51
|
Xu K, Usary J, Kousis PC, Prat A, Wang DY, Adams JR, Wang W, Loch AJ, Deng T, Zhao W, Cardiff RD, Yoon K, Gaiano N, Ling V, Beyene J, Zacksenhaus E, Gridley T, Leong WL, Guidos CJ, Perou CM, Egan SE. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell 2012; 21:626-641. [PMID: 22624713 PMCID: PMC3603366 DOI: 10.1016/j.ccr.2012.03.041] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 10/31/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022]
Abstract
Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng induces basal-like and claudin-low tumors with accumulation of Notch intracellular domain fragments, increased expression of proliferation-associated Notch targets, amplification of the Met/Caveolin locus, and elevated Met and Igf-1R signaling. Human BL breast tumors, commonly associated with JAGGED expression, elevated MET signaling, and CAVEOLIN accumulation, express low levels of LFNG. Thus, reduced LFNG expression facilitates JAG/NOTCH luminal progenitor signaling and cooperates with MET/CAVEOLIN basal-type signaling to promote BLBC.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Calcium-Binding Proteins/metabolism
- Caveolins/genetics
- Caveolins/metabolism
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Claudins/metabolism
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Glycosyltransferases/deficiency
- Glycosyltransferases/genetics
- Glycosyltransferases/metabolism
- Humans
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/transplantation
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Middle Aged
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/transplantation
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Receptor, IGF Type 1/metabolism
- Receptors, Notch/metabolism
- Serrate-Jagged Proteins
- Signal Transduction
Collapse
Affiliation(s)
- Keli Xu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Jerry Usary
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philaretos C Kousis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Aleix Prat
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dong-Yu Wang
- The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Tao Deng
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Wei Zhao
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Keejung Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Gaiano
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vicki Ling
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Joseph Beyene
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Tom Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Wey L Leong
- The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
52
|
Tarragona M, Pavlovic M, Arnal-Estapé A, Urosevic J, Morales M, Guiu M, Planet E, González-Suárez E, Gomis RR. Identification of NOG as a specific breast cancer bone metastasis-supporting gene. J Biol Chem 2012; 287:21346-55. [PMID: 22547073 DOI: 10.1074/jbc.m112.355834] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metastasis requires numerous biological functions that jointly provide tumor cells from a primary site to seed and colonize a distant organ. Some of these activities are selected for in the primary site, whereas others are acquired at the metastatic niche. We provide molecular evidence showing that the BMP inhibitor, NOG, provides metastatic breast cancer cells with the ability to colonize the bone. NOG expression is acquired during the late events of metastasis, once cells have departed from the primary site, because it is not enriched in primary tumors with high risk of bone relapse. On the contrary, breast cancer bone metastatic lesions do select for high levels of NOG expression when compared with metastasis to the lung, liver, and brain. Pivotal to the bone colonization functions is the contribution of NOG to metastatic autonomous and nonautonomous cell functions. Using genetic approaches, we show that when NOG is expressed in human breast cancer cells, it facilitates bone colonization by fostering osteoclast differentiation and bone degradation and also contributes to metastatic lesions reinitiation. These findings reveal how aggressive cancer cell autonomous and nonautonomous functions can be mechanistically coupled to greater bone metastatic potential.
Collapse
Affiliation(s)
- Maria Tarragona
- Oncology Programme, Institute for Research in Biomedicine, IRB-Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Rosen JM. On murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol 2012; 4:a013268. [PMID: 22474010 DOI: 10.1101/cshperspect.a013268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| |
Collapse
|
54
|
Polyak K. On chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2012; 4:4/3/a013417. [PMID: 22383757 DOI: 10.1101/cshperspect.a013417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
55
|
Murshid A, Gong J, Stevenson MA, Calderwood SK. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 2012; 10:1553-68. [PMID: 22043955 DOI: 10.1586/erv.11.124] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular chaperone-peptide complexes extracted from tumors (heat shock protein [HSP] vaccines) have been intensively studied in the preceding two decades, proving to be safe and effective in treating a number of malignant diseases. They offer personalized therapy and target a cross-section of antigens expressed in patients' tumors. Future advances may rely on understanding the molecular underpinnings of this approach to immunotherapy. One property common to HSP vaccines is the ability to stimulate antigen uptake by scavenger receptors on the antigen-presenting cell surface and trigger T-lymphocyte activation. HSPs can also induce signaling through Toll-Like receptors in a range of immune cells and this may mediate the effectiveness of vaccines.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
56
|
Wang G, Wang Z, Sarkar FH, Wei W. Targeting prostate cancer stem cells for cancer therapy. DISCOVERY MEDICINE 2012; 13:135-142. [PMID: 22369972 PMCID: PMC3367460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Prostate cancer is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of prostate cancer. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of prostate cancer could become a novel strategy for better treatment of patients diagnosed with prostate cancer. In this review article, we will summarize the most recent advances in the prostate CSCs field, with particular emphasis on targeting prostate CSCs to treat prostate cancer.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230
| | - Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
57
|
Affiliation(s)
- J M Rosen
- Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| |
Collapse
|
58
|
Abstract
The cancer stem cell (CSC) concept derives from the fact that cancers are dysregulated tissue clones whose continued propagation is vested in a biologically distinct subset of cells that are typically rare. This idea is not new, but has recently gained prominence because of advances in defining normal tissue hierarchies, a greater appreciation of the multistep nature of oncogenesis and improved methods to propagate primary human cancers in immunodeficient mice. As a result we have obtained new insights into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.
Collapse
Affiliation(s)
- Long V Nguyen
- Terry Fox Laboratory, British Columbia Cancer Agency and the University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | |
Collapse
|
59
|
Matrix compliance and RhoA direct the differentiation of mammary progenitor cells. Biomech Model Mechanobiol 2011; 11:1241-9. [PMID: 22161021 DOI: 10.1007/s10237-011-0362-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 11/24/2011] [Indexed: 02/04/2023]
Abstract
The regenerative capacity of the mammary gland following post-lactational involution depends on the presence of multipotent stem or progenitor cells. Mammary progenitor cells exist as a quiescent and self-renewing population capable of differentiating into luminal epithelial and myoepithelial cells and generating ductal and alveolar structures. The fate choices of these cells are regulated by several soluble signals as well as their surrounding extracellular matrix. Whereas matrix stiffness has been implicated in organ-specific differentiation of embryonic and mesenchymal stem cells, the effects of substratum compliance on the more limited fate switches typical of tissue-specific progenitor cells are unknown. Here, we examined how the mechanical properties of the microenvironment affect the differentiation of mammary progenitor cells. Immortalized human mammary progenitor cells were cultured on synthetic hydrogels of varying stiffness, and their self-renewal and fate decisions were quantified. We found that cells cultured on soft substrata differentiated preferentially into luminal epithelial cells, whereas those cultured on stiff substrata differentiated preferentially into myoepithelial cells. Furthermore, pharmacological manipulations of cytoskeletal tension in conjunction with analysis of gene expression revealed that mechanical properties of the microenvironment signal through the small GTPase RhoA and cytoskeletal contractility to modulate the differentiation of mammary progenitor cells. These data suggest that subtle variations in the mechanical compliance of a tissue can direct the fate decisions of its resident progenitor cells.
Collapse
|
60
|
Parathyroid hormone-related protein is not required for normal ductal or alveolar development in the post-natal mammary gland. PLoS One 2011; 6:e27278. [PMID: 22087279 PMCID: PMC3210770 DOI: 10.1371/journal.pone.0027278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.
Collapse
|
61
|
Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479:189-93. [DOI: 10.1038/nature10573] [Citation(s) in RCA: 648] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 09/21/2011] [Indexed: 01/24/2023]
|
62
|
Borowsky AD. Choosing a mouse model: experimental biology in context--the utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol 2011; 3:a009670. [PMID: 21646376 DOI: 10.1101/cshperspect.a009670] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Genetically engineered mice are critical experimental models for the study of breast cancer biology. Transgenic mice, employing strong mammary epithelial promoters to drive oncogenes, develop carcinomas with phenotypes corresponding to the molecular pathway activated. Gene-targeted (knockout) mice, in which tumor suppressors are deleted, develop mammary neoplasms with phenotypes primarily including patterns seen in spontaneous mouse mammary tumors, albeit at higher rates. Improved genetic engineering, using inducible gene expression, somatic gene transduction, conditional alleles, and crossbreeding for combined/compound genetic engineering yields precise molecular models with exquisite experimental control and phenotypes with comparative pathologic validity. Mammary gland transplantation technology adds a practical and validated method for assessing biologic behavior of selected mammary tissues. Overall, the many mouse models available are a rich resource for experimental biology with phenocopies of breast cancer subtypes, and a variety of practical advantages. The challenge is matching the model to the experimental question.
Collapse
Affiliation(s)
- Alexander D Borowsky
- Department of Pathology and Center for Comparative Medicine, University of California at Davis, Davis, California 95616, USA.
| |
Collapse
|
63
|
Abstract
The mammary gland undergoes a spectacular series of changes as it develops, and maintains a remarkable capacity to remodel and regenerate for several decades. Mammary morphogenesis has been investigated for over 100 years, motivated by the dairy industry and cancer biologists. Over the past decade, the gland has emerged as a major model system in its own right for understanding the cell biology of tissue morphogenesis. Multiple signalling pathways from several cell types are orchestrated together with mechanical cues and cell rearrangements to establish the pattern of the mammary gland. The integrated mechanical and molecular pathways that control mammary morphogenesis have implications for the developmental regulation of other epithelial organs.
Collapse
|
64
|
Zheng Q, Dunlap SM, Zhu J, Downs-Kelly E, Rich JN, Hursting SD, Berger NA, Reizes O. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr Relat Cancer 2011; 18:491-503. [PMID: 21636700 PMCID: PMC3197719 DOI: 10.1530/erc-11-0102] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.
Collapse
MESH Headings
- Animals
- Carcinoma/complications
- Carcinoma/genetics
- Carcinoma/pathology
- Cell Proliferation
- Cell Survival/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Down-Regulation/physiology
- Female
- Leptin/deficiency
- Leptin/genetics
- Leptin/physiology
- Mammary Neoplasms, Animal/complications
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Mice, Transgenic
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/physiology
- Obesity/complications
- Obesity/genetics
- Receptors, Leptin/genetics
- Receptors, Leptin/physiology
- Wnt1 Protein/genetics
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sarah M. Dunlap
- Department of Nutritional Sciences, The University of Texas, Austin, TX
| | - Jinling Zhu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Erinn Downs-Kelly
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Stephen D. Hursting
- Department of Nutritional Sciences, The University of Texas, Austin, TX
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Nathan A. Berger
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Ofer Reizes
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
65
|
Serra R, Easter SL, Jiang W, Baxley SE. Wnt5a as an effector of TGFβ in mammary development and cancer. J Mammary Gland Biol Neoplasia 2011; 16:157-67. [PMID: 21416313 PMCID: PMC3107509 DOI: 10.1007/s10911-011-9205-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 01/01/2023] Open
Abstract
Wnt5a is a member of the Wingless-related/MMTV-integration family of secreted growth factors, which are involved in a wide range of cellular processes. Wnt signaling can be broadly divided into two categories the canonical, ß-catenin-dependent pathway and the non-canonical ß-catenin-independent pathway. Wnt5a is a non-canonical signaling member of the Wnt family. Loss of Wnt5a is associated with early relapse of invasive breast cancer, increased metastasis, and poor survival in humans. It has been shown that TGF-ß directly regulates expression of Wnt5a in mammary gland and that Wnt5a mediates the effects of TGF-ß on branching during mammary gland development. Here we review the evidence suggesting Wnt5a acts as an effector of TGF-ß actions in breast cancer. It is suggested that the tumor suppressive functions of TGF-ß involve Wnt5a-mediated antagonism of Wnt/ß-catenin signaling and limiting the stem cell population. Interactions between TGF-ß and Wnt5a in metastasis appear to be more complex, and may depend on specific cues from the microenvironment as well as activation of specific intracellular signaling pathways.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
66
|
Rock JR, Hogan BLM. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011; 27:493-512. [PMID: 21639799 DOI: 10.1146/annurev-cellbio-100109-104040] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate lung is elegantly patterned to carry out gas exchange and host defense. Similar to other organ systems, endogenous stem and progenitor cells fuel the organogenesis of the lung and maintain homeostasis in the face of normal wear and tear. In the context of acute injury, these progenitor populations are capable of effecting efficient repair. However, chronic injury, inflammation, and immune rejection frequently result in pathological airway remodeling and serious impairment of lung function. Here, we review the development, maintenance, and repair of the vertebrate respiratory system with an emphasis on the roles of epithelial stem and progenitor cells. We discuss what is currently known about their identities, lineage relationships, and the mechanisms that regulate their differentiation along various lineages. A deeper understanding of these progenitor populations will undoubtedly accelerate the discovery of improved cellular, genetic, molecular, and bioengineered therapies for lung disease.
Collapse
Affiliation(s)
- Jason R Rock
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
67
|
From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 2011; 21:245-57. [PMID: 21243011 DOI: 10.1038/cr.2011.11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy. In recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer. In particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ER/PR(-) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/PR(+) tumors.
Collapse
|