51
|
Dosage compensation and DNA methylation landscape of the X chromosome in mouse liver. Sci Rep 2018; 8:10138. [PMID: 29973619 PMCID: PMC6031675 DOI: 10.1038/s41598-018-28356-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation plays a key role in X-chromosome inactivation (XCI), a process that achieves dosage compensation for X-encoded gene products between mammalian female and male cells. However, differential sex chromosome dosage complicates genome-wide epigenomic assessments, and the X chromosome is frequently excluded from female-to-male comparative analyses. Using the X chromosome in the sexually dimorphic mouse liver as a model, we provide a general framework for comparing base-resolution DNA methylation patterns across samples that have different chromosome numbers and ask at a systematic level if predictions by historical analyses of X-linked DNA methylation hold true at a base-resolution chromosome-wide level. We demonstrate that sex-specific methylation patterns on the X chromosome largely reflect the effects of XCI. While our observations concur with longstanding observations of XCI at promoter-proximal CpG islands, we provide evidence that sex-specific DNA methylation differences are not limited to CpG island boundaries. Moreover, these data support a model in which maintenance of CpG islands in the inactive state does not require complete regional methylation. Further, we validate an intragenic non-CpG methylation signature in genes escaping XCI in mouse liver. Our analyses provide insight into underlying methylation patterns that should be considered when assessing sex differences in genome-wide methylation analyses.
Collapse
|
52
|
Bonora G, Disteche CM. Structural aspects of the inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0357. [PMID: 28947656 PMCID: PMC5627159 DOI: 10.1098/rstb.2016.0357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
A striking difference between male and female nuclei was recognized early on by the presence of a condensed chromatin body only in female cells. Mary Lyon proposed that X inactivation or silencing of one X chromosome at random in females caused this structural difference. Subsequent studies have shown that the inactive X chromosome (Xi) does indeed have a very distinctive structure compared to its active counterpart and all autosomes in female mammals. In this review, we will recap the discovery of this fascinating biological phenomenon and seminal studies in the field. We will summarize imaging studies using traditional microscopy and super-resolution technology, which revealed uneven compaction of the Xi. We will then discuss recent findings based on high-throughput sequencing techniques, which uncovered the distinct three-dimensional bipartite configuration of the Xi and the role of specific long non-coding RNAs in eliciting and maintaining this structure. The relative position of specific genomic elements, including genes that escape X inactivation, repeat elements and chromatin features, will be reviewed. Finally, we will discuss the position of the Xi, either near the nuclear periphery or the nucleolus, and the elements implicated in this positioning. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA 98195, USA .,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
53
|
Rajpathak SN, Deobagkar DD. Aneuploidy: an important model system to understand salient aspects of functional genomics. Brief Funct Genomics 2018; 17:181-190. [PMID: 29228117 DOI: 10.1093/bfgp/elx041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Maintaining a balance in gene dosage and protein activity is essential to sustain normal cellular functions. Males and females have a wide range of genetic as well as epigenetic differences, where X-linked gene dosage is an essential regulatory factor. Basic understanding of gene dosage maintenance has emerged from the studies carried out using mouse models with FCG (four core genotype) and chromosomal aneuploidy as well as from mono-chromosomal hybrid cells. In mammals, aneuploidy often leads to embryonic lethality particularly in early development with major developmental and structural abnormalities. Thus, in-depth analysis of the causes and consequences of gene dosage alterations is needed to unravel its effects on basic cellular and developmental functions as well as in understanding its medical implications. Cells isolated from individuals with naturally occurring chromosomal aneuploidy can be considered as true representatives, as these cells have stable chromosomal alterations/gene dosage imbalance, which have occurred by modulation of the basic molecular machinery. Therefore, innovative use of these natural aneuploidy cells/organisms with recent molecular and high-throughput techniques will provide an understanding of the basic mechanisms involved in gene dosage balance and the related consequences for functional genomics.
Collapse
|
54
|
Orientation-dependent Dxz4 contacts shape the 3D structure of the inactive X chromosome. Nat Commun 2018; 9:1445. [PMID: 29654302 PMCID: PMC5899087 DOI: 10.1038/s41467-018-03694-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian inactive X chromosome (Xi) condenses into a bipartite structure with two superdomains of frequent long-range contacts, separated by a hinge region. Using Hi-C in edited mouse cells with allelic deletions or inversions within the hinge, here we show that the conserved Dxz4 locus is necessary to maintain this bipartite structure. Dxz4 orientation controls the distribution of contacts on the Xi, as shown by a massive reversal in long-range contacts after Dxz4 inversion. Despite an increase in CTCF binding and chromatin accessibility on the Xi in Dxz4-edited cells, only minor changes in TAD structure and gene expression were detected, in accordance with multiple epigenetic mechanisms ensuring X silencing. We propose that Dxz4 represents a structural platform for frequent long-range contacts with multiple loci in a direction dictated by the orientation of its bank of CTCF motifs, which may work as a ratchet to form the distinctive bipartite structure of the condensed Xi.
Collapse
|
55
|
Weng S, Stoner SA, Zhang DE. Sex chromosome loss and the pseudoautosomal region genes in hematological malignancies. Oncotarget 2018; 7:72356-72372. [PMID: 27655702 PMCID: PMC5342167 DOI: 10.18632/oncotarget.12050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022] Open
Abstract
Cytogenetic aberrations, such as chromosomal translocations, aneuploidy, and amplifications, are frequently detected in hematological malignancies. For many of the common autosomal aberrations, the mechanisms underlying their roles in cancer development have been well-characterized. On the contrary, although loss of a sex chromosome is observed in a broad range of hematological malignancies, how it cooperates in disease development is less understood. Nevertheless, it has been postulated that tumor suppressor genes reside on the sex chromosomes. Although the X and Y sex chromosomes are highly divergent, the pseudoautosomal regions are homologous between both chromosomes. Here, we review what is currently known about the pseudoautosomal region genes in the hematological system. Additionally, we discuss implications for haploinsufficiency of critical pseudoautosomal region sex chromosome genes, driven by sex chromosome loss, in promoting hematological malignancies. Because mechanistic studies on disease development rely heavily on murine models, we also discuss the challenges and caveats of existing models, and propose alternatives for examining the involvement of pseudoautosomal region genes and loss of a sex chromosome in vivo. With the widespread detection of loss of a sex chromosome in different hematological malignances, the elucidation of the role of pseudoautosomal region genes in the development and progression of these diseases would be invaluable to the field.
Collapse
Affiliation(s)
- Stephanie Weng
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
56
|
Trauma-Induced Acute X Chromosome Skewing in White Blood Cells Represents an Immuno-Modulatory Mechanism Unique to Females and a Likely Contributor to Sex-Based Outcome Differences. Shock 2018; 47:402-408. [PMID: 27749765 DOI: 10.1097/shk.0000000000000764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sex-related outcome disparities following severe trauma have been demonstrated in human and animal studies; however, sex hormone status could not fully account for the differences. This study tested whether X-linked cellular mosaicism, which is unique to females, could represent a genetically based mechanism contributing to sex-related immuno-modulation following trauma. Serial blood samples collected for routine laboratory tests were analyzed for ChrX inactivation (XCI) ratios in white blood cells. Thirty-nine severely injured (mean ISS 19) female trauma patients on mixed racial and ethnic background were tested for initial (baseline) and trauma-induced changes in XCI ratios and their associations with severity of injury and clinical outcome. At admission, two-thirds of the patients showed XCI-ratio values between one and three, about a third presented skewed XCI ratios (3-7 range) and three patients displayed extremely skewed XCI ratios (8-30 range). Serial blood samples during the clinical course showed additional changes in XCI ratios ranging between 20% and 900% over initial. Increasing XCI ratios during the injury course correlated with the severity of trauma, subsequent need for ventilator support and pneumonia. In contrast, initial XCI ratios did not show correlations with injury severity or clinical complications. Initial XCI ratios showed a positive correlation with age but older patients retained the ability to mount trauma-induced secondary XCI changes. These data show that trauma results in X-linked cell selection in females, which is likely to be driven by polymorphic differences between the parental ChrXs. X-linked white blood cell skewing correlates with injury severity and a complicated postinjury clinical course. Female X-linked cellular mosaicism and its capacity to change dynamically during the injury course compared with the lack of this machinery in males may represent a novel immuno-modulatory mechanism contributing to sex-based outcome differences after injury and infection.
Collapse
|
57
|
So KK, Ko YH, Chun J, Bal J, Jeon J, Kim JM, Choi J, Lee YH, Huh JH, Kim DH. Global DNA Methylation in the Chestnut Blight Fungus Cryphonectria parasitica and Genome-Wide Changes in DNA Methylation Accompanied with Sectorization. FRONTIERS IN PLANT SCIENCE 2018; 9:103. [PMID: 29456549 PMCID: PMC5801561 DOI: 10.3389/fpls.2018.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Mutation in CpBck1, an ortholog of the cell wall integrity mitogen-activated protein kinase kinase kinase (MAPKKK) of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica resulted in a sporadic sectorization as culture proceeded. The progeny from the sectored area maintained the characteristics of the sector, showing a massive morphogenetic change, including robust mycelial growth without differentiation. Epigenetic changes were investigated as the genetic mechanism underlying this sectorization. Quantification of DNA methylation and whole-genome bisulfite sequencing revealed genome-wide DNA methylation of the wild-type at each nucleotide level and changes in DNA methylation of the sectored progeny. Compared to the wild-type, the sectored progeny exhibited marked genome-wide DNA hypomethylation but increased methylation sites. Expression analysis of two DNA methyltransferases, including two representative types of DNA methyltransferase (DNMTase), demonstrated that both were significantly down-regulated in the sectored progeny. However, functional analysis using mutant phenotypes of corresponding DNMTases demonstrated that a mutant of CpDmt1, an ortholog of RID of Neurospora crassa, resulted in the sectored phenotype but the CpDmt2 mutant did not, suggesting that the genetic basis of fungal sectorization is more complex. The present study revealed that a mutation in a signaling pathway component resulted in sectorization accompanied with changes in genome-wide DNA methylation, which suggests that this signal transduction pathway is important for epigenetic control of sectorization via regulation of genes involved in DNA methylation.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, South Korea
| | - Yo-Han Ko
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, South Korea
| | - Jeesun Chun
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, South Korea
| | - Jyotiranjan Bal
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, South Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, South Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
58
|
Veyrunes F, Perez J. X inactivation in a mammal species with three sex chromosomes. Chromosoma 2017; 127:261-267. [PMID: 29256059 DOI: 10.1007/s00412-017-0657-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Abstract
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.
Collapse
Affiliation(s)
- Frédéric Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS / Université Montpellier / IRD / EPHE), Montpellier, France.
| | - Julie Perez
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS / Université Montpellier / IRD / EPHE), Montpellier, France
| |
Collapse
|
59
|
Spolarics Z, Peña G, Qin Y, Donnelly RJ, Livingston DH. Inherent X-Linked Genetic Variability and Cellular Mosaicism Unique to Females Contribute to Sex-Related Differences in the Innate Immune Response. Front Immunol 2017; 8:1455. [PMID: 29180997 PMCID: PMC5694032 DOI: 10.3389/fimmu.2017.01455] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism. However, the field remains controversial and the exclusive role of sex hormones has been challenged. Here, we propose that polymorphic X-linked immune competent genes, which are abundant in the population are important players in sex-based immuno-modulation and play a key role in causing sex-related outcome differences following trauma or sepsis. We describe the differences in X chromosome (ChrX) regulation between males and females and its consequences in the context of common X-linked polymorphisms at the individual as well as population level. We also discuss the potential pathophysiological and immune-modulatory aspects of ChrX cellular mosaicism, which is unique to females and how this may contribute to sex-biased immune-modulation. The potential confounding effects of ChrX skewing of cell progenitors at the bone marrow is also presented together with aspects of acute trauma-induced de novo ChrX skewing at the periphery. In support of the hypothesis, novel observations indicating ChrX skewing in a female trauma cohort as well as case studies depicting the temporal relationship between trauma-induced cellular skewing and the clinical course are also described. Finally, we list and discuss a selected set of polymorphic X-linked genes, which are frequent in the population and have key regulatory or metabolic functions in the innate immune response and, therefore, are primary candidates for mediating sex-biased immune responses. We conclude that sex-related differences in a variety of disease processes including the innate inflammatory response to injury and infection may be related to the abundance of X-linked polymorphic immune-competent genes, differences in ChrX regulation, and inheritance patterns between the sexes and the presence of X-linked cellular mosaicism, which is unique to females.
Collapse
Affiliation(s)
- Zoltan Spolarics
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Geber Peña
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Yong Qin
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Robert J Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - David H Livingston
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
60
|
Luo Y, Wang C, Yong P, Ye P, Liu Z, Fu Z, Lu F, Xiang W, Tan W, Xiao J. Decreased expression of the long non-coding RNA SLC7A11-AS1 predicts poor prognosis and promotes tumor growth in gastric cancer. Oncotarget 2017; 8:112530-112549. [PMID: 29348845 PMCID: PMC5762530 DOI: 10.18632/oncotarget.22486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/30/2017] [Indexed: 12/26/2022] Open
Abstract
Many lncRNA and mRNA sense-antisense transcripts have been systematically identified in malignant cells. However, the molecular mechanisms of most lncRNA-mRNA pairs in gastric cancer remain largely unknown. We found the gastric cancer-associated lncRNA SLC7A11-AS1 and coding transcript mRNA SLC7A11 in human gastric cancer specimens by microarray. SLC7A11-AS1, antisense to SLC7A11, is significantly down-regulated in gastric cancer and could promote tumor growth in vitro and in vivo. The effects of SLC7A11-AS1 depend on the regulation of SLC7A11 via the ASK1-p38MAPK/JNK signaling pathway. These findings suggest that decreased expression of SLC7A11-AS1 contributes to the progression of gastric cancer and may be a novel diagnostic biomarker and effective therapeutic target in gastric cancer patients.
Collapse
Affiliation(s)
- Yajun Luo
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Cheng Wang
- The Department of Pediatric Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Peng Yong
- The Department of HPB Surgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Pengcheng Ye
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zilin Liu
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhiming Fu
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Fei Lu
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Wanping Xiang
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Wang Tan
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Jiangwei Xiao
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,The Department of General Surgery, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
61
|
Genetic Intersection of Tsix and Hedgehog Signaling during the Initiation of X-Chromosome Inactivation. Dev Cell 2017; 43:359-371.e6. [PMID: 29107559 DOI: 10.1016/j.devcel.2017.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/27/2017] [Accepted: 09/29/2017] [Indexed: 01/20/2023]
Abstract
X-chromosome inactivation (XCI) silences one X chromosome in the female mammal and is essential to peri-implantation development. XCI is thought to be cell autonomous, with all factors required being produced within each cell. Nevertheless, external cues may exist. Here, we search for such developmental signals by combining bioinformatic, biochemical, and genetic approaches. Using ex vivo and in vivo models, we identify the Hedgehog (HH) paracrine system as a candidate signaling cascade. HH signaling keeps XCI in check in pluripotent cells and is transduced by GLI transcription factors to binding sites in Tsix, the antisense repressor of XCI. GLI potentiates Tsix expression and impedes XCI. In vivo, mutating Indian Hedgehog results in a sex ratio bias against females, and the female lethality is rescued by a second-site mutation in Tsix. These data demonstrate a genetic and functional intersection between HH and XCI and support a role for intercellular signaling during XCI.
Collapse
|
62
|
Jullien J, Vodnala M, Pasque V, Oikawa M, Miyamoto K, Allen G, David SA, Brochard V, Wang S, Bradshaw C, Koseki H, Sartorelli V, Beaujean N, Gurdon J. Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Mol Cell 2017; 65:873-884.e8. [PMID: 28257702 PMCID: PMC5344684 DOI: 10.1016/j.molcel.2017.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
Abstract
Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos. Identification of genes resistant to direct transcriptional reprogramming Determination of resistant gene sensitivity to 11 chromatin modifier combinations USP21 removes resistance through its H2AK119 deubiquitylation activity USP21 improves the reprogramming of gene expression in two-cell-stage mouse embryos
Collapse
Affiliation(s)
- Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Munender Vodnala
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama 649-6493, Japan
| | - George Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sarah Anne David
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Vincent Brochard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Stan Wang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Charles Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Laboratory for Developmental Genetics, North Research Building, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
63
|
Kobayashi S. Live imaging of X chromosome inactivation and reactivation dynamics. Dev Growth Differ 2017; 59:493-500. [PMID: 28635043 PMCID: PMC11520949 DOI: 10.1111/dgd.12365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
The epigenetic phenomenon called X chromosome inactivation plays critical roles in female development in eutherian mammals, and has attracted attention in the fields of developmental biology and regenerative biology in efforts to understand the pluripotency of stem cells. X chromosome inactivation is routinely studied after cell fixation, but live imaging is increasingly being required to improve our understanding of the dynamics and kinetics of X chromosome inactivation and reactivation processes. Here, we describe our live imaging method to monitor the epigenetic status of X chromosomes using a gene knock-in mouse strain named "Momiji" and give an overview of the application of this strain as a resource for biological and stem cell research.
Collapse
Affiliation(s)
- Shin Kobayashi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology2‐4‐7 AomiKoutou‐kuTokyo135‐0064Japan
- Department of EpigeneticsMedical Research InstituteTokyo Medical & Dental University1‐5‐45 YushimaBunkyo‐kuTokyo113‐8510Japan
| |
Collapse
|
64
|
Abstract
Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
Collapse
Affiliation(s)
- Mohamed A. El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
65
|
Sakata Y, Nagao K, Hoki Y, Sasaki H, Obuse C, Sado T. Defects in dosage compensation impact global gene regulation in the mouse trophoblast. Development 2017; 144:2784-2797. [PMID: 28684628 DOI: 10.1242/dev.149138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Xist RNA, which is responsible for X inactivation, is a key epigenetic player in the embryogenesis of female mammals. Of the several repeats conserved in Xist RNA, the A-repeat has been shown to be essential for its silencing function in differentiating embryonic stem cells. Here, we introduced a new Xist allele into mouse that produces mutated Xist RNA lacking the A-repeat (XistCAGΔ5' ). XistCAGΔ5' RNA expressed in the embryo coated the X chromosome but failed to silence it. Although imprinted X inactivation was substantially compromised upon paternal transmission, allele-specific RNA-seq in the trophoblast revealed that XistCAGΔ5' RNA still retained some silencing ability. Furthermore, the failure of imprinted X inactivation had more significant impacts than expected on genome-wide gene expression. It is likely that dosage compensation is required not only for equalizing X-linked gene expression between the sexes but also for proper global gene regulation in differentiated female somatic cells.
Collapse
Affiliation(s)
- Yuka Sakata
- Department of Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan.,Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuko Hoki
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Sado
- Department of Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan .,Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
66
|
Zhao C, Gong G. Mapping the effect of the X chromosome on the human brain: Neuroimaging evidence from Turner syndrome. Neurosci Biobehav Rev 2017; 80:263-275. [PMID: 28591595 DOI: 10.1016/j.neubiorev.2017.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/07/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In addition to determining sex, the X chromosome has long been considered to play a crucial role in brain development and intelligence. Turner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females. Thus, Turner syndrome provides a unique "knock-out model" for investigating how the X chromosome influences the human brain in vivo. Numerous cutting-edge neuroimaging techniques and analyses have been applied to investigate various brain phenotypes in women with TS, which have yielded valuable evidence toward elucidating the causal relationship between the X chromosome and human brain structure and function. In this review, we comprehensively summarize the recent progress made in TS-related neuroimaging studies and emphasize how these findings have enhanced our understanding of X chromosome function with respect to the human brain. Future investigations are encouraged to address the issues of previous TS neuroimaging studies and to further identify the biological mechanisms that underlie the function of specific X-linked genes in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
67
|
Albritton SE, Kranz AL, Winterkorn LH, Street LA, Ercan S. Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation. eLife 2017; 6. [PMID: 28562241 PMCID: PMC5451215 DOI: 10.7554/elife.23645] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation. DOI:http://dx.doi.org/10.7554/eLife.23645.001 The DNA inside living cells is organized in structures called chromosomes. In many animals, females have two X chromosomes, whereas males have only one. To ensure that females do not end up with a double dose of the proteins encoded by the genes on the X chromosome, animals use a process called dosage compensation to correct this imbalance. The mechanisms underlying this process vary between species, but they typically involve a regulatory complex that binds to the X chromosomes of one sex to modify gene expression. Caenorhabditis elegans, for example, is a species of nematode worm in which individuals with two X chromosomes are hermaphrodites and those with one X chromosome are males. In C. elegans, a regulatory complex, called the dosage compensation complex, attaches to both X chromosomes of a hermaphrodite, and reduces the expression of the genes on each by half to match the level seen in the males. Previous research has shown that short DNA sequences, known as motifs, recruit the dosage compensation complex to the X chromosomes. However, these sequences are also found on the other chromosomes and, until now, it was not known why the complex was only recruited to the X chromosomes. Albritton et al. now show the X chromosomes have a ‘hierarchical’ recruitment system. A few sites on the X chromosomes contain clusters of a specific DNA motif, which initiate the process and attract the dosage compensation complex more strongly than other sites. These ‘strong’ recruitment sites are placed across the length of the X chromosomes and cooperate with several ‘weaker’ ones located in between. This way, multiple recruitment sites can cooperate over a long distance, while non-sex chromosomes, which have only one or two stronger recruitment sites, do not have thisadvantage. Hierarchy and cooperativity may be general features of gene expression, in which proteins are targeted to chromosomes without the need for having specific motifs at every recruitment site. The way DNA sequences are distributed across the genome may give us clues about their role. Thus, knowing how genomes are structured will help us identify disrupted areas in diseases such as cancer. DOI:http://dx.doi.org/10.7554/eLife.23645.002
Collapse
Affiliation(s)
- Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Anna-Lena Kranz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Lara Heermans Winterkorn
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Sevinc Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
68
|
Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G, Godwin J, Wilson R, Haslam A, Lilley F, Ruigrok R, Bageghni SA, Albadrani G, Mansfield W, Roulson JA, Brockdorff N, Ainscough JFX, Coverley D. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 2017; 31:876-888. [PMID: 28546514 PMCID: PMC5458755 DOI: 10.1101/gad.295907.117] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Here, Ridings-Figueroa et al. show that the nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. Their findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages. The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist. CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.
Collapse
Affiliation(s)
| | - Emma R Stewart
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tatyana B Nesterova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Heather Coker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rose Wilson
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aidan Haslam
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fred Lilley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Renate Ruigrok
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sumia A Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ghadeer Albadrani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom.,Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Kingdom of Saudi Arabia
| | - William Mansfield
- Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Jo-An Roulson
- Leeds Institute of Molecular Medicine (LIMM), University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Justin F X Ainscough
- Department of Biology, University of York, York YO10 5DD, United Kingdom.,Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
69
|
Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells. Nat Genet 2017; 49:377-386. [PMID: 28112738 DOI: 10.1038/ng.3769] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
We developed an allele-specific assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to genotype and profile active regulatory DNA across the genome. Using a mouse hybrid F1 system, we found that monoallelic DNA accessibility across autosomes was pervasive, developmentally programmed and composed of several patterns. Genetically determined accessibility was enriched at distal enhancers, but random monoallelically accessible (RAMA) elements were enriched at promoters and may act as gatekeepers of monoallelic mRNA expression. Allelic choice at RAMA elements was stable across cell generations and bookmarked through mitosis. RAMA elements in neural progenitor cells were biallelically accessible in embryonic stem cells but premarked with bivalent histone modifications; one allele was silenced during differentiation. Quantitative analysis indicated that allelic choice at the majority of RAMA elements is consistent with a stochastic process; however, up to 30% of RAMA elements may deviate from the expected pattern, suggesting a regulated or counting mechanism.
Collapse
|
70
|
The Combined Bisulfite Restriction Analysis (COBRA) Assay for the Analysis of Locus-Specific Changes in Methylation Patterns. Methods Mol Biol 2017; 1456:63-71. [PMID: 27770357 DOI: 10.1007/978-1-4899-7708-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA methylation is a heritable but reversible epigenetic mechanism of control over gene expression. The level of DNA methylation of specific genomic regions correlates with chromatin condensation, the level of gene expression, and in some cases genome stability and the frequency of homologous recombination. Here, we describe the combined bisulfite restriction analysis (COBRA) assay that allows analyzing the methylation status at a specific locus. The protocol consists of the following major steps: bisulfite conversion of non-methylated cytosines to uracils, the locus-specific PCR amplification of converted DNA, restriction digestion, the analysis of restriction patterns on the gel, and the quantification of these restriction patterns using ImageJ or a similar program.
Collapse
|
71
|
Roles of SMC Complexes During T Lymphocyte Development and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:17-42. [DOI: 10.1016/bs.apcsb.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
72
|
Chang YC, Chiu CC, Yuo CY, Chan WL, Chang YS, Chang WH, Wu SM, Chou HL, Liu TC, Lu CY, Yang WK, Chang JG. An XIST-related small RNA regulates KRAS G-quadruplex formation beyond X-inactivation. Oncotarget 2016; 7:86713-86729. [PMID: 27880931 PMCID: PMC5349948 DOI: 10.18632/oncotarget.13433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
X-inactive-specific transcript (XIST), a long non-coding RNA, is essential for the initiation of X-chromosome inactivation. However, little is known about other roles of XIST in the physiological process in eukaryotic cells. In this study, the bioinformatics approaches revealed XIST could be processed into a small non-coding RNA XPi2. The XPi2 RNA was confirmed by a northern blot assay; its expression was gender-independent, suggesting the role of XPi2 was beyond X-chromosome inactivation. The pull-down assay combined with LC-MS-MS identified two XPi2-associated proteins, nucleolin and hnRNP A1, connected to the formation of G-quadruplex. Moreover, the microarray data showed the knockdown of XPi2 down-regulated the KRAS pathway. Consistently, we tested the expression of ten genes, including KRAS, which was correlated with a G-quadruplex formation and found the knockdown of XPi2 caused a dramatic decrease in the transcription level of KRAS among the ten genes. The results of CD/NMR assay also supported the interaction of XPi2 and the polypurine-polypyrimidine element of KRAS. Accordingly, XPi2 may stimulate the KRAS expression by attenuating G-quadruplex formation. Our present work sheds light on the novel role of small RNA XPi2 in modulating the G-quadruplex formation which may play some essential roles in the KRAS- associated carcinogenesis.
Collapse
Affiliation(s)
- Yuli C. Chang
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cytogenetics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yee Yuo
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ling Chan
- Epigenome Research Center, China Medical University and Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University
| | - Ya-Sian Chang
- Epigenome Research Center, China Medical University and Hospital, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Hsin Chang
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shou-Mei Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chih Liu
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cytogenetics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Wen-Kuang Yang
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University and Hospital, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
73
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
74
|
Abstract
X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field.
Collapse
|
75
|
Huang S, Lu W, Ge D, Meng N, Li Y, Su L, Zhang S, Zhang Y, Zhao B, Miao J. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy 2016; 11:2172-83. [PMID: 26565952 DOI: 10.1080/15548627.2015.1106663] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
TGFB2-OT1 (TGFB2 overlapping transcript 1) is a newly discovered long noncoding RNA (lncRNA) derived from the 3'UTR of TGFB2. It can regulate autophagy in vascular endothelial cells (VECs). However, the mechanisms of TGFB2-OT1 action are unclear, and whether it is involved in VECs dysfunction needs investigation. Here, the level of TGFB2-OT1 was markedly increased by lipopolysaccharide and oxidized low-density lipoprotein, 2 VECs inflammation triggers. A chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) significantly decreased TGFB2-OT1 levels and inhibited the effect of LPS and oxLDL. The NUPR1 level was upregulated by the 2 inflammation inducers and modulated the TGFB2-OT1 level by promoting the expression of TIA1, responsible for TGFB2-OT1 processing. We focused on how TGFB2-OT1 regulated autophagy and inflammation. Use of miRNA chip assay, TGFB2-OT1 overexpression technology and 3BDO revealed that TGFB2-OT1 regulated the levels of 3 microRNAs, MIR3960, MIR4488 and MIR4459. Further studies confirmed that TGFB2-OT1 acted as a competing endogenous RNA, bound to MIR3960, MIR4488 and MIR4459, then regulated the expression of the miRNA targets CERS1 (ceramide synthase 1), NAT8L (N-acetyltransferase 8-like [GCN5-related, putative]), and LARP1 (La ribonucleoprotein domain family, member 1). CERS1 and NAT8L participate in autophagy by affecting mitochondrial function. TGFB2-OT1 increased the LARP1 level, which promoted SQSTM1 (sequestosome 1) expression, NFKB RELA and CASP1 activation, and then production of IL6, IL8 and IL1B in VECs. Thus, NUPR1 and TIA1 may control the level of TGFB2-OT1, and TGFB2-OT1 bound to MIR3960, MIR4488 and MIR4459, which targeted CERS1, NAT8L, and LARP1, respectively, the key proteins involved in autophagy and inflammation.
Collapse
Affiliation(s)
- ShuYa Huang
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Wei Lu
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Di Ge
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Ning Meng
- b Institute of Organic Chemistry; School of Chemistry and Chemical Engineering; Shandong University ; Jinan , China
| | - Ying Li
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Le Su
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - ShangLi Zhang
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Yun Zhang
- c The Key Laboratory of Cardiovascular Remodeling and Function Research; Chinese Ministry of Education and Chinese Ministry of Health; Qilu Hospital; Shandong University ; Jinan , China
| | - BaoXiang Zhao
- b Institute of Organic Chemistry; School of Chemistry and Chemical Engineering; Shandong University ; Jinan , China
| | - JunYing Miao
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China.,c The Key Laboratory of Cardiovascular Remodeling and Function Research; Chinese Ministry of Education and Chinese Ministry of Health; Qilu Hospital; Shandong University ; Jinan , China
| |
Collapse
|
76
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
77
|
Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci U S A 2016; 113:E6135-E6144. [PMID: 27681634 DOI: 10.1073/pnas.1614279113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1-associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation.
Collapse
|
78
|
Kulkarni A, Lightfoot JW, Streit A. Germline organization in Strongyloides nematodes reveals alternative differentiation and regulation mechanisms. Chromosoma 2016; 125:725-45. [PMID: 26661737 PMCID: PMC5023735 DOI: 10.1007/s00412-015-0562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 11/14/2022]
Abstract
Nematodes of the genus Strongyloides are important parasites of vertebrates including man. Currently, little is known about their germline organization or reproductive biology and how this influences their parasitic life strategies. Here, we analyze the structure of the germline in several Strongyloides and closely related species and uncover striking differences in the development, germline organization, and fluid dynamics compared to the model organism Caenorhabditis elegans. With a focus on Strongyloides ratti, we reveal that the proliferation of germ cells is restricted to early and mid-larval development, thus limiting the number of progeny. In order to understand key germline events (specifically germ cell progression and the transcriptional status of the germline), we monitored conserved histone modifications, in particular H3Pser10 and H3K4me3. The evolutionary significance of these events is subsequently highlighted through comparisons with six other nematode species, revealing underlying complexities and variations in the development of the germline among nematodes.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - James W Lightfoot
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - Adrian Streit
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany.
| |
Collapse
|
79
|
García-González E, Escamilla-Del-Arenal M, Arzate-Mejía R, Recillas-Targa F. Chromatin remodeling effects on enhancer activity. Cell Mol Life Sci 2016; 73:2897-910. [PMID: 27026300 PMCID: PMC11108574 DOI: 10.1007/s00018-016-2184-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023]
Abstract
During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function.
Collapse
Affiliation(s)
- Estela García-González
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México
| | - Martín Escamilla-Del-Arenal
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, 10027, USA
| | - Rodrigo Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México.
| |
Collapse
|
80
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 16. Klinefelter Syndrome and Other Anomalies in X and Y Chromosomes. Clinical and Pathological Entities. Pediatr Dev Pathol 2016; 19:259-77. [PMID: 25105890 DOI: 10.2350/14-06-1512-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
81
|
Gonzalez-Sandoval A, Gasser SM. On TADs and LADs: Spatial Control Over Gene Expression. Trends Genet 2016; 32:485-495. [PMID: 27312344 DOI: 10.1016/j.tig.2016.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
Abstract
The combinatorial action of transcription factors drives cell-type-specific gene expression patterns. However, transcription factor binding and gene regulation occur in the context of chromatin, which modulates DNA accessibility. High-resolution chromatin interaction maps have defined units of chromatin that are in spatial proximity, called topologically associated domains (TADs). TADs can be further classified based on expression activity, replication timing, or the histone marks or non-histone proteins associated with them. Independently, other chromatin domains have been defined by their likelihood to interact with non-DNA structures, such as the nuclear lamina. Lamina-associated domains (LADs) correlate with low gene expression and late replication timing. TADs and LADs have recently been evaluated with respect to cell-type-specific gene expression. The results shed light on the relevance of these forms of chromatin organization for transcriptional regulation, and address specifically how chromatin sequestration influences cell fate decisions during organismal development.
Collapse
Affiliation(s)
- Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
82
|
Gendrel AV, Marion-Poll L, Katoh K, Heard E. Random monoallelic expression of genes on autosomes: Parallels with X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:100-110. [PMID: 27101886 DOI: 10.1016/j.semcdb.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 01/04/2023]
Abstract
Genes are generally expressed from their two alleles, except in some particular cases such as random inactivation of one of the two X chromosomes in female mammals or imprinted genes which are expressed only from the maternal or the paternal allele. A lesser-known phenomenon is random monoallelic expression (RME) of autosomal genes, where genes can be stably expressed in a monoallelic manner, from either one of the parental alleles. Studies on autosomal RME face several challenges. First, RME that is based on epigenetic mechanisms has to be distinguished from biased expression of one allele caused by a DNA sequence polymorphism in a regulatory element. Second, RME should not be confused with transient monoallelic expression often observed in single cell analyses, and that often corresponds to dynamic bursting of expression. Thanks to analyses on clonal cell populations, the existence of RME in cultured cells is now well established. Future studies of RME in vivo will have to overcome tissue heterogeneity and certain technical limitations. Here, we discuss current knowledge on autosomal RME, as well as possible mechanisms controlling these expression patterns and potential implications for development and disease, drawing parallels with what is known for X-chromosome inactivation, a paradigm of random monoallelic expression.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France.
| | - Lucile Marion-Poll
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France
| | - Kimiko Katoh
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France.
| |
Collapse
|
83
|
Minocha S, Sung TL, Villeneuve D, Lammers F, Herr W. Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1. Dev Biol 2016; 412:1-17. [DOI: 10.1016/j.ydbio.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 01/29/2023]
|
84
|
Identification and analysis of mouse non-coding RNA using transcriptome data. SCIENCE CHINA-LIFE SCIENCES 2016; 59:589-603. [DOI: 10.1007/s11427-015-4929-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|
85
|
Kim E, Hwang SU, Yoo H, Yoon JD, Jeon Y, Kim H, Jeung EB, Lee CK, Hyun SH. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology 2016; 85:601-16. [DOI: 10.1016/j.theriogenology.2015.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/20/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|
86
|
Davidsson J, Johansson B. Methylation and expression analyses of Pallister-Killian syndrome reveal partial dosage compensation of tetrasomy 12p and hypomethylation of gene-poor regions on 12p. Epigenetics 2016; 11:194-204. [PMID: 26890086 DOI: 10.1080/15592294.2016.1146854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To ascertain the epigenomic features, i.e., the methylation, non-coding RNA, and gene expression patterns, associated with gain of i(12p) in Pallister-Killian syndrome (PKS), we investigated single cell clones, harboring either disomy 12 or tetrasomy 12p, from a patient with PKS. The i(12p)-positive cells displayed a characteristic expression and methylation signature. Of all the genes on 12p, 13% were overexpressed, including the ATN1, COPS7A, and NECAP1 genes in 12p13.31, a region previously implicated in PKS. However, the median expression fold change (1.3) on 12p was lower than expected by tetrasomy 12p. Thus, partial dosage compensation occurs in cells with i(12p). The majority (89%) of the significantly deregulated genes were not situated on 12p, indicating that global perturbation of gene expression is a key pathogenetic event in PKS. Three genes-ATP6V1G1 in 9q32, GMPS in 3q25.31, and TBX5 in 12q24.21-exhibited concomitant hypermethylation and decreased expression. The i(12p)-positive cells displayed global hypomethylation of gene-poor regions on 12p, a footprint previously associated with constitutional and acquired gains of whole chromosomes as well as with X-chromosome inactivation in females. We hypothesize that this non-genic hypomethylation is associated with chromatin processing that facilitates cellular adaptation to excess genetic material.
Collapse
Affiliation(s)
- Josef Davidsson
- a Division of Molecular Hematology, Department of Laboratory Medicine , Lund University , Lund , Sweden.,b Division of Clinical Genetics, Department of Laboratory Medicine , Lund University , Lund , Sweden
| | - Bertil Johansson
- b Division of Clinical Genetics, Department of Laboratory Medicine , Lund University , Lund , Sweden.,c Department of Clinical Genetics, Office for Medical Services , Division of Laboratory Medicine , Lund , Sweden
| |
Collapse
|
87
|
Geens M, Seriola A, Barbé L, Santalo J, Veiga A, Dée K, Van Haute L, Sermon K, Spits C. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol Hum Reprod 2016; 22:285-98. [DOI: 10.1093/molehr/gaw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
|
88
|
Ferfouri F, Bernicot I, Schneider A, Haquet E, Hédon B, Anahory T. Is the resulting phenotype of an embryo with balanced X-autosome translocation, obtained by means of preimplantation genetic diagnosis, linked to the X inactivation pattern? Fertil Steril 2016; 105:1035-46. [PMID: 26772789 DOI: 10.1016/j.fertnstert.2015.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 11/07/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To examine if a balanced female embryo with X-autosome translocation could, during its subsequent development, express an abnormal phenotype. DESIGN Preimplantation genetic diagnosis (PGD) analysis on two female carriers with maternal inherited X-autosome translocations. SETTING Infertility center and genetic laboratory in a public hospital. PATIENT(S) Two female patients carriers undergoing PGD for a balanced X-autosome translocations: patient 1 with 46,X,t(X;2)(q27;p15) and patient 2 with 46,X,t(X;22)(q28;q12.3). INTERVENTION(S) PGD for balanced X-autosome translocations. MAIN OUTCOME MEASURE(S) PGD outcomes, fluorescence in situ hybridization in biopsied embryos and meiotic segregation patterns analysis of embryos providing from X-autosome translocation carriers. RESULT(S) Controlled ovarian stimulation facilitated retrieval of a correct number of oocytes. One balanced embryo per patient was transferred and one developed, but the patient miscarried after 6 weeks of amenorrhea. In X-autosome translocation carriers, balanced Y-bearing embryos are most often phenotypically normal and viable. An ambiguous phenotype exists in balanced X-bearing embryos owing to the X inactivation mechanism. In 46,XX embryos issued from an alternate segregation, der(X) may be inactivated and partially spread transcriptional silencing into a translocated autosomal segment. Thus, the structural unbalanced genotype could be turned into a viable functional balanced one. It is relevant that a discontinuous silencing is observed with a partial and unpredictable inactivation of autosomal regions. Consequently, the resulting phenotype remains a mystery and is considered to be at risk of being an abnormal phenotype in the field of PGD. CONCLUSION(S) It is necessary to be cautious regarding to PGD management for this type of translocation, particularly in transferred female embryos.
Collapse
Affiliation(s)
- Fatma Ferfouri
- Cytogenetic PGD Department, CHU Montpellier University Hospital, Montpellier, France
| | - Izabel Bernicot
- Cytogenetic PGD Department, CHU Montpellier University Hospital, Montpellier, France
| | - Anouck Schneider
- Cytogenetic PGD Department, CHU Montpellier University Hospital, Montpellier, France
| | - Emmanuelle Haquet
- ART-PGD Department, CHU Montpellier University Hospital, Montpellier, France
| | - Bernard Hédon
- ART-PGD Department, CHU Montpellier University Hospital, Montpellier, France
| | - Tal Anahory
- Cytogenetic PGD Department, CHU Montpellier University Hospital, Montpellier, France; ART-PGD Department, CHU Montpellier University Hospital, Montpellier, France; INSERM U487, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
89
|
Ramírez F, Lingg T, Toscano S, Lam KC, Georgiev P, Chung HR, Lajoie BR, de Wit E, Zhan Y, de Laat W, Dekker J, Manke T, Akhtar A. High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila. Mol Cell 2016; 60:146-62. [PMID: 26431028 DOI: 10.1016/j.molcel.2015.08.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/20/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific lethal (MSL) complex, are enriched around topologically associating domain (TAD) boundaries on the X chromosome and harbor more long-range contacts in a sex-independent manner. Ectopically expressed roX1 and roX2 RNAs target HAS on the X chromosome in trans and, via spatial proximity, induce spreading of the MSL complex in cis, leading to increased expression of neighboring autosomal genes. We show that the MSL complex regulates nucleosome positioning at HAS, therefore acting locally rather than influencing the overall chromosomal architecture. We propose that the sex-independent, three-dimensional conformation of the X chromosome poises it for exploitation by the MSL complex, thereby facilitating spreading in males.
Collapse
Affiliation(s)
- Fidel Ramírez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Lingg
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sarah Toscano
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Kin Chung Lam
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ho-Ryun Chung
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bryan R Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | - Elzo de Wit
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | - Wouter de Laat
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA; Howard Hughes Medical Institute
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
90
|
Wang P, Gao C, Bian X, Zhao S, Zhao C, Xia H, Song H, Hou L, Wan S, Wang X. Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut. FRONTIERS IN PLANT SCIENCE 2016; 7:7. [PMID: 26870046 PMCID: PMC4737905 DOI: 10.3389/fpls.2016.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 05/04/2023]
Abstract
DNA methylation plays important roles in genome protection, regulation of gene expression and is associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferase and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequenced, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases) and demethylases in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in MET, CMT, and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 members didn't contain UBA domain which was different from other plants such as Arabidopsis, maize and soybean. Five DNA demethylase encoding genes were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTase genes mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferase and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or PEG stress could influence the expression level of C5-MTase and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut in the future.
Collapse
|
91
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
92
|
Xiong X, Fu M, Lan D, Li J, Zi X, Zhong J. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors. Anim Biotechnol 2015; 26:222-9. [PMID: 25927169 DOI: 10.1080/10495398.2014.1002563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P < 0.05), but the HIF-2α gene is significantly different in the heart, spleen, and kidney (P < 0.05). Furthermore, the methylation levels in the 5' flanking regulatory regions of HIF-1α and HIF-2α in yak kidney were significantly decreased than cattle counterparts (P < 0.05). Identifying these genes and the comparison of different expressions facilitates the understanding of the biological high-altitude hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases.
Collapse
Affiliation(s)
- Xianrong Xiong
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , Sichuan , China
| | | | | | | | | | | |
Collapse
|
93
|
Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proc Natl Acad Sci U S A 2015; 112:14415-22. [PMID: 26489649 DOI: 10.1073/pnas.1519528112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The long noncoding X-inactivation-specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line.
Collapse
|
94
|
Guo F, Jiao F, Song Z, Li S, Liu B, Yang H, Zhou Q, Li Z. Regulation of MALAT1 expression by TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro. Biochem Biophys Res Commun 2015; 465:293-8. [PMID: 26265046 DOI: 10.1016/j.bbrc.2015.08.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 11/17/2022]
Abstract
MALAT1 is a non-coding RNA overexpressed in non-small cell lung cancer (NSCLC). TDP-43 is a ubiquitously expressed, MALAT1-binding protein implicated in cancer development. We hypothesized that MALAT1 expression level is regulated in lung cancer by TDP-43. We analyzed their functions in cultured NSCLC cells. Downregulation of MALAT1 or TDP-43 expression by siRNA not only markedly suppressed NSCLC cell growth, as measured by the MTT assay in vitro cultured NSCLC cells (P < 0.05), but also noticeably impaired the migration and invasion of NSCLC cells, as analyzed by the migration and invasion assay. We also confirm that TDP-43 directly bound to MALAT1 RNA by a RNA immunoprecipitation (RIP) assay and by luciferase reporter activity assay. In a RT-PCR assay, silencing TDP-43 expression effectively decreased MALAT1 RNA transcript level. In contrast, TDP-43 overexpression markedly increased MALAT1 transcript level. In summary, these findings demonstrated that MALAT1 expression by regulation of TDP-43 controls cellular growth, migration, and invasion of NSCLCs.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Molecular Sequence Data
- Protein Binding
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China
| | - Feng Jiao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China
| | - Shujun Li
- The Second Hospital, Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, Hebei, PR China
| | - Bin Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China
| | - Hongwei Yang
- Geriatric Ward of Neurology, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China; Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China.
| | - Zhigang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China; Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, 154 Anshan Rd, Tianjin 300052, PR China.
| |
Collapse
|
95
|
Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, Berletch JB, Blau CA, Shendure J, Duan Z, Noble WS, Disteche CM. Bipartite structure of the inactive mouse X chromosome. Genome Biol 2015; 16:152. [PMID: 26248554 PMCID: PMC4539712 DOI: 10.1186/s13059-015-0728-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022] Open
Abstract
Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0728-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Wenxiu Ma
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Andrew Hill
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Joel B Berletch
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Carl Anthony Blau
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Division of Hematology, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. .,Division of Hematology, University of Washington, Seattle, Washington, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA. .,Department of Computer Science and Engineering, University of Washington, Seattle, Washington, USA.
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington, USA. .,Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
96
|
Marks H, Kerstens HHD, Barakat TS, Splinter E, Dirks RAM, van Mierlo G, Joshi O, Wang SY, Babak T, Albers CA, Kalkan T, Smith A, Jouneau A, de Laat W, Gribnau J, Stunnenberg HG. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol 2015; 16:149. [PMID: 26235224 PMCID: PMC4546214 DOI: 10.1186/s13059-015-0698-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to study the dynamics of gene silencing over the inactive X chromosome by high-resolution allele-specific RNA-seq. RESULTS Induction of XCI by differentiation of female ESCs shows that genes proximal to the X-inactivation center are silenced earlier than distal genes, while lowly expressed genes show faster XCI dynamics than highly expressed genes. The active X chromosome shows a minor but significant increase in gene activity during differentiation, resulting in complete dosage compensation in differentiated cell types. Genes escaping XCI show little or no silencing during early propagation of XCI. Allele-specific RNA-seq of neural progenitor cells generated from the female ESCs identifies three regions distal to the X-inactivation center that escape XCI. These regions, which stably escape during propagation and maintenance of XCI, coincide with topologically associating domains (TADs) as present in the female ESCs. Also, the previously characterized gene clusters escaping XCI in human fibroblasts correlate with TADs. CONCLUSIONS The gene silencing observed during XCI provides further insight in the establishment of the repressive complex formed by the inactive X chromosome. The association of escape regions with TADs, in mouse and human, suggests that TADs are the primary targets during propagation of XCI over the X chromosome.
Collapse
Affiliation(s)
- Hendrik Marks
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Hindrik H D Kerstens
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Tahsin Stefan Barakat
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Erik Splinter
- Hubrecht Institute, University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - René A M Dirks
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Guido van Mierlo
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Onkar Joshi
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Shuang-Yin Wang
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Tomas Babak
- Biology Department, Queen's University, Kingston, ON, Canada.
| | - Cornelis A Albers
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Tüzer Kalkan
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Alice Jouneau
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France.
| | - Wouter de Laat
- Hubrecht Institute, University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
97
|
Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. Biophys J 2015; 107:1988-1996. [PMID: 25418180 DOI: 10.1016/j.bpj.2014.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 11/24/2022] Open
Abstract
Soft x-ray tomography (SXT) is increasingly being recognized as a valuable method for visualizing and quantifying the ultrastructure of cryopreserved cells. Here, we describe the combination of SXT with cryogenic confocal fluorescence tomography (CFT). This correlative approach allows the incorporation of molecular localization data, with isotropic precision, into high-resolution three-dimensional (3-D) SXT reconstructions of the cell. CFT data are acquired first using a cryogenically adapted confocal light microscope in which the specimen is coupled to a high numerical aperture objective lens by an immersion fluid. The specimen is then cryo-transferred to a soft x-ray microscope (SXM) for SXT data acquisition. Fiducial markers visible in both types of data act as common landmarks, enabling accurate coalignment of the two complementary tomographic reconstructions. We used this method to identify the inactive X chromosome (Xi) in female v-abl transformed thymic lymphoma cells by localizing enhanced green fluorescent protein-labeled macroH2A with CFT. The molecular localization data were used to guide segmentation of Xi in the SXT reconstructions, allowing characterization of the Xi topological arrangement in near-native state cells. Xi was seen to adopt a number of different topologies with no particular arrangement being dominant.
Collapse
|
98
|
Foda BM, Singh U. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway. J Biol Chem 2015; 290:21114-21130. [PMID: 26149683 DOI: 10.1074/jbc.m115.647263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica.
Collapse
Affiliation(s)
- Bardees M Foda
- Departments of Internal Medicine, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305; Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, Egypt
| | - Upinder Singh
- Departments of Internal Medicine, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305; Departments of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305.
| |
Collapse
|
99
|
Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:209-21. [PMID: 26141605 DOI: 10.1016/j.bbagrm.2015.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/13/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022]
Abstract
Aging is a process during which progressive deteriorating of cells, tissues, and organs over time lead to loss of function, disease, and death. Towards the goal of extending human health span, there is escalating interest in understanding the mechanisms that govern aging-associated pathologies. Adequate regulation of expression of coding and noncoding genes is critical for maintaining organism homeostasis and preventing disease processes. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression at all levels--transcriptional, post-transcriptional and post-translational. In this review, we discuss our emerging understanding of lncRNAs implicated in aging illnesses. We focus on diseases arising from age-driven impairment in energy metabolism (obesity, diabetes), the declining capacity to respond homeostatically to proliferative and damaging stimuli (cancer, immune dysfunction), and neurodegeneration. We identify the lncRNAs involved in these ailments and discuss the rising interest in lncRNAs as diagnostic and therapeutic targets to ameliorate age-associated pathologies and prolong health. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
100
|
Hernandez M, Casaccia P. Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage. Glia 2015; 63:1357-75. [PMID: 25970296 DOI: 10.1002/glia.22818] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The recent years have been characterized by a surge of studies on the role of transcription factors and histone modifications in regulating the progression of progenitors into oligodendrocytes. This review summarizes this body of evidence and presents an integrated view of transcriptional networks and epigenetic regulators defining proliferating progenitors and their differentiation along the oligodendrocyte lineage. We suggest that transcription factors in proliferating progenitors have direct access to DNA, due to predominantly euchromatic nuclei. As progenitors differentiate, however, transcriptional competence is modulated by the formation of heterochromatin, which modifies the association of DNA with nucleosomal histones and renders the access of transcription factors dependent on the activity of epigenetic modulators. These concepts are delineated within the context of development, and the potential functional implications are discussed.
Collapse
Affiliation(s)
- Marylens Hernandez
- Department of Neuroscience, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Patrizia Casaccia
- Department of Neuroscience, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Genomics and Multiscale Biology, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|