with more severe liver diseases and higher risk of HCC. Abnormal lipid biosynthesis and metabolism has been increasingly recognized as a cause for cancer. While HBV infection does not seem to significantly increase the risk of developing hepatic steatosis, steatosis is a prominent feature of chronic hepatitis C (CHC). In addition, steatosis in HBV or HCV mono-infections is a significant and independent risk factor for HCC. However, whether and how HBV HCV co-infections synergistically increase the risk of HCC development through modulating lipid metabolism is not well understood. Possible mechanisms by which steatosis causes HCC include: activation of sterol regulatory element-binding protein-mediated lipogenesis through the PI3K-Akt pathway, abnormal activation of peroxisome proliferator-activated receptors and endoplasmic reticulum stress. Here, we review the potential mechanisms by which HBV HCV co-infections may increase HCC risk through modulation of lipogenic gene expression. We begin with reviewing the impact of HBV and HCV on host lipogenic gene expression and carcinogenesis. We then discuss the potential mechanisms by which HBV and HCV can increase carcinogenesis through synergistically activating lipid biosynthesis and metabolism. We end by sharing our thoughts on future research directions in this emerging paradigm with an ultimate goal of developing effective therapeutics.
Collapse
Affiliation(s)
- Qi Wu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
62
|
Blanchet M, Seidah NG, Labonté P. SKI-1/S1P inhibition: a promising surrogate to statins to block hepatitis C virus replication. Antiviral Res 2012; 95:159-66. [PMID: 22626636 DOI: 10.1016/j.antiviral.2012.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 01/23/2023]
Abstract
Hepatitis C virus (HCV) is often associated with steatosis, cirrhosis and hepatocellular carcinoma (HCC). Statins (HMG-CoAR inhibitors) have been shown to exert an antiviral effect in vitro, principally on replicon harboring cells, but the effect of their use alone in vivo remains controversial. In clinical trials, when used in combination with the standards of care (SOC), they led to an increased proportion of sustained virological responder (SVR). Here we investigated the implication of SKI-1/S1P, a master lipogenic pathways regulator upstream of HMG-CoAR, on different steps of HCV life cycle. We compared the HCV antiviral effect of the most potent SKI-1/S1P small molecule inhibitor (PF-429242) with a set of two statins on different steps of the viral life cycle, and showed that SKI-1/S1P inhibitor blocked HCVcc (strain JFH-1) RNA replication (EC(50)= 5.8 μM) more efficiently than statins. Moreover, we showed that PF-429242 could reduce lipid droplets accumulation in Huh7 cells. Interestingly, PF-429242 dramatically reduced infectious particles production (EC(90)= 4.8 μM). Such inhibition could not be achieved with statins. SKI-1/S1P activity is thus essential for viral production and its inhibition should be considered for antiviral drug development.
Collapse
Affiliation(s)
- Matthieu Blanchet
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Canada
| | | | | |
Collapse
|
63
|
Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog 2012; 8:e1002468. [PMID: 22241994 PMCID: PMC3252376 DOI: 10.1371/journal.ppat.1002468] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022] Open
Abstract
HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1) – or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care. Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver cancer and liver transplantation worldwide. No vaccine is available for preventing the spread of HCV, and the current therapeutic regimen is only moderately effective and causes serious side effects. New antiviral agents are required to treat HCV infection, but the high mutation rate of HCV hinders the effectiveness of virus-specific inhibitors. Targeting the host enzymes required for HCV to replicate offers a promising new direction for antiviral therapy. During infection, HCV promotes excessive fat accumulation in the liver, which benefits the virus as this promotes formation of lipid droplets, a cellular organelle essential for assembly of new HCV infectious viral particles. Here, we report the development of a specific inhibitor targeting SKI-1/S1P, a host enzyme required for lipid production in human cells. We show that inhibiting SKI-1/S1P activity in human liver cells effectively blocks lipid droplet formation and HCV infection. Many prevalent human viruses, such as dengue, rotavirus, and hepatitis B virus, hijack host lipid metabolic pathways similar to those targeted by HCV to complete their lifecycle. Thus, we propose that cellular SKI-1/S1P is a potential target for developing desperately needed novel broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfgang Knecht
- Lead Generation - Target Production, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Ina Lazarov
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - François Jean
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
64
|
Wu C, Gilroy R, Taylor R, Olyaee M, Abdulkarim B, Forster J, O'Neil M, Damjanov I, Wan YJY. Alteration of hepatic nuclear receptor-mediated signaling pathways in hepatitis C virus patients with and without a history of alcohol drinking. Hepatology 2011; 54:1966-74. [PMID: 21898497 PMCID: PMC3230737 DOI: 10.1002/hep.24645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED The current study tests a hypothesis that nuclear receptor signaling is altered in chronic hepatitis C patients and that the altered pattern is specific to alcohol drinking history. The expression of a panel of more than 100 genes encoding nuclear receptors, coregulators, and their direct/indirect targets was studied in human livers. Gene expression pattern was compared between 15 normal donor livers and 23 hepatitis C virus (HCV) genotype 1-positive livers from patients without a drinking history (matched for age, sex, and body mass index). HCV infection increased the expression of nuclear receptors small heterodimer partner and constitutive androstane receptor (CAR) as well as genes involved in fatty acid trafficking, bile acid synthesis and uptake, and inflammatory response. However, the expression of retinoid X receptor (RXR) α, peroxisomal proliferator-activated receptor (PPAR) α and β as well as steroid regulatory element-binding protein (SREBP)-1c was decreased in HCV-infected livers. Gene expression pattern was compared in chronic hepatitis C patients with and without a drinking history. Alcohol drinking increased the expression of genes involved in fatty acid uptake, trafficking, and oxidation, but decreased the expression of genes responsible for gluconeogenesis. These changes were consistent with reduced fasting plasma glucose levels and altered expression of upstream regulators that include RXRα, PPARα, and CAR. The messenger RNA levels of fibroblast growth factor 21, interleukin-10, and fatty acid synthase, which are all regulated by nuclear receptors, showed independent correlation with hepatic HCV RNA levels. CONCLUSION Our findings suggest that those genes and pathways that showed altered expression could potentially be therapeutic targets for HCV infection and/or alcohol drinking-induced liver injury.
Collapse
Affiliation(s)
- Chuanghong Wu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS,Department of Infectious Diseases, the People's Hospital of Shekou, Shenzhen, 518067, China
| | - Richard Gilroy
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ryan Taylor
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Mojtaba Olyaee
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Bashar Abdulkarim
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Maura O'Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Ivan Damjanov
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Yu-Jui Yvonne Wan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS,Corresponding Author: Yu-Jui Yvonne Wan, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Mailstop 1018, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. Phone: 913-588-9111, Fax: 913-588-7501,
| |
Collapse
|
65
|
Eslam M, Khattab MA, Harrison SA. Peroxisome proliferator-activated receptors and hepatitis C virus. Therap Adv Gastroenterol 2011; 4:419-431. [PMID: 22043232 PMCID: PMC3187680 DOI: 10.1177/1756283x11405251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus and insulin resistance are higher among people chronically infected with hepatitis C (CHC) when compared with the general population and people with other causes of chronic liver disease. Both insulin resistance and diabetes are associated with adverse outcomes across all stages of CHC, including the liver transplant population. CHC is also associated with the development of hepatic steatosis, a common histological feature present in approximately 55% (32-81%) of cases. There is a complex interrelationship between insulin resistance and hepatic steatosis and both are postulated to aggravate each other. The peroxisome proliferator-activated receptors (PPARs) are nuclear factors involved in the regulation of glucose, lipid homeostasis, inflammatory response, cell differentiation, and cell cycle. The relationship between hepatitis C virus replication and PPARs has been the focus of recent study. Given the availability of potent agonists, PPARs may represent a novel pharmacological target in the treatment of CHC.
Collapse
Affiliation(s)
- M Eslam
- Department of Internal Medicine, Minia University, Minia, Egypt
| | | | | |
Collapse
|
66
|
Wrapping membranes around plant virus infection. Curr Opin Virol 2011; 1:388-95. [PMID: 22440840 DOI: 10.1016/j.coviro.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/22/2022]
Abstract
Positive strand RNA viruses cause membrane modifications which are microenvironments or larger intracellular compartments, also called 'viroplasms'. These compartments serve to concentrate virus and host factors needed to produce new genomes. Forming these replication sites often involves virus induced membrane synthesis, changes in fatty acid metabolism, and viral recruitment of cellular factors to subcellular domains. Interacting viral and host factors builds the physical scaffold for replication complexes. Such virus induced changes are a visible cytopathology that has been used by plant and mammalian virologists to describe virus disease. This article describes key examples of membrane modifications that are essential for plant virus replication and intercellular transport.
Collapse
|
67
|
Abstract
Cholesterol is an essential molecule for the life cycle of the hepatitis C virus (HCV). This review focuses on the roles of cholesterol in HCV infection and introduces HCV events related to cholesterol metabolism and applications for cholesterol metabolism as a therapeutic target. HCV appears to alter host lipid metabolism into its preferable state, which is clinically recognized as steatosis and hypocholesterolemia. While hepatic fatty acid and triglyceride syntheses are upregulated in chronic hepatitis C patients, no direct evidence of increased hepatic de novo cholesterol biosynthesis has been obtained. Impaired VLDL secretion from hepatocytes is suggested to increase intracellular cholesterol concentrations, which may lead to hypocholesterolemia. Clinically, lower serum cholesterol levels are associated with lower rates of sustained virological responses (SVR) to pegylated-interferon plus ribavirin therapy, but the reason remains unclear. Clinical trials targeting HMG-CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, are being conducted using statins. Anti-HCV actions by statins appear to be caused by the inhibition of geranylgeranyl pyrophosphate synthesis rather than their cholesterol lowering effects. Other compounds that block various steps of cholesterol metabolic pathways have also been studied to develop new strategies for the complete eradication of this virus.
Collapse
Affiliation(s)
- Akira Honda
- Department of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | | |
Collapse
|
68
|
Congiu M, Ryan MC, Desmond PV. No increase in the expression of key unfolded protein response genes in HCV genotype 3 patients with severe steatosis. Virus Res 2011; 160:420-3. [PMID: 21741418 DOI: 10.1016/j.virusres.2011.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/06/2023]
Abstract
Although hepatic steatosis is common in patients infected with HCV, the mechanisms leading to cellular triglyceride retention are obscure. A role for the Unfolded Protein Response (UPR) has been postulated, either through its activation or dysfunction. In this study we set out to investigate the expression of key UPR genes in HCV genotype 3 patients with moderate to severe steatosis. RNA was extracted from liver obtained by percutaneous biopsy and key genes from the UPR were semi quantified using real-time PCR. We compared values in patients with minimal steatosis to those with high steatosis. Patients with high steatosis were younger (44.6 ± 2.4 vs. 37.4 ± 2.1, p<0.05) and had higher hepatic viral RNA loads (1.00 ± 0.21 vs. 3.98 ± 0.22, p<0.05). We found no significant difference in the expression of UPR genes, except for a small increase in EDEM1 in the high steatosis group (1.00 ± 0.13 vs. 1.38 ± 0.09, p<0.05). In conclusion, despite a four-fold greater concentration of HCV RNA in tissue with a high level of steatosis, we found no change in the expression of key UPR related genes, except for a only a modest up-regulation of EDEM1. Our data does not support a sustained change in expression of UPR genes in the steatogenesis of HCVGT3 infected human liver.
Collapse
Affiliation(s)
- Mario Congiu
- Department of Gastroenterology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
69
|
Pattullo V, Douglas MW, George J. Organelle dysfunction in hepatitis C virus-associated steatosis: anything to learn from nonalcoholic steatohepatitis? Expert Rev Gastroenterol Hepatol 2011; 5:265-77. [PMID: 21476921 DOI: 10.1586/egh.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) spans a pathological spectrum from nonalcoholic steatosis to steatohepatitis. The pathophysiology of this disorder is complex, but includes insulin resistance and disrupted lipid and carbohydrate homeostasis, which at a subcellular level results in oxidative stress, free fatty acid-mediated lipotoxicity, defects in mitochondrial function, endoplasmic reticulum stress and cytokine-mediated toxicity. In chronic hepatitis C (CHC), systemic metabolic derangements similar to NAFLD may be operative, but in addition, virus-specific factors contribute to steatosis. The mechanisms for steatosis in CHC appear to share common pathways with those observed in NAFLD. This article outlines our current understanding of the subcellular mechanisms of steatosis in NAFLD and CHC, including their similarities and differences.
Collapse
Affiliation(s)
- Venessa Pattullo
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | | | | |
Collapse
|
70
|
Lima-Cabello E, García-Mediavilla MV, Miquilena-Colina ME, Vargas-Castrillón J, Lozano-Rodríguez T, Fernández-Bermejo M, Olcoz JL, González-Gallego J, García-Monzón C, Sánchez-Campos S. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond) 2011; 120:239-50. [PMID: 20929443 DOI: 10.1042/cs20100387] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is one of the most frequent chronic liver diseases worldwide. The metabolic factors associated with NAFLD are also determinants of liver disease progression in chronic HCV (hepatitis C virus) infection. It has been reported that, besides inducing hepatic fatty acid biosynthesis, LXR (liver X receptor) regulates a set of inflammatory genes. We aimed to evaluate the hepatic expression of LXRα and its lipogenic and inflammatory targets in 43 patients with NAFLD, 44 with chronic HCV infection and in 22 with histologically normal liver. Real-time PCR and Western blot analysis were used to determine hepatic expression levels of LXRα and related lipogenic and inflammatory mediators in the study population. We found that the LXRα gene and its lipogenic targets PPAR-γ (peroxisome-proliferator-activated receptor-γ), SREBP (sterol-regulatory-element-binding protein)-1c, SREBP-2 and FAS (fatty acid synthase) were overexpressed in the liver of NAFLD and HCV patients who had steatosis. Moreover, up-regulation of inflammatory genes, such as TNF (tumour necrosis factor)-α, IL (interleukin)-6, OPN (osteopontin), iNOS (inducible NO synthase), COX (cyclo-oxygenase)-2 and SOCS (suppressors of cytokine signalling)-3, was observed in NAFLD and HCV patients. Interestingly, TNF-α, IL-6 and osteopontin gene expression was lower in patients with steatohepatitis than in those with steatosis. In conclusion, hepatic expression of LXRα and its related lipogenic and inflammatory genes is abnormally increased in NAFLD and HCV patients with steatosis, suggesting a potential role of LXRα in the pathogenesis of hepatic steatosis in these chronic liver diseases.
Collapse
|
71
|
Congiu M, Slavin JL, Desmond PV. Expression of common housekeeping genes is affected by disease in human hepatitis C virus-infected liver. Liver Int 2011; 31:386-90. [PMID: 21073651 DOI: 10.1111/j.1478-3231.2010.02374.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Comparative gene expression is commonly determined with reference to the expression of a housekeeping gene (HKG), the level of which is assumed to be unregulated. There are little data to date on the effect of disease on the expression of classic HKGs in hepatitis C virus (HCV)-infected human liver. AIMS To identity HKGs stable across a wide spectrum of disease in human HCV-infected liver. METHODS β-Actin, hypoxanthine phosphoribosyltransferase 1 (HPRT1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), splicing factor arginine/serine-rich 4, β-glucuronidase and 18S ribosomal RNA (18S rRNA) were measured by real-time polymerase chain reaction in liver biopsy tissue. Samples were categorised for inflammation, fibrosis and steatosis, and allocated into groups with mild or severe liver disease. Values were analysed using Spearman's rank correlation, NormFinder, BestKeeper and geNorm programs. RESULTS All genes performed well in the samples of patients with low disease activity, but HPRT1, β-actin, GAPDH and 18S rRNA ranked poorly in samples with severe fibrosis or inflammation. CONCLUSIONS Our results indicate that liver disease affects the expression of common HKGs and that β-glucuronidase and splicing factor arginine/serine-rich 4 are the most stable HKGs from this group for studies of gene expression in HCV-infected human liver.
Collapse
Affiliation(s)
- Mario Congiu
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Vic., Australia
| | | | | |
Collapse
|
72
|
Zhang D, Feng GH. Advances in research of interaction between hepatitis C virus nonstructural proteins and host proteins. Shijie Huaren Xiaohua Zazhi 2011; 19:161-169. [DOI: 10.11569/wcjd.v19.i2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is another common cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma after hepatitis B virus (HBV). Up to now, the mechanisms by which HCV promotes persistent infection and cancer remain unclear, and there are neither effective drugs nor vaccines against HCV available. Interaction between virus proteins and host proteins is a hot topic in research of the pathogenesis of viral hepatitis. Recent research shows that interaction between HCV nonstructural proteins and host proteins has an important impact on viral replication, carcinogenesis, interferon resistance, and disorders of glycometabolism and lipid metabolism. This paper summarizes the recent advances in research of interaction between HCV nonstructural proteins and host proteins.
Collapse
|
73
|
Ryan MC, Desmond PV, Slavin JL, Congiu M. Expression of genes involved in lipogenesis is not increased in patients with HCV genotype 3 in human liver. J Viral Hepat 2011; 18:53-60. [PMID: 20196803 DOI: 10.1111/j.1365-2893.2010.01283.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) infection is frequently associated with hepatic steatosis, particularly in patients with HCV genotype-3 (HCVGT3). It has variously been hypothesized, largely from in-vitro studies, to be the result of increased synthesis, decreased metabolism and export of triglycerides. We measured by real-time PCR the expression of genes involved in lipid metabolism [acetyl-Coenzyme A carboxylase alpha, apolipoprotein B (APOB), diacylglycerol O-acyltransferase 2, fatty acid-binding protein 1, fatty acid synthase, microsomal triglyceride transfer protein (MTTP), peroxisome proliferator-activated receptor alpha (PPARA), peroxisome proliferator-activated receptor gamma (PPARG), protein kinase AMP-activated alpha 1 catalytic subunit (PRKAA1) and sterol regulatory element-binding transcription factor 1 (SREBF1)] in liver biopsies from patients infected with HCV genotype-1 (HCVGT1), HCVGT3 and Hepatitis B (HBV) using β-glucuronidase (GUSB) and splicing factor arginine/serine-rich 4 (SFRS4) as housekeeping genes. Patients infected with HCVGT3 were younger than those infected with HCVGT1 (36.3 ± 2.5 vs 45.6 ± 1.5, P < 0.05, Mann-Whitney) and were more likely to have steatosis (69.2%vs 11.8%). No significant difference was found in the expression of genes involved in lipogenesis or transport in patients infected with HBV or HCV of either genotype. Contrary to expectation, given the greater degree of steatosis in HCVGT3-infected liver, expression of enzymes involved in lipogenesis was not elevated in HCVGT3 compared with HCVGT1 or HBV-infected liver. Significantly less mRNA for SREBF1 was found in HCVGT3-infected liver tissue compared with HCVGT1-infected liver (1.00 ± 0.06 vs 0.70 ± 0.15 P < 0.05). These results suggest that steatosis in patients infected with HCVGT3 is not the result of a sustained SREBF1 driven increase in expression of genes involved in lipogenesis. In addition, a significant genotype-independent correlation was found between the expression of APOB, MTTP, PRKAA1 and PPARA, indicating that these networks are functional in HCV-infected liver.
Collapse
Affiliation(s)
- M C Ryan
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Vic., Australia
| | | | | | | |
Collapse
|
74
|
Interaction of the hepatitis C virus (HCV) core with cellular genes in the development of HCV-induced steatosis. Arch Virol 2010; 155:1735-53. [DOI: 10.1007/s00705-010-0797-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/31/2010] [Indexed: 12/13/2022]
|
75
|
Fujino T, Nakamuta M, Yada R, Aoyagi Y, Yasutake K, Kohjima M, Fukuizumi K, Yoshimoto T, Harada N, Yada M, Kato M, Kotoh K, Taketomi A, Maehara Y, Nakashima M, Enjoji M. Expression profile of lipid metabolism-associated genes in hepatitis C virus-infected human liver. Hepatol Res 2010; 40:923-9. [PMID: 20887597 DOI: 10.1111/j.1872-034x.2010.00700.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Recent studies have shown that lipid metabolic pathways are required for the entry, replication and secretion of hepatitis C virus (HCV). Although little is known about the life cycle of HCV in humans, the activation of cholesterol and fatty acid biosynthesis may be critical for HCV proliferation. METHODS We assessed the transcription levels of genes essential for cholesterol and fatty acid biosynthesis in liver samples obtained from patients with chronic hepatitis C and determined their correlations. The serum levels of low-density lipoprotein (LDL) cholesterol and HCV core antigen were also measured. RESULTS The gene expression of the LDL receptor (LDLR) was suppressed, whereas that of SREBP1c, liver X receptor-α (LXRα), fatty acid synthase (FASN), and HMG-CoA reductase and synthase (HMGR and HMGS) was significantly increased, and SREBP2 transcription was comparable in HCV-infected liver compared with normal liver. Positive correlations were found for LDLR versus HMGR, HMGR versus SREBP1c, and LDLR versus SREBP2 in the HCV-infected and control liver. Although the LXRα-SREBP1c-FASN pathway was upregulated, proteasome activator 28γ (PA28γ) was downregulated at the transcriptional level in HCV-infected liver, and was not significantly correlated with the other genes examined. The serum LDL cholesterol level was negatively correlated with LDLR and HMGR expression. CONCLUSION These results suggest that, in HCV-infected liver, the cholesterol load increases and cholesterol uptake is controlled, while de novo cholesterol synthesis is upregulated compared with the normal physiological state. The positive correlations in the expression levels of some cholesterol metabolism-associated genes indicate that not all of the metabolic pathways are dysregulated in HCV-infected liver.
Collapse
Affiliation(s)
- Tatsuya Fujino
- Clinical Research Center, Kyushu Medical Center, National Hospital Organization, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
The Hepatitis C Virus Nonstructural Protein 2 (NS2): An Up-and-Coming Antiviral Drug Target. Viruses 2010; 2:1635-1646. [PMID: 21994698 PMCID: PMC3185728 DOI: 10.3390/v2081635] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 01/31/2023] Open
Abstract
Infection with Hepatitis C Virus (HCV) continues to be a major global health problem. To overcome the limitations of current therapies using interferon-α in combination with ribavirin, there is a need to develop drugs that specifically block viral proteins. Highly efficient protease and polymerase inhibitors are currently undergoing clinical testing and will become available in the next few years. However, with resistance mutations emerging quickly, additional enzymatic activities or functions of HCV have to be targeted by novel compounds. One candidate molecule is the nonstructural protein 2 (NS2), which contains a proteolytic activity that is essential for viral RNA replication. In addition, NS2 is crucial for the assembly of progeny virions and modulates various cellular processes that interfere with viral replication. This review describes the functions of NS2 in the life cycle of HCV and highlights potential antiviral strategies involving NS2.
Collapse
|
77
|
Mankouri J, Tedbury PR, Gretton S, Hughes ME, Griffin SDC, Dallas ML, Green KA, Hardie DG, Peers C, Harris M. Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proc Natl Acad Sci U S A 2010; 107:11549-54. [PMID: 20534540 PMCID: PMC2895084 DOI: 10.1073/pnas.0912426107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.
Collapse
Affiliation(s)
- Jamel Mankouri
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology and
| | - Philip R. Tedbury
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology and
| | - Sarah Gretton
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology and
| | - Mair E. Hughes
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology and
| | - Stephen D. C. Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology and
| | - Mark. L. Dallas
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kevin A. Green
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - D. Grahame Hardie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Chris Peers
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology and
| |
Collapse
|
78
|
Abstract
Hepatic steatosis is commonly seen in patients with chronic hepatitis C infection, and the two together have a greater association than by chance alone. Hepatitis C virus is closely associated with lipid metabolism throughout its lifecycle. Hepatic steatosis is more common in genotype 3 infection, due to direct viral effects including through microsomal triglyceride transfer protein, peroxisome proliferator activating receptor, and sterol regulatory element binding protein. In non-genotype 3 infection, hepatic steatosis is considered largely to be due to alterations in host metabolism, particularly through insulin resistance. The clinical relevance of this association has yet to be fully explored. Hepatic steatosis is associated with increased hepatic fibrosis and a reduced level of sustained virological response to pegylated interferon and ribavirin. Small studies trialing adjuvant anti-diabetic therapies or HMG-CoA reductase inhibitors with pegylated-interferon and ribavirin have shown an improved sustained virological response and reduced viral titer. Furthermore, simple lifestyle alterations showed positive effects on parameters of disease activity. These insights raise the possibility of novel treatment options.
Collapse
Affiliation(s)
- J H Patel
- Liver Unit, Imperial College London, St Mary's Hospital Campus, 10th Floor QEQM Building, Praed Street, London W2 1NY, UK
| | | | | | | |
Collapse
|
79
|
Jackel-Cram C, Qiao L, Xiang Z, Brownlie R, Zhou Y, Babiuk L, Liu Q. Hepatitis C virus genotype-3a core protein enhances sterol regulatory element-binding protein-1 activity through the phosphoinositide 3-kinase-Akt-2 pathway. J Gen Virol 2010; 91:1388-95. [PMID: 20130133 DOI: 10.1099/vir.0.017418-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus genotype-3a (HCV-3a) is directly linked to the development of steatosis. We previously showed that, through sterol regulatory element binding protein-1 (SREBP-1), HCV-3a core protein upregulates the promoter activity of fatty acid synthase, a major enzyme involved in de novo lipid synthesis. In this study, we investigated whether HCV-3a core can activate SREBP-1 and studied the role of phosphoinositide 3-kinase (PI3K)-Akt-2 pathway in modulating SREBP-1 activity by HCV-3a core. To determine whether HCV-3a core could activate SREBP-1, the level of mature SREBP-1 was analysed by Western blotting. Our results showed that the level of mature SREBP-1 was enhanced by HCV-3a core protein after transient expression and in the chimeric HCV-3a core/1b replicon cells in comparison to controls. To investigate the role of the PI3K-Akt-2 pathway in SREBP-1 activation by HCV-3a core, PI3K and Akt-2 activity was inhibited by using the chemical inhibitor LY294002, a dominant-negative Akt-2 plasmid, or knockdown of Akt-2 by small hairpin RNA. Our results showed that inhibition of PI3K and Akt-2 was associated with reduced SREBP-1 activation by HCV-3a core. These results indicate a role for PI3K and Akt-2 in increasing SREBP-1 activity by HCV-3a core protein and provide a mechanism of steatosis caused by HCV.
Collapse
Affiliation(s)
- Candice Jackel-Cram
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | |
Collapse
|
80
|
Levi M. The Kidney in Liver Disease. THE LIVER 2009:619-638. [DOI: 10.1002/9780470747919.ch40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
81
|
Lyn RK, Kennedy DC, Sagan SM, Blais DR, Rouleau Y, Pegoraro AF, Xie XS, Stolow A, Pezacki JP. Direct imaging of the disruption of hepatitis C virus replication complexes by inhibitors of lipid metabolism. Virology 2009; 394:130-42. [DOI: 10.1016/j.virol.2009.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 06/24/2009] [Accepted: 08/17/2009] [Indexed: 12/26/2022]
|
82
|
Lerat H, Kammoun HL, Hainault I, Mérour E, Higgs MR, Callens C, Lemon SM, Foufelle F, Pawlotsky JM. Hepatitis C virus proteins induce lipogenesis and defective triglyceride secretion in transgenic mice. J Biol Chem 2009; 284:33466-74. [PMID: 19808675 DOI: 10.1074/jbc.m109.019810] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is associated with altered lipid metabolism and hepatocellular steatosis. Virus-induced steatosis is a cytopathic effect of HCV replication. The goal of this study was to examine the mechanisms underlying HCV-induced lipid metabolic defects in a transgenic mouse model expressing the full HCV protein repertoire at levels corresponding to natural human infection. In this model, expression of the HCV full-length open reading frame was associated with hepatocellular steatosis and reduced plasma triglyceride levels. Triglyceride secretion was impaired, whereas lipogenesis was activated. Increased lipogenic enzyme transcription was observed, resulting from maturational activation and nuclear translocation of sterol regulatory element-binding protein 1c (SREBP1c). However, endoplasmic reticulum (ER) stress markers were expressed at similar levels in both HCV transgenic mice and their wild type counterparts, suggesting that SREBP1c proteolytic cleavage in the presence of HCV proteins was independent of ER stress. In conclusion, transgenic mice expressing the HCV full-length polyprotein at low levels have decreased plasma triglyceride levels and develop hepatocellular steatosis in the same way as HCV-infected patients. In these mice, SREBP1c activation by one or several HCV proteins induces de novo triglyceride synthesis via the lipogenic pathway, in a manner independent of ER stress, whereas triglyceride secretion is simultaneously reduced.
Collapse
|
83
|
Clément S, Pascarella S, Negro F. Hepatitis C virus infection: molecular pathways to steatosis, insulin resistance and oxidative stress. Viruses 2009; 1:126-143. [PMID: 21994542 PMCID: PMC3185489 DOI: 10.3390/v1020126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 12/11/2022] Open
Abstract
The persistent infection with hepatitis C virus is a major cause of chronic liver disease worldwide. However, the morbidity associated with hepatitis C virus widely varies and depends on several host-related cofactors, such as age, gender, alcohol consumption, body weight, and co-infections. The objective of this review is to discuss three of these cofactors: steatosis, insulin resistance and oxidative stress. Although all may occur independently of HCV, a direct role of HCV infection in their pathogenesis has been reported. This review summarizes the current understanding and potential molecular pathways by which HCV contributes to their development.
Collapse
Affiliation(s)
- Sophie Clément
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland; E-Mails: (S.C.); (S.P.)
| | - Stéphanie Pascarella
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland; E-Mails: (S.C.); (S.P.)
| | - Francesco Negro
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland; E-Mails: (S.C.); (S.P.)
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland
| |
Collapse
|
84
|
Kim K, Kim KH, Ha E, Park JY, Sakamoto N, Cheong J. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma. FEBS Lett 2009; 583:2720-6. [DOI: 10.1016/j.febslet.2009.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 07/17/2009] [Indexed: 01/12/2023]
|
85
|
Isom HC, McDevitt EI, Moon MS. Elevated hepatic iron: a confounding factor in chronic hepatitis C. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:650-62. [PMID: 19393721 DOI: 10.1016/j.bbagen.2009.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 12/13/2022]
Abstract
Historically, iron overload in the liver has been associated with the genetic disorders hereditary hemochromatosis and thalassemia and with unusual dietary habits. More recently, elevated hepatic iron levels also have been observed in chronic hepatitis C virus (HCV) infection. Iron overload in the liver causes many changes including induction of oxidative stress, damage to lysosomes and mitochondria, altered oxidant defense systems and stimulation of hepatocyte proliferation. Chronic HCV infection causes numerous pathogenic changes in the liver including induction of endoplasmic reticulum stress, the unfolded protein response, oxidative stress, mitochondrial dysfunction and altered growth control. Understanding the molecular and cellular changes that could occur in a liver which has elevated hepatic iron levels and in which HCV replication and gene expression are ongoing has clinical relevance and represents an area of research in need of further investigation.
Collapse
Affiliation(s)
- Harriet C Isom
- Department of Microbiology and Immunology, The Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
86
|
|
87
|
Park CY, Jun HJ, Wakita T, Cheong JH, Hwang SB. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chem 2009; 284:9237-46. [PMID: 19204002 DOI: 10.1074/jbc.m808773200] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection is often associated with hepatic steatosis and yet the molecular mechanisms of HCV-associated steatosis are poorly understood. Because sterol regulatory element-binding proteins (SREBPs) are the major transcriptional factors in lipogenic gene expression including fatty acid synthase (FAS), we examined the effects of HCV nonstructural proteins on the signaling pathways of SREBP. In this study, we demonstrated that HCV nonstructural 4B (NS4B) protein increased the transcriptional activities of SREBPs. We also showed that HCV NS4B enhanced the protein expression levels of SREBPs and FAS. This was further confirmed in the context of viral RNA replication and HCV infection. The up-regulation of both SREBP and FAS by NS4B protein required phosphatidylinositol 3-kinase activity. We also demonstrated that NS4B protein induced a lipid accumulation in hepatoma cells. In addition, NS4B protein synergistically elevated the transcriptional activity of HCV core-mediated SREBP-1. These results strongly suggest that NS4B may play an important role in HCV-associated liver pathogenesis by modulating the SREBP signaling pathway.
Collapse
Affiliation(s)
- Chul-Yong Park
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 431-060, Korea
| | | | | | | | | |
Collapse
|
88
|
Viral hepatitis and fatty liver disease: how an unwelcome guest makes pâté of the host. Biochem J 2008; 416:e15-7. [PMID: 18990087 DOI: 10.1042/bj20081916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HBV and HCV (hepatitis B and C viruses respectively) affect hundreds of millions of people globally, and are a major cause of chronic liver disease, including NAFLD (non-alcoholic fatty liver disease). Previous work on HCV-associated fatty liver disease has implicated two transcription factors that are important in lipid metabolism, SREBP1c (sterol-regulatory-element-binding protein 1c) and the LXRalpha (liver X receptor alpha). HBV-associated fatty liver disease has been less well-studied. New work from Kim and colleagues in this issue of the Biochemical Journal has provided new insight into how HBV causes fatty liver disease. Investigating HBV's so-called X gene product (HBx), they report that this viral protein directly binds to LXRalpha in the host liver cells to up-regulate the lipogenic transcription factor, SREBP1c. Also discussed in this commentary is another way that viruses such as HBV and HCV could induce SREBP1c-mediated lipogenesis, via the PI3K (phosphoinositide 3-kinase)-Akt signalling pathway.
Collapse
|
89
|
Sheikh MY. Steatosis in hepatitis C: Mechanisms and basic concepts. CURRENT HEPATITIS REPORTS 2008; 7:152-157. [DOI: 10.1007/s11901-008-0030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
90
|
Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, Conrads TP, Wang T. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 2008; 48:1396-403. [PMID: 18830996 PMCID: PMC2614928 DOI: 10.1002/hep.22508] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major human pathogen that causes serious illness, including acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Using a mass spectrometry-based proteomics approach, we have identified 175 proteins from a cell culture supernatant fraction containing the HCV genotype 2a (JFH1) virus, among which fatty acid synthase (FASN), the multifunctional enzyme catalyzing the de novo synthesis of fatty acids, was confirmed to be highly enriched. Subsequent studies showed that FASN expression increased in the human hepatoma cell line, Huh7, or its derivative, upon HCV infection. Blocking FASN activity by C75, a pharmacological FASN inhibitor, led to decreased HCV production. Reduction of FASN by RNA interference suppressed viral replication in both replicon and infection systems. Remarkably, FASN appeared to be selectively required for the expression of claudin-1, a tight junction protein that was recently identified as an entry coreceptor for HCV, but not for the expression of another HCV coreceptor, CD81. The decrease in Claudin-1 expression resulting from FASN inhibition was accompanied by a decrease in transepithelial electric resistance of Huh7 cells, implying a reduction in the relative tightness of the cell monolayer. Consequently, the entry of human immunodeficiency virus-HCV pseudotypes was significantly inhibited in C75-treated Huh7 cells. CONCLUSION As far as we know, this is the first line of evidence that demonstrates that HCV infection directly induces FASN expression, and thus suggests a possible mechanism by which HCV infection alters the cellular lipid profile and causes diseases such as steatosis.
Collapse
Affiliation(s)
- Wei Yang
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Brian L. Hood
- Clinical Proteomics Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sara L. Chadwick
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Shufeng Liu
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Guangxiang Luo
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Thomas P. Conrads
- Clinical Proteomics Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Tianyi Wang
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|