51
|
Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Med Genomics 2017; 10:18. [PMID: 28340577 PMCID: PMC5423421 DOI: 10.1186/s12920-017-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare mutations, are still not well understood. Methods We performed a bioinformatics study of the p53 pathway function at the gene expression level on our collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry. Results We revealed significant and differential alterations of p53 pathway-related gene expression in most of the AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL, accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation. Conclusions Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Abramowitz
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel.
| | - Tzahi Neuman
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| |
Collapse
|
52
|
Simon HU, Friis R, Tait SWG, Ryan KM. Retrograde signaling from autophagy modulates stress responses. Sci Signal 2017; 10:eaag2791. [PMID: 28246201 DOI: 10.1126/scisignal.aag2791] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macroautophagy is a process in which cytoplasmic components, including whole organelles, are degraded within lysosomes. Basally, this process is essential for homeostasis and is constitutively functional in most cells, but it can also be implemented as part of stress responses. We discuss findings showing that autophagy proteins can modulate and amplify the activities of transcription factors involved in stress responses, such as those in the p53, FOXO, MiT/TFE, Nrf2, and NFκB/Rel families. Thus, transcription factors not only amplify stress responses and autophagy but are also subject to retrograde regulation by autophagy-related proteins. Physical interactions with autophagy-related proteins, competition for activating intermediates, and "signalphagy," which is the role autophagy plays in the degradation of specific signaling proteins, together provide powerful tools for implementing negative feedback or positive feed-forward loops on the transcription factors that regulate autophagy. We present examples illustrating how this network interacts to regulate metabolic and physiologic responses.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland.
| | - Robert Friis
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | | | - Kevin M Ryan
- Cancer Research U.K. Beatson Institute, Glasgow G61 1BD, U.K
| |
Collapse
|
53
|
Baloch AH, Khosa AN, Bangulzai N, Shuja J, Naseeb HK, Jan M, Marghazani IB, Kakar MUH, Baloch DM, Cheema AM, Ahmad J. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified dentified in Breast Cancer Patients from Balochistan. Asian Pac J Cancer Prev 2017; 17:1089-92. [PMID: 27039729 DOI: 10.7314/apjcp.2016.17.3.1089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most commonly occurring and leading cause of cancer deaths among women globally. Hereditary cases account 5-10% of all the cases and CHEK2 is considered as a moderate penetrance breast cancer risk gene. CHEK2 plays a crucial role in response to DNA damage to promote cell cycle arrest and repair DNA damage or induce apoptosis. Our objective in the current study was to analyze mutations in the CHEK2 gene related to breast cancer in Balochistan. A total of 271 individuals including breast cancer patients and normal subjects were enrolled. All 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) had invasive ductal carcinomas (IDCs), 52.1% were diagnosed with tumor grade III and 56.1% and 27.5% were diagnosed with advance stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified in the current study. Both the variants identified were novel and have not been reported elsewhere.
Collapse
Affiliation(s)
- Abdul Hameed Baloch
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan E-mail :
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Long Y, Yu M, Li P, Islam S, Goh AW, Kumarasiri M, Wang S. Synthesis and biological evaluation of heteroaryl styryl sulfone derivatives as anticancer agents. Bioorg Med Chem Lett 2016; 26:5674-5678. [DOI: 10.1016/j.bmcl.2016.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
|
55
|
Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res 2016; 44:10017-10030. [PMID: 27738139 PMCID: PMC5137451 DOI: 10.1093/nar/gkw922] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization.
Collapse
Affiliation(s)
- Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
56
|
Higashiguchi M, Nagatomo I, Kijima T, Morimura O, Miyake K, Minami T, Koyama S, Hirata H, Iwahori K, Takimoto T, Takeda Y, Kida H, Kumanogoh A. Clarifying the biological significance of the CHK2 K373E somatic mutation discovered in The Cancer Genome Atlas database. FEBS Lett 2016; 590:4275-4286. [PMID: 27716909 DOI: 10.1002/1873-3468.12449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022]
Abstract
We identified CHK2 K373E as a recurrent mutation in The Cancer Genome Atlas (TCGA) database. In this study, we demonstrate that the K373E mutation disrupts CHK2 autophosphorylation as well as kinase activity, thus leading to impairment of CHK2 functions in suppressing cell proliferation and promoting cell survival after ionizing radiation. We propose that K373E impairs p53-independent induction of p21WAF1/CIP1 by CHK2. Our data implicate the K373E mutation of CHK2 in tumorigenesis.
Collapse
Affiliation(s)
- Masayoshi Higashiguchi
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan.,Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Japan
| | - Osamu Morimura
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Takayuki Takimoto
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan.,Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Japan.,AMED-CREST, Osaka, Japan
| |
Collapse
|
57
|
Jin C, Qin T, Barton MC, Jelinek J, Issa JPJ. Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells. Epigenetics 2016; 10:1006-13. [PMID: 26440216 DOI: 10.1080/15592294.2015.1091145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation.
Collapse
Affiliation(s)
- Chunlei Jin
- a Fels Institute for Cancer Research and Molecular Biology; Temple University ; Philadelphia , PA USA.,b Department of Epigenetics and Molecular Carcinogenesis ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Taichun Qin
- c Department of Cancer Biology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Michelle Craig Barton
- b Department of Epigenetics and Molecular Carcinogenesis ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Jaroslav Jelinek
- a Fels Institute for Cancer Research and Molecular Biology; Temple University ; Philadelphia , PA USA
| | - Jean-Pierre J Issa
- a Fels Institute for Cancer Research and Molecular Biology; Temple University ; Philadelphia , PA USA
| |
Collapse
|
58
|
Ge J, Wang C, Nie X, Yang J, Lu H, Song X, Su K, Li T, Han J, Zhang Y, Mao J, Gu Y, Zhao J, Jiang S, Wu Q. ROS-mediated apoptosis of HAPI microglia through p53 signaling following PFOS exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:9-16. [PMID: 27414741 DOI: 10.1016/j.etap.2016.06.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/26/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
Perfluorooctane sulfonate (PFOS), the most extensively studied member of perfluoroalkyl and polyfluoroalkyl substances (PFASs), has been thought to be toxic to the central nervous system (CNS) of mammals. However, the neurotoxic effects of PFOS remain largely unknown. In this study, the effect of PFOS on microglial apoptosis was examined. The results showed that PFOS could significantly reduce the cell viability and mediate cell apoptosis in HAPI microglia, which was closely accompanied with ROS production and p53 overexpression. Moreover, p53 interference significantly ameliorated PFOS-triggered cytotoxic effects in HAPI microglia, including the downregulation of cleaved PARP and cleaved caspase 3. Interestingly, NAC, a ROS inhibitor, inhibited p53 expression, and decreased the apoptosis of HAPI microglia. Taken together, these findings suggest that upregulated production of ROS plays a vital role in PFOS-mediated apoptosis in HAPI microglia via the modulation of p53 signaling.
Collapse
Affiliation(s)
- Jianbin Ge
- Physiatry Department, The Second People's Hospital of Nan Tong, Nantong, Jiangsu 226001, People's Republic of China
| | - Cheng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jianbin Yang
- Department of Public Health, The Second People's Hospital of Nan Tong, Nantong, Jiangsu 226001, People's Republic of China
| | - Hongjian Lu
- Physiatry Department, The Second People's Hospital of Nan Tong, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinjian Song
- Physiatry Department, The Second People's Hospital of Nan Tong, Nantong, Jiangsu 226001, People's Republic of China
| | - Kai Su
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Ting Li
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jingling Han
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jiamin Mao
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yiyang Gu
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shengyang Jiang
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
59
|
Chipps E, Protzman A, Muhi MZ, Ando S, Calvet JP, Islam MR. Nuclear Localization Signal and p53 Binding Site in MAP/ERK Kinase Kinase 1 (MEKK1). J Cell Biochem 2016; 116:2903-14. [PMID: 26018553 DOI: 10.1002/jcb.25238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Previously, we showed that Mekk1 translocates to the nucleus, interacts with tumor suppressor protein p53, and co-represses PKD1 transcription via an atypical p53 binding site on the minimal PKD1 promoter (JBC 285:38,818-38,831, 2010). In this study, we report the mechanisms of Mekk1 nuclear transport and p53 binding. Using GFP-linked constitutively active-Mekk1 (CA-Mekk1) and a deletion strategy, we identified a nuclear localization signal (HRDVK) located at amino acid (aa) residues 1,349-1,353 in the C-terminal Mekk1 catalytic domain. Deletion of this sequence in CA-Mekk1 and full-length Mekk1 significantly reduced their nuclear translocation in both HEK293T and COS-1 cells. Using co-immunoprecipitation, we identified an adjacent sequence (GANLID, aa 1,354-1,360) in Mekk1 responsible for p53 binding. Deletion of this sequence markedly reduced the interaction of Mekk1 with p53. Mekk1 does not appear to affect phosphorylation of Ser15, located in the Mdm2 interaction site, or other Ser residues in p53. However, Mekk1 mediates p53 protein stability in the presence of Mdm2 and reduces p53 ubiquitination, suggesting an interference with Mdm2-mediated degradation of p53 by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Elizabeth Chipps
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - April Protzman
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - M Zubayed Muhi
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - Shoko Ando
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - James P Calvet
- Department of Biochemistry and Molecular Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - M Rafiq Islam
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| |
Collapse
|
60
|
Sakai D, Trainor PA. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development. Dev Growth Differ 2016; 58:577-85. [PMID: 27481486 DOI: 10.1111/dgd.12305] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 01/10/2023]
Abstract
One-third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore, understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However, our understanding of the mechanisms that induce tissue-specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies.
Collapse
Affiliation(s)
- Daisuke Sakai
- Doshisha University, Graduate School of Brain Science, HC301 1-3 Tataramiyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| |
Collapse
|
61
|
Liu D, Cui L, Wang Y, Yang G, He J, Hao R, Fan C, Qu M, Liu Z, Wang M, Chen L, Li H, Guo D. Hepatitis B e antigen and its precursors promote the progress of hepatocellular carcinoma by interacting with NUMB and decreasing p53 activity. Hepatology 2016; 64:390-404. [PMID: 27106262 DOI: 10.1002/hep.28594] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/05/2016] [Accepted: 03/24/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Hepatitis B viral infection is one of the leading causes of hepatocellular carcinoma (HCC) worldwide. Although several viral factors have been identified that may increase the risk for HCC development, the molecular mechanisms leading to the transformation of normal hepatocytes into cancer cells remain elusive. In this study, we demonstrated that the intracellular hepatitis B e antigen (HBeAg) and its precore precursors, but not their homologous core protein, could associate with NUMB and thereby impair the stability and transcriptional activity of tumor suppressor p53. HBeAg and its precursors could disrupt p53-NUMB and HDM2-NUMB interactions and tricomplex p53-HDM2-NUMB formation, inhibit the acetylation and translocation of p53 from cytosol to the nucleus, promote HDM2-mediated ubiquitination and degradation of p53, and suppress p53-dependent apoptosis. A xenograft tumorigenicity assay showed that expression of HBeAg and its precursors promoted carcinogenesis in a mouse model. Immunohistochemical analysis of the bioptic liver samples of HCC patients revealed that HBeAg positivity was associated with reduced transcriptional activity of p53. Taken together, the results suggest a role of intracellular HBeAg and its precursors in HCC development. CONCLUSION HBeAg and its precursors promote HDM2-mediated degradation and impair transcriptional activity of p53 by interacting with NUMB, consequently contributing to HCC development. (Hepatology 2016;64:390-404).
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Lei Cui
- Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Yuan Wang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Jing He
- Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Ruidong Hao
- Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Chengpeng Fan
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Mengmeng Qu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Zhepeng Liu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Min Wang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Lang Chen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hui Li
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Deyin Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
62
|
Wasylishen AR, Lozano G. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026211. [PMID: 27329033 DOI: 10.1101/cshperspect.a026211] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p53 pathway is perturbed in the majority of human cancers. Although this most frequently occurs through the direct mutation or deletion of p53 itself, there are a number of other alterations that can attenuate the pathway and contribute to tumorigenesis. For example, amplification of important negative regulators, MDM2 and MDM4, occurs in a number of cancers. In this work, we will review both the normal regulation of the p53 pathway and the different mechanisms of pathway inhibition in cancer, discuss these alterations in the context of the global genomic analyses that have been conducted across tumor types, and highlight the translational implications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
63
|
Ah-Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin-Blank N, Fabre EE, Schischmanoff O. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med 2016; 20:1956-65. [PMID: 27464833 PMCID: PMC5020624 DOI: 10.1111/jcmm.12887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy.
Collapse
Affiliation(s)
- Laurent Ah-Koon
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Denis Lesage
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Elodie Lemadre
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Inès Souissi
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Remi Fagard
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France.,AP-HP, GHU-PSSD, Hôpital Avicenne, Service de Biochimie, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, Bobigny, France. .,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France.
| | - Emmanuelle E Fabre
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France.,AP-HP, GHU-PSSD, Hôpital Avicenne, Service de Biochimie, Bobigny, France
| | - Olivier Schischmanoff
- INSERM, U978, Bobigny, France. .,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France. .,AP-HP, GHU-PSSD, Hôpital Avicenne, Service de Biochimie, Bobigny, France.
| |
Collapse
|
64
|
Petkova R, Chelenkova P, Tournev I, Chakarov S. The minus of a plus is a minus. Mass death of selected neuron populations in sporadic late-onset neurodegenerative disease may be due to a combination of subtly decreased capacity to repair oxidative DNA damage and increased propensity for damage-related apoptosis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rumena Petkova
- Scientific Technological Service (STS) Ltd., Sofia, Bulgaria
| | - Pavlina Chelenkova
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Ivaylo Tournev
- Clinic of Neurology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
65
|
Weng Ng WT, Shin JS, Roberts TL, Wang B, Lee CS. Molecular interactions of polo-like kinase 1 in human cancers. J Clin Pathol 2016; 69:557-62. [PMID: 26941182 DOI: 10.1136/jclinpath-2016-203656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms.
Collapse
Affiliation(s)
- Wayne Tiong Weng Ng
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Tara Laurine Roberts
- Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia Cancer Pathology, Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
66
|
Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. Mechanisms of Cell Killing Response from Low Linear Energy Transfer (LET) Radiation Originating from (177)Lu Radioimmunotherapy Targeting Disseminated Intraperitoneal Tumor Xenografts. Int J Mol Sci 2016; 17:ijms17050736. [PMID: 27196891 PMCID: PMC4881558 DOI: 10.3390/ijms17050736] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 12/23/2022] Open
Abstract
Radiolabeled antibodies (mAbs) provide efficient tools for cancer therapy. The combination of low energy β(-)-emissions (500 keVmax; 130 keVave) along with a γ-emission for imaging makes (177)Lu (T1/2 = 6.7 day) a suitable radionuclide for radioimmunotherapy (RIT) of tumor burdens possibly too large to treat with α-particle radiation. RIT with (177)Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts) were treated with (177)Lu-trastuzumab comparatively to animals treated with a non-specific control, (177)Lu-HuIgG, and then to prior published results obtained using (212)Pb-trastuzumab, an α-particle RIT agent. (177)Lu-trastuzumab induced cell death via DNA double strand breaks (DSB), caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein (212)Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. (177)Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β(-)- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β(-)-particle RIT for the management of intraperitoneal disease.
Collapse
Affiliation(s)
- Kwon Joong Yong
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| | - Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| | - Kwamena E Baidoo
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| | - Martin W Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| |
Collapse
|
67
|
Zheng CH, Yang W, Chong YW, Xia JF. Identification of mutated driver pathways in cancer using a multi-objective optimization model. Comput Biol Med 2016; 72:22-9. [PMID: 26995027 DOI: 10.1016/j.compbiomed.2016.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022]
Abstract
New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context.
Collapse
Affiliation(s)
- Chun-Hou Zheng
- College of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, China
| | - Wu Yang
- College of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, China
| | - Yan-Wen Chong
- State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Jun-Feng Xia
- Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
68
|
Sakai D, Dixon J, Achilleos A, Dixon M, Trainor PA. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation. Nat Commun 2016; 7:10328. [PMID: 26792133 PMCID: PMC4735750 DOI: 10.1038/ncomms10328] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022] Open
Abstract
Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype-phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1(+/-) mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies.
Collapse
Affiliation(s)
- Daisuke Sakai
- Organization for Research Initiatives and Development, Doshisha University, Karasuma Higashi-iru, Imadegawa-dori, Kamigyo, Kyoto 602-8580, Japan
| | - Jill Dixon
- Dental School, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annita Achilleos
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | - Michael Dixon
- Dental School, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Paul A. Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
69
|
Luo H, Cowen L, Yu G, Jiang W, Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov 2016; 2:15042. [PMID: 27462439 PMCID: PMC4860962 DOI: 10.1038/celldisc.2015.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The p53 tumor suppressor functions as a transcription factor and plays a pivotal role in regulation of cellular response to DNA damage by activating various genes including those involved in cell cycle arrest. p53 stability is essential for its function during stress response; however, the molecular mechanism for DNA damage-induced stabilization of p53 is not fully understood. In our present study, we have identified SMG7 (suppressor with morphological defects in genitalia 7), also known as EST1C, as a novel p53-binding protein. SMG7 is an mRNA surveillance factor implicated in degradation of p53 mRNA-containing nonsense mutations, yet it is completely unknown whether SMG7 regulates p53 function. Here, we show that SMG7 has a crucial role in p53-mediated response to genotoxic stress by regulating p53 stability. Using somatic gene knockout, we found that deletion of SMG7 abrogates DNA damage-induced p53 stabilization, although it exhibits minimal effect on the basal levels of p53. Importantly, loss of SMG7 impairs p53-mediated activation of p21 and cell cycle arrest following DNA damage. Pharmacological inhibition of Mdm2, a major E3 ubiquitin ligase for p53, restored p53 stability in gamma-irradiated SMG7-deficient cells. Furthermore, SMG7 physically interacts with Mdm2 and promotes ATM-mediated inhibitory phosphorylation of Mdm2 following ionizing radiation. Therefore, our present data demonstrate that SMG7 is critical for p53 function in DNA damage response, and reveal the SMG7-mediated phosphorylation of Mdm2 as a previously unknown mechanism for p53 regulation.
Collapse
Affiliation(s)
- Hongwei Luo
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Lauren Cowen
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Guowu Yu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Wenguo Jiang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Yi Tang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| |
Collapse
|
70
|
Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Oncotarget 2016; 6:6684-707. [PMID: 25788262 PMCID: PMC4466643 DOI: 10.18632/oncotarget.3246] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.
Collapse
|
71
|
García-Limones C, Lara-Chica M, Jiménez-Jiménez C, Pérez M, Moreno P, Muñoz E, Calzado MA. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene 2016; 35:4289-301. [PMID: 26751770 DOI: 10.1038/onc.2015.495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023]
Abstract
The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.
Collapse
Affiliation(s)
- C García-Limones
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - C Jiménez-Jiménez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Pérez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - P Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - E Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M A Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
72
|
Sheikh A, Hussain SA, Ghori Q, Naeem N, Fazil A, Giri S, Sathian B, Mainali P, Al Tamimi DM. The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev 2016; 16:2177-85. [PMID: 25824734 DOI: 10.7314/apjcp.2015.16.6.2177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common malignancy in women around the world. About one in 12 women in the West develop breast cancer at some point in life. It is estimated that 5%-10% of all breast cancer cases in women are linked to hereditary susceptibility due to mutations in autosomal dominant genes. The two key players associated with high breast cancer risk are mutations in BRCA 1 and BRCA 2. Another highly important mutation can occur in TP53 resulting in a triple negative breast cancer. However, the great majority of breast cancer cases are not related to a mutated gene of high penetrance, but to genes of low penetrance such as CHEK2, CDH1, NBS1, RAD50, BRIP1 and PALB2, which are frequently mutated in the general population. In this review, we discuss the entire spectrum of mutations which are associated with breast cancer.
Collapse
Affiliation(s)
- Asfandyar Sheikh
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
ElSawy KM, Sim A, Lane DP, Verma CS, Caves LS. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2. Cell Cycle 2015; 14:179-88. [PMID: 25584963 DOI: 10.4161/15384101.2014.989043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.
Collapse
Affiliation(s)
- Karim M ElSawy
- a York Center for Complex Systems Analysis (YCCSA); University of York ; York , UK
| | | | | | | | | |
Collapse
|
74
|
|
75
|
Chakraborty R, Li Y, Zhou L, Golic KG. Corp Regulates P53 in Drosophila melanogaster via a Negative Feedback Loop. PLoS Genet 2015; 11:e1005400. [PMID: 26230084 PMCID: PMC4521751 DOI: 10.1371/journal.pgen.1005400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressor P53 is a critical mediator of the apoptotic response to DNA double-strand breaks through the transcriptional activation of pro-apoptotic genes. This mechanism is evolutionarily conserved from mammals to lower invertebrates, including Drosophila melanogaster. P53 also transcriptionally induces its primary negative regulator, Mdm2, which has not been found in Drosophila. In this study we identified the Drosophila gene companion of reaper (corp) as a gene whose overexpression promotes survival of cells with DNA damage in the soma but reduces their survival in the germline. These disparate effects are shared by p53 mutants, suggesting that Corp may be a negative regulator of P53. Confirming this supposition, we found that corp negatively regulates P53 protein level. It has been previously shown that P53 transcriptionally activates corp; thus, Corp produces a negative feedback loop on P53. We further found that Drosophila Corp shares a protein motif with vertebrate Mdm2 in a region that mediates the Mdm2:P53 physical interaction. In Corp, this motif mediates physical interaction with Drosophila P53. Our findings implicate Corp as a functional analog of vertebrate Mdm2 in flies.
Collapse
Affiliation(s)
- Riddhita Chakraborty
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ying Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kent G. Golic
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
76
|
Mondesert O, Frongia C, Clayton O, Boizeau ML, Lobjois V, Ducommun B. Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model. PLoS One 2015. [PMID: 26225756 PMCID: PMC4520595 DOI: 10.1371/journal.pone.0134411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Monitoring the DNA-Damage Response (DDR) activated pathway in multicellular tumor spheroid models is an important challenge as these 3D models have demonstrated their major relevance in pharmacological evaluation. Herein we present DDR-Act-FP, a fluorescent biosensor that allows detection of DDR activation through monitoring of the p21 promoter p53-dependent activation. We show that cells expressing the DDR-Act-FP biosensor efficiently report activation of the DDR pathway after DNA damage and its pharmacological manipulation using ATM kinase inhibitors. We also report the successful use of this assay to screen a small compound library in order to identify activators of the DDR response. Finally, using multicellular spheroids expressing the DDR-Act-FP we demonstrate that DDR activation and its pharmacological manipulation with inhibitory and activatory compounds can be efficiently monitored in live 3D spheroid model. This study paves the way for the development of innovative screening and preclinical evaluation assays.
Collapse
Affiliation(s)
- Odile Mondesert
- Université de Toulouse; ITAV-USR3505, F-31106 Toulouse, France
- CNRS; ITAV-USR3505, F-31106 Toulouse, France
| | - Céline Frongia
- Université de Toulouse; ITAV-USR3505, F-31106 Toulouse, France
- CNRS; ITAV-USR3505, F-31106 Toulouse, France
| | - Olivia Clayton
- Université de Toulouse; ITAV-USR3505, F-31106 Toulouse, France
- CNRS; ITAV-USR3505, F-31106 Toulouse, France
| | - Marie-Laure Boizeau
- Université de Toulouse; ITAV-USR3505, F-31106 Toulouse, France
- CNRS; ITAV-USR3505, F-31106 Toulouse, France
| | - Valérie Lobjois
- Université de Toulouse; ITAV-USR3505, F-31106 Toulouse, France
- CNRS; ITAV-USR3505, F-31106 Toulouse, France
- * E-mail: (BD); (VL)
| | - Bernard Ducommun
- Université de Toulouse; ITAV-USR3505, F-31106 Toulouse, France
- CNRS; ITAV-USR3505, F-31106 Toulouse, France
- CHU de Toulouse; F-31059 Toulouse, France
- * E-mail: (BD); (VL)
| |
Collapse
|
77
|
Abstract
In order to maintain genomic stability, cells have developed sophisticated signalling pathways to enable DNA damage or DNA replication stress to be resolved. Key mediators of this DNA damage response (DDR) are the ATM and ATR kinases, which induce cell cycle arrest and facilitate DNA repair via their downstream targets. Inhibiting the DDR has become an attractive therapeutic concept in cancer therapy, since (i) resistance to genotoxic therapies has been associated with increased DDR signalling, and (ii) many cancers have defects in certain components of the DDR rendering them highly dependent on the remaining DDR pathways for survival. ATM and ATR act as the apical regulators of the response to DNA double strand breaks and replication stress, respectively, with overlapping but non-redundant activities. Highly selective small molecule inhibitors of ATM and ATR are currently in preclinical and clinical development, respectively. Preclinical data have provided a strong rationale for clinical testing of these compounds both in combination with radio- or chemotherapy, and in synthetic lethal approaches to treat tumours with deficiencies in certain DDR components. Whole genome sequencing studies have reported that mutations in DDR genes occur with a high frequency in many common tumour types, suggesting that a synthetic lethal approach with ATM or ATR inhibitors could have widespread utility, providing that appropriate biomarkers are developed.
Collapse
Affiliation(s)
- Anika Maria Weber
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anderson Joseph Ryan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
78
|
Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 2015; 129:511-25. [PMID: 25618528 PMCID: PMC4366542 DOI: 10.1007/s00401-015-1382-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective treatment is available. Increased insight into the disease mechanism in early stages of pathology is required for the development of a successful therapy. Over the years, numerous studies have shown that cell cycle proteins are expressed in neurons of AD patients. Traditionally, neurons are considered to be post-mitotic, which means that they permanently retract from the cell cycle. The expression of cell cycle proteins in adult neurons of AD patients has therefore been suggested to promote or even instigate pathomechanisms underlying AD. Interestingly, expression of cell cycle proteins is detected in post-mitotic neurons of healthy controls as well, albeit to a lesser extent than in AD patients. This indicates that cell cycle proteins may serve important physiological functions in differentiated neurons. Here, we provide an overview of studies that support a role of cell cycle proteins in DNA repair and neuroplasticity in post-mitotic neurons. Aberrant control of these processes could, in turn, contribute to cell cycle-mediated neurodegeneration. The balance between regenerative and degenerative effects of cell cycle proteins in post-mitotic neurons might change throughout the different stages of AD. In the early stages of AD pathology, cell cycle protein expression may primarily occur to aid in the repair of sublethal double-strand breaks in DNA. With the accumulation of pathology, cell cycle-mediated neuroplasticity and neurodegeneration may become more predominant. Understanding the physiological and pathophysiological role of cell cycle proteins in AD could give us more insight into the neurodegenerative process in AD.
Collapse
|
79
|
Ma X, Han J, Wu Q, Liu H, Shi S, Wang C, Wang Y, Xiao J, Zhao J, Jiang J, Wan C. Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett 2015; 235:17-27. [PMID: 25791630 DOI: 10.1016/j.toxlet.2014.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
Overexposure to manganese (Mn) has been known to induce neuronal death and neurodegenerative symptoms. However, the precise mechanisms underlying Mn neurotoxicity remain incompletely understood. In the present study, we established a Mn-exposed rat model and found that downregulation of wild type p53-induced phosphatase 1 (Wip1) might contribute to p53 activation and resultant neuronal apoptosis following Mn exposure. Western blot and immunohistochemical analyses revealed that the expression of Wip1 was markedly decreased following Mn exposure. In addition, immunofluorescence assay demonstrated that Mn exposure led to significant reduction in the number of Wip1-positive neurons. Accordingly, the expression of Mdm2 was progressively decreased, which was accompanied with markedly increased expression of p53, as well as the ratio of Bax/Bcl-xl. Furthermore, we showed that Mn exposure decreased the viability and induced apparent apoptosis in NFG-differentiated neuron-like PC12 cells. Importantly, the expression of Wip1 decreased progressively, whereas the level of cellular p53 and the ratio of Bax/Bcl-xl were elevated, which resembled the expression of the proteins in animal model studies. Depletion of p53 significantly ameliorated Mn-mediated cytotoxic effect in PC12 cells. In addition, ectopic expression of Wip1 attenuated Mn-induced p53 signaling as well as apoptosis in PC12 cells. Finally, we observed that depletion of Wip1 augmented Mn-induced apoptosis in PC12 cells. Collectively, these findings suggest that downregulated Wip1 expression plays an important role in Mn-induced neuronal death in the brain striatum via the modulation of p53 signaling.
Collapse
Affiliation(s)
- Xia Ma
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jingling Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Qiyun Wu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Hanzhang Liu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Shangshi Shi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Cheng Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Yueran Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jing Xiao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China; The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China.
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China; The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
80
|
Fayaz S, Fard-Esfahani P, Torbati PM. Lack of CHEK2 gene mutations in differentiated thyroid carcinoma patients using high resolution melting analysis. Asian Pac J Cancer Prev 2015; 15:5019-22. [PMID: 24998580 DOI: 10.7314/apjcp.2014.15.12.5019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recently, mutations in the genes involved in cell cycle control, including CHEK2, are being considered as etiological factors in different kinds of cancers. The CHEK2 protein plays an important role in protecting damaged DNA from entering mitosis. In this study the potential effects of two common mutations IVS2+1G?A and Ile157Thr of CHEK2 gene in differentiated thyroid carcinoma (DTC) were evaluated. A total of 100 patients admitted to the Research Institute for Nuclear Medicine were diagnosed with DTC based on pathology reports of surgery samples. An additional 100 people were selected as a control group with no cancer history. PCR-HRM (high resolution melting) analysis was performed to deal with each of mutations in all case and control samples separately. During the analysis of IVS2+1G?A and Ile157Thr mutations of CHEK2 gene in the case and control groups, all the samples were identified as wild homozygote type. The finding suggests that IVS2+1G?A and Ile157Thr mutations of CHEK2 gene do not constitute a risk factor for DTC in the Iranian population. However, further studies with a larger population are required to confirm the outcome.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran E-mail :
| | | | | |
Collapse
|
81
|
Yu J, Wilson J, Taylor L, Polgar P. DNA microarray and signal transduction analysis in pulmonary artery smooth muscle cells from heritable and idiopathic pulmonary arterial hypertension subjects. J Cell Biochem 2015; 116:386-97. [PMID: 25290246 PMCID: PMC4391824 DOI: 10.1002/jcb.24987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular smooth muscle contraction and proliferation. Here, we analyze genome-wide mRNA expression in human pulmonary arterial smooth muscle cells (HPASMC) isolated from three control, three hereditary (HPAH), and three idiopathic PAH (IPAH) subjects using the Affymetrix Human Gene ST 1.0 chip. The microarray analysis reveals the expression of 537 genes in HPAH and 1024 genes in IPAH changed compared with control HPASMC. Among those genes, 227 genes show similar directionality of expression in both HPAH and IPAH HPASMC. Ingenuity™ Pathway Analysis (IPA) suggests that many of those genes are involved in cellular growth/proliferation and cell cycle regulation and that signaling pathways such as the mitotic activators, polo-like kinases, ATM signaling are activated under PAH conditions. Furthermore, the analysis demonstrates downregulated mRNA expression of certain vasoactive receptors such as bradykinin receptor B2 (BKB2R). Using real time PCR, we verified the downregulated BKB2R expression in the PAH cells. Bradykinin-stimulated calcium influx is also decreased in PAH PASMC. IPA also identified transcriptional factors such p53 and Rb as downregulated, and FoxM1 and Myc as upregulated in both HPAH and IPAH HPASMC. The decreased level of phospho-p53 in PAH cells was confirmed with a phospho-protein array; and we experimentally show a dysregulated proliferation of both HPAH and IPAH PASMC. Together, the microarray experiments and bioinformatics analysis highlight an aberrant proliferation and cell cycle regulation in HPASMC from PAH subjects. These newly identified pathways may provide new targets for the treatment of both hereditary and idiopathic PAH.
Collapse
MESH Headings
- Antibodies, Phospho-Specific/metabolism
- Case-Control Studies
- Cell Cycle/genetics
- Cell Proliferation
- Cells, Cultured
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Phosphorylation
- Principal Component Analysis
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jamie Wilson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
82
|
Wang N, Ding H, Liu C, Li X, Wei L, Yu J, Liu M, Ying M, Gao W, Jiang H, Wang Y. A novel recurrent CHEK2 Y390C mutation identified in high-risk Chinese breast cancer patients impairs its activity and is associated with increased breast cancer risk. Oncogene 2015; 34:5198-205. [PMID: 25619829 DOI: 10.1038/onc.2014.443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023]
Abstract
Certain predisposition factors such as BRCA1/2 and CHEK2 mutations cause familial breast cancers that occur early. In China, breast cancers are diagnosed at relatively younger age, and higher percentage of patients are diagnosed before 40 years, than that in Caucasians. However, the prevalence for BRCA1/2 mutations and reported CHEK2 germline mutations is much lower or absent in Chinese population, arguing for the need to study other novel risk alleles among Chinese breast cancer patients. In this study, we searched for CHEK2 mutations in young, high-risk breast cancer patients in China and detected a missense variant Y390C (1169A > G) in 12 of 150 patients (8.0%) and 2 in 250 healthy controls (0.8%, P = 0.0002). Four of the Y390C carriers have family history of breast and/or ovarian cancer. In patients without family history, Y390C carriers tend to develop breast cancer early, before 35 years of age. The codon change at Y390, a highly conserved residue located in CHEK2's kinase domain, appeared to significantly impair CHEK2 activity. Functional analysis suggested that the CHEK2 Y390C mutation is deleterious as judged by the mutant protein's inability to inactivate CDC25A or to activate p53 after DNA damage. Cells expressing the CHEK2 Y390C variant showed impaired p21 and Puma expression after DNA damage, and the deregulated cell cycle checkpoint and apoptotic response may help conserve mutations and therefore contribute to tumorigeneisis. Taken together, our results not only identified a novel CHEK2 allele that is associated with cancer families and confers increased breast cancer risk, but also showed that this allele significantly impairs CHEK2 function during DNA damage response. Our results provide further insight on how the function of such an important cancer gene may be impaired by existing mutations to facilitate tumorigenesis. It also offers a new subject for breast cancer monitoring, prevention and management.
Collapse
Affiliation(s)
- N Wang
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - H Ding
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Liu
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - X Li
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - L Wei
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Department of Oncology, the 401 hospital of PLA, Qingdao, China
| | - J Yu
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - M Liu
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - M Ying
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - W Gao
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - H Jiang
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Wang
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Xinhua Cancer Center, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
83
|
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014; 7:30-69. [PMID: 25545885 PMCID: PMC4381250 DOI: 10.3390/cancers7010030] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Dawn E Quelle
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
84
|
Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol 2014; 6:442-57. [PMID: 25404613 PMCID: PMC4296918 DOI: 10.1093/jmcb/mju045] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy.
Collapse
Affiliation(s)
- Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
85
|
Neganova I, Tilgner K, Buskin A, Paraskevopoulou I, Atkinson SP, Peberdy D, Passos JF, Lako M. CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells. Cell Death Dis 2014; 5:e1508. [PMID: 25375373 PMCID: PMC4260724 DOI: 10.1038/cddis.2014.464] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) are characterised by an unusual and tightly regulated cell cycle that has been shown to be important for the maintenance of a pluripotent phenotype. Cyclin-dependant kinase 1 (CDK1) is a key player in cell cycle regulation and particularly mitosis; however, its role has not been studied previously in hESC and hiPSC. To investigate the impacts of CDK1 downregulation, we performed RNA interference studies which in addition to expected mitotic deficiencies revealed a large range of additional phenotypes related to maintenance of pluripotency, ability to repair double strand breaks (DSBs) and commitment to apoptosis. Downregulation of CDK1 led to the loss of typical pluripotent stem cell morphology, downregulation of pluripotency markers and upregulation of a large number of differentiation markers. In addition, human pluripotent stem cells with reduced CDK1 expression accumulated a higher number of DSBs were unable to activate CHK2 expression and could not maintain G2/M arrest upon exposure to ionising radiation. CDK1 downregulation led to the accumulation of cells with abnormal numbers of mitotic organelles, multiple chromosomal abnormalities and polyploidy. Furthermore, such cells demonstrated an inability to execute apoptosis under normal culture conditions, despite a significant increase in the expression of active PARP1, resulting in tolerance and very likely further propagation of genomic instabilities and ensuing of differentiation process. On the contrary, apoptosis but not differentiation, was the preferred route for such cells when they were subjected to ionising radiation. Together these data suggest that CDK1 regulates multiple events in human pluripotent stem cells ranging from regulation of mitosis, G2/M checkpoint maintenance, execution of apoptosis, maintenance of pluripotency and genomic stability.
Collapse
Affiliation(s)
- I Neganova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - K Tilgner
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - A Buskin
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - I Paraskevopoulou
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - S P Atkinson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - D Peberdy
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - J F Passos
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - M Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
86
|
O'Grady S, Finn SP, Cuffe S, Richard DJ, O'Byrne KJ, Barr MP. The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat Rev 2014; 40:1161-70. [PMID: 25458603 DOI: 10.1016/j.ctrv.2014.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/11/2014] [Indexed: 11/19/2022]
Abstract
Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer.
Collapse
Affiliation(s)
- Shane O'Grady
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital and Trinity College Dublin, Ireland.
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | - Derek J Richard
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland; Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
87
|
Wu Q, Chen YF, Fu J, You QH, Wang SM, Huang X, Feng XJ, Zhang SH. Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell Oncol (Dordr) 2014; 37:399-407. [PMID: 25228009 DOI: 10.1007/s13402-014-0199-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deregulation of centromere protein (CENP)-A, a centromere-specific histone variant, has in the past been linked to cancer initiation and progression. Additionally, our previous work has shown that CENP-A upregulation predicts a poor overall survival in patients with lung adenocarcinoma. The aim of this study was to uncover the biological role of CENP-A in lung adenocarcinoma growth and invasion, including its underlying molecular mechanisms. METHODS CENP-A expression was knocked down in human lung adenocarcinoma A549 and PC-9 cells using a short hairpin RNA (shRNA) technology. Subsequently, the effects of this knock down on the proliferation, apoptosis, cell cycle progression, colony formation, migration, invasion and tumorigenicity were assessed. Additionally, Western blot analyses were performed to examine concomitant expression changes in key proteins involved in cell cycle regulation and apoptosis. RESULTS We found that shRNA-mediated knock down of CENP-A significantly inhibited the in vitro proliferation and colony formation of A549 and PC-9 cells as compared to control shRNA-transfected cells. In addition, CENP-A down-regulation was found to induce G0/G1 cell cycle arrest and apoptosis, and to inhibit the in vitro migration and invasion of A549 and PC-9 cells. Down-regulation of CENP-A was also found to significantly suppress the in vivo growth of xenografted A549 cells. At the protein level, we found that the expression of p21, p27, CHK2 and Bax was markedly increased and that the expression of CCNG1, Skp2, Cks1 and Bcl-2 was markedly decreased in CENP-A down-regulated cells. CONCLUSION Based on our results we conclude that down-regulation of CENP-A may attenuate the aggressive phenotype of lung adenocarcinoma cells. As such, CENP-A may serve as a promising therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Qing Wu
- Department of Respiratory Medicine, Guangxing Hospital, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Mitchell JK, McGivern DR. Mechanisms of hepatocarcinogenesis in chronic hepatitis C. Hepat Oncol 2014; 1:293-307. [PMID: 30190964 DOI: 10.2217/hep.14.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection with hepatitis C virus (HCV) is a major risk factor for hepatocellular carcinoma. The genetic changes that drive cancer development are heterogeneous and how chronic hepatitis C promotes the initiation of hepatocellular carcinoma is incompletely understood. Cancer typically arises in the setting of advanced fibrosis and/or cirrhosis where chronic immune-mediated inflammation over decades promotes hepatocyte turnover providing selective pressure that favors the malignant phenotype. As well as contributions of unresolved inflammation to carcinogenesis, evidence from transgenic mice with liver-specific expression of viral sequences suggests that some HCV-encoded proteins may directly promote cancer. Numerous in vitro studies suggest roles for HCV proteins in subversion of cellular pathways that normally act to suppress tumorigenesis. Here, we review the mechanisms by which persistent HCV infection might promote cancer in addition to the procarcinogenic effects of inflammatory liver disease.
Collapse
Affiliation(s)
- Jonathan K Mitchell
- Lineberger Comprehensive Cancer Center & Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - David R McGivern
- Lineberger Comprehensive Cancer Center & Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
89
|
Zhang J, Wu LY, Zhang XS, Zhang S. Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics 2014; 15:271. [PMID: 25106096 PMCID: PMC4133618 DOI: 10.1186/1471-2105-15-271] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023] Open
Abstract
Background It has been widely realized that pathways rather than individual genes govern the course of carcinogenesis. Therefore, discovering driver pathways is becoming an important step to understand the molecular mechanisms underlying cancer and design efficient treatments for cancer patients. Previous studies have focused mainly on observation of the alterations in cancer genomes at the individual gene or single pathway level. However, a great deal of evidence has indicated that multiple pathways often function cooperatively in carcinogenesis and other key biological processes. Results In this study, an exact mathematical programming method was proposed to de novo identify co-occurring mutated driver pathways (CoMDP) in carcinogenesis without any prior information beyond mutation profiles. Two possible properties of mutations that occurred in cooperative pathways were exploited to achieve this: (1) each individual pathway has high coverage and high exclusivity; and (2) the mutations between the pair of pathways showed statistically significant co-occurrence. The efficiency of CoMDP was validated first by testing on simulated data and comparing it with a previous method. Then CoMDP was applied to several real biological data including glioblastoma, lung adenocarcinoma, and ovarian carcinoma datasets. The discovered co-occurring driver pathways were here found to be involved in several key biological processes, such as cell survival and protein synthesis. Moreover, CoMDP was modified to (1) identify an extra pathway co-occurring with a known pathway and (2) detect multiple significant co-occurring driver pathways for carcinogenesis. Conclusions The present method can be used to identify gene sets with more biological relevance than the ones currently used for the discovery of single driver pathways. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-271) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junhua Zhang
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
90
|
Tedaldi G, Danesi R, Zampiga V, Tebaldi M, Bedei L, Zoli W, Amadori D, Falcini F, Calistri D. First evidence of a large CHEK2 duplication involved in cancer predisposition in an Italian family with hereditary breast cancer. BMC Cancer 2014; 14:478. [PMID: 24986639 PMCID: PMC4091954 DOI: 10.1186/1471-2407-14-478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/25/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND CHEK2 is a multi-cancer susceptibility gene whose common germline mutations are known to contribute to the risk of developing breast and prostate cancer. CASE PRESENTATION Here, we describe an Italian family with a high number of cases of breast cancer and other types of tumour subjected to the MLPA test to verify the presence of BRCA1, BRCA2 and CHEK2 deletions and duplications. We identified a new 23-kb duplication in the CHEK2 gene extending from intron 5 to 13 that was associated with breast cancer in the family. The presence and localisation of the alteration was confirmed by a second analysis by Next-Generation Sequencing. CONCLUSIONS This finding suggests that CHEK2 mutations are heterogeneous and that techniques other than sequencing, such as MLPA, are needed to identify CHEK2 mutations. It also indicates that CHEK2 rare variants, such as duplications, can confer a high susceptibility to cancer development and should thus be studied in depth as most of our knowledge of CHEK2 concerns common mutations.
Collapse
Affiliation(s)
- Gianluca Tedaldi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
![]()
The
concept of synthetic lethality (the creation of a lethal phenotype
from the combined effects of mutations in two or more genes) has recently
been exploited in various efforts to develop new genotype-selective
anticancer therapeutics. These efforts include screening for novel
anticancer agents, identifying novel therapeutic targets, characterizing
mechanisms of resistance to targeted therapy, and improving efficacies
through the rational design of combination therapy. This review discusses
recent developments in synthetic lethality anticancer therapeutics,
including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors
for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations
in multiple genes and abnormalities in multiple signaling pathways,
synthetic lethality for a specific tumor suppressor gene or oncogene
is likely cell context-dependent. Delineation of the mechanisms underlying
synthetic lethality and identification of treatment response biomarkers
will be critical for the success of synthetic lethality anticancer
therapy.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, Unit 1489, The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| |
Collapse
|
92
|
Simulated annealing based algorithm for identifying mutated driver pathways in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:375980. [PMID: 24982873 PMCID: PMC4058194 DOI: 10.1155/2014/375980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random "passenger mutations." In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice.
Collapse
|
93
|
Balmer MT, Katz RD, Liao S, Goodwine JS, Gal S. Doxorubicin and 5-fluorouracil induced accumulation and transcriptional activity of p53 are independent of the phosphorylation at serine 15 in MCF-7 breast cancer cells. Cancer Biol Ther 2014; 15:1000-12. [PMID: 24801380 DOI: 10.4161/cbt.29112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The chemotherapeutic agents doxorubicin (dox) or 5-fluorouracil (5FU) are used to treat cancer cells as they cause irreparable DNA damage, inducing these aberrant cells to undergo cell death. The mediator of this process is presumed to be in part the tumor suppressor p53 which regulates genes involved in DNA repair and cell death. When MCF-7 breast cancer cells are treated with these drugs, we observed that the level of p53 and the p53 negative regulator, Mdm2, increased, as seen by others. But contrary to some reports, we observed minimal phosphorylation of p53 at serine 15 in MCF-7 cells after drug treatment. Interestingly, we determined that there was differential regulation of the kinases ATM and Chk2 with the drug treatments, likely the cause for the lack of phosphorylation of p53. We found a dramatic drop in p53 DNA binding affinity for p21 and other gene response elements (RE) after drug treatment. To determine if the p53 that accumulated in the drug treated cells was functionally active, we monitored changes in the protein products of two p53-regulated genes following drug treatment with and without the addition of a p53-specific siRNA. In response to 5FU, both p21 and Mdm2 proteins increased and that increase was alleviated if a p53-specific siRNA was added. This effect was not seen with the addition of dox. Thus, the phosphorylation at serine 15 is not necessary for the functional activation of this transcription factor. We propose a new model for the regulation of p53, Mdm2, and MdmX after drug treatment.
Collapse
Affiliation(s)
- Matthew T Balmer
- Department of Biological Sciences; Binghamton University; Binghamton, NY USA
| | - Ryan D Katz
- Department of Biological Sciences; Binghamton University; Binghamton, NY USA
| | - Si Liao
- Department of Biological Sciences; Binghamton University; Binghamton, NY USA
| | - James S Goodwine
- Department of Biological Sciences; Binghamton University; Binghamton, NY USA
| | - Susannah Gal
- Department of Biological Sciences; Binghamton University; Binghamton, NY USA
| |
Collapse
|
94
|
Abstract
Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review.
Collapse
Affiliation(s)
- Sun-Yi Hyun
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Hyo-In Hwan
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| |
Collapse
|
95
|
Sadri N, Surrey LF, Fraker DL, Zhang PJ. Retroperitoneal dedifferentiated liposarcoma lacking MDM2 amplification in a patient with a germ line CHEK2 mutation. Virchows Arch 2014; 464:505-9. [DOI: 10.1007/s00428-014-1563-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/16/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
96
|
Uth K, Sleigh R. Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork cancer. Part I: clocks and clocking machinery. BIOTECHNOL BIOTEC EQ 2014; 28:176-183. [PMID: 26019503 PMCID: PMC4434034 DOI: 10.1080/13102818.2014.915155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022] Open
Abstract
Many physiological processes occur in a rhythmic fashion, consistent with a 24-h cycle. The central timing of the day/night rhythm is set by a master clock, located in the suprachiasmatic nucleus (a tiny region in the hypothalamus), but peripheral clocks exist in different tissues, adjustable by cues other than light (temperature, food, hormone stimulation, etc.), functioning autonomously to the master clock. Presence of unrepaired DNA damage may adjust the circadian clock so that the phase in which checking for damage and DNA repair normally occurs is advanced or extended. The expression of many of the genes coding for proteins functioning in DNA damage-associated response pathways and DNA repair is directly or indirectly regulated by the core clock proteins. Setting up the normal rhythm of the circadian cycle also involves oscillating changes in the chromatin structure, allowing differential activation of various chromatin domains within the 24-h cycle.
Collapse
Affiliation(s)
- Kristin Uth
- Centre for Molecular and Cellular Biosensor Research (CMCBR), Abertay University , Dundee , Scotland , UK
| | - Roger Sleigh
- Centre for Molecular and Cellular Biosensor Research (CMCBR), Abertay University , Dundee , Scotland , UK
| |
Collapse
|
97
|
Li C, Bai J, Hao X, Zhang S, Hu Y, Zhang X, Yuan W, Hu L, Cheng T, Zetterberg A, Lee MH, Zhang J. Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients. Cell Cycle 2014; 13:1299-305. [PMID: 24621502 DOI: 10.4161/cc.28201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a disease of cell cycle, and the dysfunction of cell cycle checkpoints plays a vital role in the occurrence and development of breast cancer. We employed multi-gene fluorescence in situ hybridization (M-FISH) to investigate gene copy number aberrations (CNAs) of 4 genes (Rb1, CHEK2, c-Myc, CCND1) that are involved in the regulation of cell cycle, in order to analyze the impact of gene aberrations on prognosis in the young breast cancer patients. Gene copy number aberrations of these 4 genes were more frequently observed in young breast cancer patients when compared with the older group. Further, these CNAs were more frequently seen in Luminal B type, Her2 overexpression, and tiple-negative breast cancer (TNBC) type in young breast cancer patients. The variations of CCND1, Rb1, and CHEK2 were significantly correlated with poor survival in the young breast cancer patient group, while the amplification of c-Myc was not obviously correlated with poor survival in young breast cancer patients. Thus, gene copy number aberrations (CNAs) of cell cycle-regulated genes can serve as an important tool for prognosis in young breast cancer patients.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Jingchao Bai
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Xiaomeng Hao
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Sheng Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Yunhui Hu
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Xiaobei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Weiping Yuan
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences; Tianjin, People's Republic of China
| | - Linping Hu
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences; Tianjin, People's Republic of China
| | - Tao Cheng
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences; Tianjin, People's Republic of China
| | - Anders Zetterberg
- Clinical Pathology Department of the Karolinska Hospital; Karolinska Institute; Solna, Sweden
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Program in Cancer Biology; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA; Program in Genes and Development; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA
| | - J Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| |
Collapse
|
98
|
Sunkaria A, Sharma DR, Wani WY, Gill KD. 4-Hydroxy TEMPO attenuates dichlorvos induced microglial activation and apoptosis. ACS Chem Neurosci 2014; 5:115-27. [PMID: 24369695 DOI: 10.1021/cn400206w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglial cells have been implicated in various neurodegenerative diseases. Previous studies from our lab have shown that dichlorvos (an organophosphate) could induce Parkinson's like features in rats. Recently, we have shown that dichlorvos can induce microglial activation, and if not checked in time could ultimately induce neuronal apoptosis. However, this activation does not always pose a threat to the neurons. Activated microglia also secrete various neuronal growth factors, suggesting that they have beneficial roles in CNS repair. Therefore, it is essential to control their detrimental functions selectively. Here, we tried to find out how microglial cells behave when exposed to dichlorvos in either the presence or absence of potent nitric oxide scavenger and superoxide dismutase mimetic, 4-hydroxy TEMPO (4-HT). Wistar rat pups (1 day) were used to isolate and culture primary microglial cells. We found 4-HT pretreatment successfully attenuated the dichlorvos mediated microglial activation. Moreover, 4-HT pretreatment decreased the up-regulated levels of p53 and its downstream effector, p21. The expression of various cell cycle regulators such as Chk2, CDC25a, and cyclin A remained close to their basal levels when 4-HT pretreatment was given. DNA fragmentation analysis showed significant reduction in the DNA damage of 4-HT pretreated microglia as compared to dichlorvos treated cells. In addition to this, we found 4-HT pretreatment prevented the microglial cells from undergoing apoptotic cell death even after 48 h of dichlorvos exposure. Taken together, our results showed 4-HT pretreatment could successfully ameliorate the dichlorvos induced microglial cell damage.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Raj Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Willayat Yousuf Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kiran Dip Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
99
|
Poon RYC. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol 2014; 50:339-44. [PMID: 24503238 DOI: 10.1016/j.oraloncology.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive cancer with poor prognosis. One of the recurring themes of NPC biology and treatments is DNA damage. Epstein-Barr virus infection, which is generally accepted as a key etiological factor for NPC, triggers DNA damage responses. In normal cells, DNA damage checkpoints are able to prevent cell cycle progression following DNA damage and are critical for maintaining genome stability. Main features of the checkpoints include activation of ATM and ATR by sensors of DNA damage, which activates effector kinases CHK1 and CHK2; they in turn targets the CDC25/WEE1-cyclin B1-CDK1 axis to cause G(2) arrest, or the p53-p21(CIP1/WAF1) and pRb pathways to cause G(1) arrest. Significantly, these checkpoints are typically disrupted in NPC cells. While mutations are relatively rare, mechanisms including promoter modifications, miRNAs, and actions of Epstein-Barr virus-encoded proteins such as EBNA3C and LMP1 have been described. Paradoxically, radiation-mediated DNA damage remains the primary treatment of NPC. How dysregulation of the DNA damage checkpoints contribute to NPC tumorigenesis and responses to treatment remain poorly understood. In this review, the current understanding of the molecular mechanisms of the various DNA damage checkpoints and what is known about them in NPC are discussed.
Collapse
Affiliation(s)
- Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
100
|
Gurgis FMS, Ziaziaris W, Munoz L. Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Mol Pharmacol 2014; 85:345-56. [PMID: 24296859 DOI: 10.1124/mol.113.090365] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK-2 or MK2) is a downstream substrate of the p38 MAPK responsible for the signaling events influencing inflammation, cell division and differentiation, apoptosis, and cell motility in response to a wide range of extracellular stimuli. After the failure of p38 MAPK inhibitors in clinical trials, MK2 was unveiled as a potential target to regulate inflammatory cytokines' mRNA stability and translation. Recent work suggests that this mechanism may underlie the pathophysiology of brain disorders associated with inflammation. In addition, MK2 is a prominent kinase that phosphorylates heat shock protein 27 (Hsp27), an intensively investigated biomarker of cancer progression. This phosphorylation decreases the chaperone properties of Hsp27, making MK2 an endogenous inhibitor of Hsp27. MK2 is also one of the major players in the signal transduction pathways activated in response to DNA damage. Experimental evidence highlights the role of MK2 in G(2)/M and the mitotic spindle checkpoints, two mechanisms by which MK2 contributes to the maintenance of genomic stability. Thus, MK2 is considered a good molecular target to increase, in combination with chemotherapeutic agents, the sensitivity of treatment, especially in p53-mutated tumors. This review looks at the functions of MK2 in inflammation, Hsp27 regulation, and cell cycle checkpoint control with a focus on brain pathologies. Analysis of MK2 signaling in various disease models and a summary of the data on MK2 inhibitors suggest novel indications for MK2 inhibitors in addition to their mainstream use against peripheral inflammatory disorders.
Collapse
Affiliation(s)
- Fadi Maged Shokry Gurgis
- Department of Pharmacology, School of Medical Sciences, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|