51
|
Shen J, Zhu X, Liu H. MiR-483 induces senescence of human adipose-derived mesenchymal stem cells through IGF1 inhibition. Aging (Albany NY) 2020; 12:15756-15770. [PMID: 32805717 PMCID: PMC7467354 DOI: 10.18632/aging.103818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hADSCs) are an ideal source of seed cells for regenerative applications and tissue engineering. However, long-term in vitro culture of hADSCs reduces their quantity and quality, which lessens their value in research and clinical applications. The molecular mechanisms underlying this biological process are poorly defined. Recently identified microRNAs (miRNAs) have emerged as critical modulators of cellular senescence. In this study, we examined the changes in hADSCs undergoing senescence. Significant miR-483-3p upregulation was noted during in vitro passaging of hADSCs, which correlated with the adipogenic differentiation and cellular senescence. Knockdown of miR-483-3p retarded the adipogenic differentiation potential of hADSCs and reduced cellular senescence. Dual-luciferase reporter assays identified insulin-like growth factor-1 (IGF1) as the target gene of miR-483-3p. IGF1 inhibition confirmed its inhibitory effects on replicative senescence in hADSCs. In conclusion, our study revealed essential regulatory roles of miR-483-3p in the adipogenesis and aging of hADSCs mediated by targeting IGF1.
Collapse
Affiliation(s)
- Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
52
|
Liu J, Liu F. The Yin and Yang function of microRNAs in insulin signalling and cancer. RNA Biol 2020; 18:24-32. [PMID: 32746694 DOI: 10.1080/15476286.2020.1804236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data accumulated over the past several decades uncover a vital role of microRNAs (miRNAs) in various biological processes. It is well established that, by binding to target mRNAs, miRNAs act as post-transcription suppressors to inhibit mRNA translation and/or to promote mRNA degradation. Very recently, miRNAs have been found to act as positive regulators to promote gene transcription. In this review, we briefly summarize the regulation and functional roles of miRNAs in metabolic diseases and cancer development. We also review recent advances on the mechanisms by which miRNAs regulate gene expression, focusing on their unconventional roles as enhancers to promote gene expression. Given the high potential of miRNAs as biomarkers for risk assessment and as high-value targets for therapy, a better understanding of the Yin-Yang functional feature of miRNAs and their mechanisms of action could have significant clinical implications for the treatment of various diseases such as obesity, type 2 diabetes, and cancer.
Collapse
Affiliation(s)
- Juanhong Liu
- National Clinical Research Center for Metabolic Diseases, and Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, and Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha, China.,Departments of Pharmacology, University of Texas Health at San Antonio , San Antonio, TX, USA
| |
Collapse
|
53
|
Kim J, Park S, Chang Y, Park KH, Lee H. Synergetic Effects of Intronic Mature miR-944 and ΔNp63 Isoforms on Tumorigenesis in a Cervical Cancer Cell Line. Int J Mol Sci 2020; 21:ijms21165612. [PMID: 32764455 PMCID: PMC7460632 DOI: 10.3390/ijms21165612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
miR-944 is located in an intron of the tumor protein p63 gene (TP63). miR-944 expression levels in cervical cancer tissues are significantly higher than in normal tissues and are associated with tumor size, International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and survival. However, associations of miR-944 with its host gene, TP63, which encodes TAp63 and ΔNp63, in cervical cancer have not been fully investigated. A positive correlation between miR-944 and ΔNp63 mRNA expression was identified in cervical cancer tissues. Furthermore, when the expression of miR-944 and ΔNp63 was simultaneously inhibited, cell proliferation-, differentiation- epithelial-mesenchymal transition (EMT)-, transcription-, and virus-associated gene clusters were shown to be significantly more active according to functional annotation analysis. Cell viability and migration were more reduced upon simultaneous inhibition with anti-miR-944 or ΔNp63 siRNA than with inhibition with anti-miR-944 or ΔNp63 siRNA alone, or scramble. In addition, Western blot analysis showed that the simultaneous inhibition of miR-944 and ΔNp63 reduced EMT by increasing the expression of epithelial markers such as claudin and by decreasing mesenchymal markers such as N-cadherin and vimentin. Slug, an EMT transcription factor, was also decreased by the simultaneous inhibition of miR-944 and ΔNp63. Thus, associations between miR-944 and ΔNp63 in cervical cancer could help to elucidate the function of this intronic microRNA and its role in carcinogenesis.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Korea
| | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju 26426, Korea;
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- Correspondence: ; Tel.: +82-33-760-2740; Fax: +82-33-760-2561
| |
Collapse
|
54
|
Yuan D, Chen Y, Yang Z, Li G, Wu M, Jiang J, Li D, Yu Q. SPOP attenuates migration and invasion of choriocarcinoma cells by promoting DHX9 degradation. Am J Cancer Res 2020; 10:2428-2445. [PMID: 32905556 PMCID: PMC7471363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023] Open
Abstract
Speckle-type POZ protein (SPOP), a novel cancer- associated protein, was previously reported to function as a tumor suppressor or promoter in different malignant tumors. This research aims to investigate the biological functions and underlying molecular mechanisms of SPOP in choriocarcinoma. Our analysis of patient tissues and cell lines showed significantly decreased SPOP expression and highly expressed Nuclear DNA helicase II and RNA helicase A (DHX9), both of them are mainly located into the nucleus. Induction or depletion of endogenous SPOP with a lentivirus-based system correspondingly suppressed or promoted migration and invasion of choriocarcinoma cells. Mechanistically, we found that SPOP bound to DHX9 and induced the ubiquitination and degradation of DHX9 by recognizing a typical SPOP-binding motif in DHX9. SPOP-DHX9 interaction was demonstrated to play a critical role in regulating migration and invasion abilities of choriocarcinoma cells, the promotion of mobility ability in knocking down SPOP was partly counteracted by transfection with siRNA against DHX9. Taken together, our results suggest that SPOP suppresses migration and invasion of choriocarcinoma by promoting the ubiquitination and subsequent degradation of DHX9, which identifies the SPOP-DHX9 interaction may serve as a potential therapeutic target against choriocarcinoma.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, P. R. China
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Yiyu Chen
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Zhu Yang
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, P. R. China
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Gang Li
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Mingjun Wu
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Jinyue Jiang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Dan Li
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Qiubo Yu
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
| |
Collapse
|
55
|
Tan H, Kim P, Sun P, Zhou X. miRactDB characterizes miRNA-gene relation switch between normal and cancer tissues across pan-cancer. Brief Bioinform 2020; 22:5840023. [PMID: 32436932 DOI: 10.1093/bib/bbaa089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
It has been increasingly accepted that microRNA (miRNA) can both activate and suppress gene expression, directly or indirectly, under particular circumstances. Yet, a systematic study on the switch in their interaction pattern between activation and suppression and between normal and cancer conditions based on multi-omics evidences is not available. We built miRactDB, a database for miRNA-gene interaction, at https://ccsm.uth.edu/miRactDB, to provide a versatile resource and platform for annotation and interpretation of miRNA-gene relations. We conducted a comprehensive investigation on miRNA-gene interactions and their biological implications across tissue types in both tumour and normal conditions, based on TCGA, CCLE and GTEx databases. We particularly explored the genetic and epigenetic mechanisms potentially contributing to the positive correlation, including identification of miRNA binding sites in the gene coding sequence (CDS) and promoter regions of partner genes. Integrative analysis based on this resource revealed that top-ranked genes derived from TCGA tumour and adjacent normal samples share an overwhelming part of biological processes, which are quite different than those from CCLE and GTEx. The most active miRNAs predicted to target CDS and promoter regions are largely overlapped. These findings corroborate that adjacent normal tissues might have undergone significant molecular transformations towards oncogenesis before phenotypic and histological change; and there probably exists a small yet critical set of miRNAs that profoundly influence various cancer hallmark processes. miRactDB provides a unique resource for the cancer and genomics communities to screen, prioritize and rationalize their candidates of miRNA-gene interactions, in both normal and cancer scenarios.
Collapse
|
56
|
Liu Z, Zhao W, Ren Y, Liu C, Liu X, Xiao J. Comprehensive analysis of the long non-coding RNA-associated competitive endogenous RNA network reveals novel prognostic biomarkers in Wilms' tumor. Oncol Lett 2020; 19:3731-3742. [PMID: 32382326 PMCID: PMC7202313 DOI: 10.3892/ol.2020.11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/15/2020] [Indexed: 11/06/2022] Open
Abstract
Wilms' tumor (WT) is one of the most common types of renal carcinoma in children. The aim of the present study was to construct a competitive endogenous RNA (ceRNA) regulation network and explore novel prognostic biomarkers for WT. The expression profiles were downloaded from The Cancer Genome Atlas database to identify differentially expressed RNAs (DERNAs). Based on the interactions between microRNAs (miRNAs) and mRNAs/long non-coding RNAs (lncRNAs), a ceRNA network was constructed. Functional enrichment analyses were subsequently conducted to explore the functions of the ceRNA-associated DEmRNAs. Survival analysis was performed to screen for prognosis-associated RNAs and the χ2 test was used to assess the associations between prognosis-associated RNA expression and histology classification/clinical staging. The present study identified 1,784 lncRNAs, 114 miRNAs and 3,337 mRNAs, which were abnormally expressed in WT compared with that in normal samples. By prediction, pairing and network analysis, a ceRNA network consisting of 38 DElncRNAs, 18 DEmiRNAs and 99 DEmRNAs was established. These DEmRNAs were significantly enriched in pathways associated with the occurrence and development of WT. By combining the expression data with survival analysis, seven prognosis-associated RNAs were identified (P<0.05). Of these seven RNAs, two (zinc finger and BTB domain containing 4; and deleted in lymphocytic leukemia 2) were significantly associated with clinical staging and histology classification. Lastly, the expression levels of the seven RNAs were verified in the Gene Expression Omnibus database. The present study revealed that 7 RNAs might be considered as novel prognostic biomarkers and potential treatment targets for therapy in WT. In addition, the ceRNA regulation network could provide novel strategies for further studies on lncRNAs and miRNAs in WT.
Collapse
Affiliation(s)
- Zifeng Liu
- Department of Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wenbo Zhao
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuqing Ren
- Tianpeng Technology Co., Ltd, Guangzhou, Guangdong 510600, P.R. China
| | - Chang Liu
- Department of Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
57
|
Dziobek K, Opławski M, Grabarek BO, Zmarzły N, Kieszkowski P, Januszyk P, Kiełbasiński K, Kiełbasiński R, Boroń D. Assessment of the Usefulness of the SEMA5A Concentration Profile Changes as a Molecular Marker in Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:45-51. [PMID: 31544715 DOI: 10.2174/1389201020666190911113611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Semaphorin 5A (SEMA5A) functions not only in the nervous system but also in cancer transformation where its role has not yet been sufficiently studied and described. OBJECTIVE The aim of the study was to determine the changes in SEMA5A expression in endometrial cancer at various degrees of its differentiation (G1-G3) compared to control. MATERIALS AND METHODS The study group consisted of 45 patients with endometrial cancer at various grades: G1, 17; G2, 15; G3, 13. The control consisted of 15 women without neoplastic changes in the routine gynecological examination. The statistical analysis of immunohistochemical assessment of SEMA5A level was carried out using the Statistica 12 program based on the Kruskal-Wallis test and Dunn's post-hoc test (p<0.05). RESULTS The expression of SEMA5A (optical density) was observed in the control group (Me = 103.43) and in the study group (G1, Me = 140.72; G2, Me = 150.88; G3, Me = 173.77). Differences in expression between each grade and control and between individual grades turned out to be statistically significant (p<0.01). The protein level of SEMA5A expression increased with the decreasing degree of endometrial cancer differentiation. CONCLUSION In our research, we indicated the overexpression of SEMA5A protein in endometrial cancer. It is a valuable starting point for further consideration of the role of SEMA5A as a new supplementary molecular marker in endometrial cancer.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Krakow, Poland
| | - Beniamin O Grabarek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmaceutical in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmaceutical in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Piotr Januszyk
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | | | - Robert Kiełbasiński
- Department of Obstetrics & Gynaecology ward, Health Center in Mikołów, Mikołów, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Krakow, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| |
Collapse
|
58
|
Oxaliplatin-Induced DHX9 Phosphorylation Promotes Oncogenic Circular RNA CCDC66 Expression and Development of Chemoresistance. Cancers (Basel) 2020; 12:cancers12030697. [PMID: 32187976 PMCID: PMC7140115 DOI: 10.3390/cancers12030697] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023] Open
Abstract
Circular RNA (circRNA), generated through backsplicing in which the downstream splice donor joins the upstream splice acceptor, is a novel class of RNA molecules. Our previous study found that a novel oncogenic circRNA—consisting exon 8–10 of CCDC66—is aberrantly expressed in colorectal cancer (CRC) tissues and cells. The failure of treatment for colorectal cancer is typically associated with recurrent and chemoresistant cancerous tissues. In this study, we aimed to investigate the role(s) of circCCDC66 during the development of chemoresistance. We discovered that the expression level of circCCDC66 is elevated in colorectal cancer cells with resistance to oxaliplatin. Knockdown of circCCDC66 caused the downregulation of a subset of genes which are regulated by circCCDC66-associated miRNAs and related to the modulation of apoptosis and the cell cycle, suppressing cell survival, promoting oxaliplatin-induced apoptosis and, thus, hindering the development of oxaliplatin-resistance (OxR). The induction of circCCDC66 was dependent on the time-course and dose of oxaliplatin treatment. Our analyses revealed that DHX9 harbors two phosphorylation sites of phosphatidylinositol 3-kinase-related kinases (PI3KKs) close to substrate-binding domains. Blockage of phosphorylation by either PI3KK inhibitors or nonphosphorable mutants of DHX9 decreased the oxaliplatin-induced circCCDC66 expression and the ability to develop chemoresistant cells. Taken together, we demonstrated and linked the functional role of DHX9 phosphorylation to oncogenic circCCDC66 expression during the development of resistance to oxaliplatin, providing a mechanistic insight for the development of therapeutic strategies to recurring/chemoresistant colorectal cancer.
Collapse
|
59
|
Gu J, Zhang J, Huang W, Tao T, Huang Y, Yang L, Yang J, Fan Y, Wang H. Activating miRNA-mRNA network in gemcitabine-resistant pancreatic cancer cell associates with alteration of memory CD4 + T cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:279. [PMID: 32355723 PMCID: PMC7186712 DOI: 10.21037/atm.2020.03.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background To identify key microRNAs (miRNAs) and their target mRNAs related to gemcitabine-resistant pancreatic cancer (PC) and investigate the association between gemcitabine-resistant-related miRNAs and mRNAs and immune infiltration. Methods Expression profiles of miRNAs and mRNAs were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed miRNAs and mRNAs (referred to as "DEmiRNAs" and "DEmRNAs", respectively) were distinguished between gemcitabine-resistant PC cells and its parental cells. The DEmRNAs targeted by the DEmiRNAs were retrieved using miRDB, microT, and Targetscan. Furthermore, GO and KEGG pathway enrichment analysis and GSEA were performed. The Kaplan-Meier plotter was used to analyze the prognosis of key DEmiRNAs and DEmRNAs on PC patients. The relationship between the key DEmRNAs and tumor-infiltrating immune cells in PC was investigated using CIBERSORT method using the LM22 signature as reference. Key infiltrating immune cells were further analyzed for the associations with prognosis of TCGA PAAD patients. Results Four DEmiRNAs, including hsa-miR-3178, hsa-miR-485-3p, hsa-miR-574-5p, and hsa-miR-584-5p, were identified to target seven DEmRNAs, including MSI2, TEAD1, GNPDA1, RND3, PRKACB, TRIM68, and YKT6, individually, in gemcitabine-resistant PC cells versus parental cells. Gemcitabine-resistant PC cells were enriched in proteasome-related, immune-related, and memory CD4+ T cell-related pathways, indicating a gemcitabine therapeutic effect on PC cells. All four DEmiRNAs and almost all DEmRNAs had an impact on the prognosis of PC patients. All seven DEmRNAs had remarkable effects on CD4+ memory T cells, which were affected by the gemcitabine therapeutic effect. Effector memory CD4+ T cells rather than central memory CD4+ T cells predicted a good prognosis according to the TCGA PAAD dataset. Conclusions Gemcitabine resistance can alter the fraction of memory CD4+ T cells via hsa-miR-3178, hsa-miR-485-3p, hsa-miR-574-5p and hsa-miR-584-5p targeted MSI2, TEAD1, GNPDA1, RND3, PRKACB, TRIM68, and YKT6 network in PC.
Collapse
Affiliation(s)
- Jianyou Gu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenjie Huang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510000, China
| | - Tian Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yaohuan Huang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ludi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400038, China
| |
Collapse
|
60
|
Che G, Gao H, Tian J, Hu Q, Xie H, Zhang Y. MicroRNA-483-3p Promotes Proliferation, Migration, and Invasion and Induces Chemoresistance of Wilms' Tumor Cells. Pediatr Dev Pathol 2020; 23:144-151. [PMID: 31498707 DOI: 10.1177/1093526619873491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wilms' tumor is the most common pediatric renal malignancy. MiRNAs are important regulators in multiple cancers including Wilms' tumor. In this study, we examined the role of miR-483-3p on proliferation, chemosensitivity, migration, and invasion of Wilms' tumor cells. The proliferation of Wilms' tumor cells was examined using WST-1 assay. The migration and invasion of Wilms' tumor cells were evaluated by transwell migration assay and matrigel invasion assay. The protein expression levels were detected by Western blot. The effect of miR-483-3p on doxorubicin-induced apoptosis in Wilms' tumor cells was evaluated by caspase-Glo3/7 assay. Forced expression of miR-483-3p promoted the proliferation, migration, and invasion in Wilms' tumor cells. Meanwhile, miR-483-3p decreased the sensitivity of Wilms' tumor cells after doxorubicin treatment. MiR-483-3p inhibited the doxorubicin-induced apoptosis in Wilms' tumor cells by the regulation of BAX and Bcl-2 expression. Furthermore, miR-483-3p regulated epithelial-mesenchymal transition by affecting the expression of E-cadherin, N-cadherin, snail, and vimentin in Wilms' tumor cells. Further studies showed that the expression levels of PTEN and p-AKT in Wilms' tumor cells were changed after aberrant expression of miR-483-3p by binding to 3'-UTR of PTEN. Our study suggests that miR-483-3p played important roles in proliferation and progression in Wilms' tumor cells and might serve as a potential prognostic biomarker and predict chemotherapy response in Wilms' tumor.
Collapse
Affiliation(s)
- Guanghua Che
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, China
| | - Hang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Jing Tian
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, China
| | - Qibo Hu
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, China
| | - Hongchang Xie
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, China
| | - Yunfeng Zhang
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
61
|
Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, Zhong Z, Santana Gonzalez L, El-Sahhar S, Carrami EM, Mallett G, Feng Y, Masuda K, Zheng Y, Chong K, Damato S, Dhar S, Campo L, Garruto Campanile R, Soleymani Majd H, Rai V, Maldonado-Perez D, Jones S, Cerundolo V, Sauka-Spengler T, Yau C, Ahmed AA. The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell 2020; 37:226-242.e7. [PMID: 32049047 DOI: 10.1016/j.ccell.2020.01.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The inter-differentiation between cell states promotes cancer cell survival under stress and fosters non-genetic heterogeneity (NGH). NGH is, therefore, a surrogate of tumor resilience but its quantification is confounded by genetic heterogeneity. Here we show that NGH in serous ovarian cancer (SOC) can be accurately measured when informed by the molecular signatures of the normal fallopian tube epithelium (FTE) cells, the cells of origin of SOC. Surveying the transcriptomes of ∼6,000 FTE cells, predominantly from non-ovarian cancer patients, identified 6 FTE subtypes. We used subtype signatures to deconvolute SOC expression data and found substantial intra-tumor NGH. Importantly, NGH-based stratification of ∼1,700 tumors robustly correlated with survival. Our findings lay the foundation for accurate prognostic and therapeutic stratification of SOC.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Tingyan Shi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Zhe Zhong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Salma El-Sahhar
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Eli M Carrami
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Garry Mallett
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yun Feng
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Kay Chong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Stephen Damato
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Riccardo Garruto Campanile
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Vikram Rai
- Department of Gynaecology, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - David Maldonado-Perez
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Second Floor, Unipart House Business Centre, Oxford OX4 2PG, UK
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Vincenzo Cerundolo
- Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Christopher Yau
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Alan Turing Institute, London NW1 2DB, UK.
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
62
|
Hong G, Han X, He W, Xu J, Sun P, Shen Y, Wei Q, Chen Z. Analysis of circulating microRNAs aberrantly expressed in alcohol-induced osteonecrosis of femoral head. Sci Rep 2019; 9:18926. [PMID: 31831773 PMCID: PMC6908598 DOI: 10.1038/s41598-019-55188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Serum miRNAs are potential biomarkers for predicting the progress of bone diseases, but little is known about miRNAs in alcohol-induced osteonecrosis of femoral head (AIONFH). This study evaluated disease-prevention value of specific serum miRNA expression profiles in AIONFH. MiRNA PCR Panel was taken to explore specific miRNAs in serum of AIONFH cases. The top differentially miRNAs were further validated by RT-qPCR assay in serum and bone tissues of two independent cohorts. Their biofunction and target genes were predicted by bioinformatics databases. Target genes related with angiogenesis and osteogenesis were quantified by RT-qPCR in necrotic bone tissue. Our findings demonstrated that multiple miRNAs were evaluated to be differentially expressed with high dignostic values. MiR-127-3p, miR-628-3p, and miR-1 were downregulated, whereas miR-885-5p, miR-483-3p, and miR-483-5p were upregulated in serum and bone samples from the AIONFH patients compared to those from the normal control individuals (p < 0.01). The predicted target genes of the indicated miRNAs quantified by qRT-PCR, including IGF2, PDGFA, RUNX2, PTEN, and VEGF, were presumed to be altered in necrotic bone tissue of AIONFH patients. The presence of five altered miRNAs in AIONFH patients may serve as non-invasive biomarkers and potential therapeutic targets for the early diagnosis of AIONFH.
Collapse
Affiliation(s)
- Guoju Hong
- Devision of Orthopeadic Surgery, the University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510641, P.R. China
| | - Wei He
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, P.R. China
| | - Yingshan Shen
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Qiushi Wei
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| | - Zhenqiu Chen
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| |
Collapse
|
63
|
Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. Cell Rep 2019; 23:1891-1905. [PMID: 29742442 PMCID: PMC5976580 DOI: 10.1016/j.celrep.2018.04.025] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/03/2018] [Accepted: 04/04/2018] [Indexed: 11/27/2022] Open
Abstract
R-loops comprise an RNA/DNA hybrid and displaced single-stranded DNA. They play important biological roles and are implicated in pathology. Even so, proteins recognizing these structures are largely undefined. Using affinity purification with the S9.6 antibody coupled to mass spectrometry, we defined the RNA/DNA hybrid interactome in HeLa cells. This consists of known R-loop-associated factors SRSF1, FACT, and Top1, and yet uncharacterized interactors, including helicases, RNA processing, DNA repair, and chromatin factors. We validate specific examples of these interactors and characterize their involvement in R-loop biology. A top candidate DHX9 helicase promotes R-loop suppression and transcriptional termination. DHX9 interacts with PARP1, and both proteins prevent R-loop-associated DNA damage. DHX9 and other interactome helicases are overexpressed in cancer, linking R-loop-mediated DNA damage and disease. Our RNA/DNA hybrid interactome provides a powerful resource to study R-loop biology in health and disease. Mass spectrometry identifies the RNA/DNA hybrid interactome in human cells Top RNA/DNA interactome candidate DHX9 promotes R-loop suppression DHX9 regulates transcriptional termination DHX9 interacts with PARP1 and prevents R-loop-associated DNA damage
Collapse
Affiliation(s)
- Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Maiken S Kristiansen
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
64
|
Mármol-Sánchez E, Cirera S, Quintanilla R, Pla A, Amills M. Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach. Genomics 2019; 112:2107-2118. [PMID: 31816430 DOI: 10.1016/j.ygeno.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Despite the broad variety of available microRNA (miRNA) prediction tools, their application to the discovery and annotation of novel miRNA genes in domestic species is still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA identification in the yet poorly annotated porcine genome and demonstrated the usefulness of implementing a motif search positional refinement strategy for the accurate determination of precursor miRNA boundaries. The small RNA fraction from gluteus medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of novel miRNA loci. Additionally, we selected the human miRNA annotation for a homology-based search of porcine miRNAs with orthologous genes in the human genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle transcriptome and 27 additional novel porcine miRNAs were also detected by homology-based search using the human miRNA annotation. The existence of three selected novel miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse transcription quantitative real-time PCR analyses in the muscle and liver tissues of Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current work allowed us to expand the catalogue of porcine miRNAs and showed better performance than other commonly used miRNA prediction approaches. More importantly, the flexibility of our pipeline makes possible its application in other yet poorly annotated non-model species.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 2nd Floor, 1870 Frederiksberg C, Denmark
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Albert Pla
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
65
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
66
|
MicroRNAs Contribute to Breast Cancer Invasiveness. Cells 2019; 8:cells8111361. [PMID: 31683635 PMCID: PMC6912645 DOI: 10.3390/cells8111361] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management.
Collapse
|
67
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
68
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
69
|
Chen D, Du Y, Chen H, Fan Y, Fan X, Zhu Z, Wang J, Xiong C, Zheng Y, Hou C, Diao Q, Guo R. Comparative Identification of MicroRNAs in Apis cerana cerana Workers' Midguts in Responseto Nosema ceranae Invasion. INSECTS 2019; 10:E258. [PMID: 31438582 PMCID: PMC6780218 DOI: 10.3390/insects10090258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Here, the expression profiles and differentially expressed miRNAs (DEmiRNAs) in the midguts of Apis cerana cerana workers at 7 d and 10 d post-inoculation (dpi) with N. ceranae were investigated via small RNA sequencing and bioinformatics. Five hundred and twenty nine (529) known miRNAs and 25 novel miRNAs were identified in this study, and the expression of 16 predicted miRNAs was confirmed by Stem-loop RT-PCR. A total of 14 DEmiRNAs were detected in the midgut at 7 dpi, including eight up-regulated and six down-regulated miRNAs, while 12 DEmiRNAs were observed in the midgut at 10 dpi, including nine up-regulated and three down-regulated ones. Additionally, five DEmiRNAs were shared, while nine and seven DEmiRNAs were specifically expressed in midguts at 7 dpi and 10 dpi. Gene ontology analysis suggested some DEmiRNAs and corresponding target mRNAs were involved in various functions including immune system processes and response to stimulus. KEGG pathway analysis shed light on the potential functions of some DEmiRNAs in regulating target mRNAs engaged in material and energy metabolisms, cellular immunity and the humoral immune system. Further investigation demonstrated a complex regulation network between DEmiRNAs and their target mRNAs, with miR-598-y, miR-252-y, miR-92-x and miR-3654-y at the center. Our results can facilitate future exploration of the regulatory roles of miRNAs in host responses to N. ceranae, and provide potential candidates for further investigation of the molecular mechanisms underlying eastern honeybee-microsporidian interactions.
Collapse
Affiliation(s)
- Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanchan Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwei Zhu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
70
|
Gong Y, Zou B, Chen J, Ding L, Li P, Chen J, Chen J, Zhang B, Li J. Potential Five-MicroRNA Signature Model for the Prediction of Prognosis in Patients with Wilms Tumor. Med Sci Monit 2019; 25:5435-5444. [PMID: 31328722 PMCID: PMC6668497 DOI: 10.12659/msm.916230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Wilms tumor (WT) is the most common type of pediatric renal malignancy, and is associated with poor prognosis. The aim of the present study was to identify microRNA (miRNA) signatures which might predict prognosis and categorize WTs into high- and low-risk subgroups. Material/Methods The miRNA expression profiles of WT patients and normal samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment database. Differentially expressed miRNAs between WT patients and normal samples were identified using the EdgeR package. Subsequently, correlations between differentially expressed miRNAs and the prognosis of overall survival were analyzed. Enrichment analyses for the targeted mRNAs were conducted via the Database for Annotation, Visualization, and Integration Discovery. Results A total of 154 miRNAs were identified as differentially expressed in WT. Of those, 18 miRNAs were associated with overall survival (P<0.05). A prognostic signature of 5 differentially expressed miRNAs (i.e., has-mir-149, has-mir-7112, has-mir-940, has-mir-1248, and has-mir-490) was constructed to classify the patients into high- and low-risk subgroups. The targeted mRNAs of these prognostic miRNAs were primarily enriched in Gene Ontology terms (i.e., protein autophosphorylation, protein dephosphorylation, and stress-activated MAPK cascade) and the Kyoto Encyclopedia of Genes and Genomes signaling pathways (i.e., MAPK, AMPK, and PI3K-Akt). Conclusions The 5-miRNA signature model might be useful in determining the prognosis of WT patients. As a promising prediction tool, this prognosis signature might serve as a potential biomarker for WT patients.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jianxu Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Lei Ding
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jiafan Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jiandi Chen
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| |
Collapse
|
71
|
Wang Y, Liu J, Yang J, Yu X, Chen Z, Chen Y, Kuang M, Zhu Y, Zhuang S. Lnc-UCID Promotes G1/S Transition and Hepatoma Growth by Preventing DHX9-Mediated CDK6 Down-regulation. Hepatology 2019; 70:259-275. [PMID: 30865310 PMCID: PMC6618099 DOI: 10.1002/hep.30613] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Abstract
Although thousands of long noncoding RNAs (lncRNAs) have been annotated, only a limited number of them have been functionally characterized. Here, we identified an oncogenic lncRNA, named lnc-UCID (lncRNA up-regulating CDK6 by interacting with DHX9). Lnc-UCID was up-regulated in hepatocellular carcinoma (HCC), and a higher lnc-UCID level was correlated with shorter recurrence-free survival of HCC patients. Both gain-of-function and loss-of function studies revealed that lnc-UCID enhanced cyclin-dependent kinase 6 (CDK6) expression and thereby promoted G1/S transition and cell proliferation. Studies from mouse xenograft models revealed that tumors derived from lnc-UCID-silenced HCC cells had a much smaller size than those from control cells, and intratumoral injection of lnc-UCID small interfering RNA suppressed xenograft growth. Mechanistically, the 850-1030-nt domain of lnc-UCID interacted physically with DEAH (Asp-Glu-Ala-His) box helicase 9 (DHX9), an RNA helicase. On the other hand, DHX9 post-transcriptionally suppressed CDK6 expression by binding to the 3'-untranslated region (3'UTR) of CDK6 mRNA. Further investigation disclosed that lnc-UCID enhanced CDK6 expression by competitively binding to DHX9 and sequestering DHX9 from CDK6-3'UTR. In an attempt to explore the mechanisms responsible for lnc-UCID up-regulation in HCC, we found that the lnc-UCID gene was frequently amplified in HCC. Furthermore, miR-148a, whose down-regulation was associated with an increase of lnc-UCID in HCC, could bind lnc-UCID and inhibit its expression. Conclusion: Up-regulation of lnc-UCID, which may result from amplification of its gene locus and down-regulation of miR-148a, can promote HCC growth by preventing the interaction of DHX9 with CDK6 and subsequently enhancing CDK6 expression. These findings provide insights into the biological functions of lncRNAs, the regulatory network of cell cycle control, and the mechanisms of HCC development, which may be exploited for anticancer therapy.
Collapse
Affiliation(s)
- Yun‐Long Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jin‐Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jin‐E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina,Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Man Yu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhan‐Li Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ya‐Jing Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ming Kuang
- Department of Liver SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Shi‐Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouChina,Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
72
|
Buglyó G, Magyar Z, Romicsné Görbe É, Bánusz R, Csóka M, Micsik T, Berki Z, Varga P, Sápi Z, Nagy B. Quantitative RT-PCR-based miRNA profiling of blastemal Wilms' tumors from formalin-fixed paraffin-embedded samples. J Biotechnol 2019; 298:11-15. [PMID: 30959135 DOI: 10.1016/j.jbiotec.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
Blastemal Wilms' tumors are associated with poor chemo-responsiveness and an adverse prognosis. Our aim was to contribute to the miRNA profiling of the disease, while demonstrating the value of archived formalin-fixed, paraffin-embedded (FFPE) samples as miRNA sources. MiRNA was extracted from tumor and normal tissues of 8 patients diagnosed with blastemal Wilms' tumor in Hungary. A quantitative real-time PCR-based protocol was used to identify miRNAs of interest and study the expression of selected miRNAs in all samples. Profiling of miRNA expression from FFPE samples turned out to be cost-effective in Wilms' tumor, as most miRNAs (including miRNA-194-5p, which was studied in all patients) showed expression alterations similar to the ones reported in the literature. MiR-184 expression was found to be lower than in previous studies, while the downregulation of miR-203a is a novel finding. MiR-184 may be downregulated in a subset of blastemal and other Wilms' tumors. A loss of miR-203a may or may not be specific to blastemal cells, but available evidence hints at its importance in the pathogenesis of Wilms' tumor. It should be considered for inclusion in future studies of miRNA expression.
Collapse
Affiliation(s)
- Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 1 Egyetem tér, 4032, Debrecen, Hungary.
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, 27 Baross utca, 1088, Budapest, Hungary.
| | - Éva Romicsné Görbe
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, 27 Baross utca, 1088, Budapest, Hungary.
| | - Rita Bánusz
- 2(nd) Department of Paediatrics, Semmelweis University, 7-9 Tűzoltó utca, 1094, Budapest, Hungary.
| | - Monika Csóka
- 2(nd) Department of Paediatrics, Semmelweis University, 7-9 Tűzoltó utca, 1094, Budapest, Hungary.
| | - Tamás Micsik
- 1(st) Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői út, 1085, Budapest, Hungary.
| | - Zsanett Berki
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 1 Egyetem tér, 4032, Debrecen, Hungary.
| | - Péter Varga
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, 27 Baross utca, 1088, Budapest, Hungary.
| | - Zoltán Sápi
- 1(st) Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői út, 1085, Budapest, Hungary.
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 1 Egyetem tér, 4032, Debrecen, Hungary.
| |
Collapse
|
73
|
Abstract
The phenomenon of RNA activation (RNAa) was initially discovered by Li and colleagues about a decade ago. Subsequently, gene activation by exogenously expressed small activating RNA has been demonstrated in different cellular contexts by a number of laboratories. Conceivably, endogenously expressed microRNAs may also utilize RNA activation as a cellular mechanism for gene regulation, which may be dysregulated in disease states such as cancer. RNA activation can be applied to gain-of-function studies and holds great promise for disease intervention. This chapter will discuss examples of promoter-targeting microRNAs discovered in recent years and their pathophysiological relevance. I will also briefly touch upon other novel classes of microRNAs with positive gene regulatory roles, including TATA-box-activating microRNAs and enhancer-associated microRNAs.
Collapse
Affiliation(s)
- Vera Huang
- Molecular Stethoscope, Inc., 10835 Road to the Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
74
|
Tan H, Huang S, Zhang Z, Qian X, Sun P, Zhou X. Pan-cancer analysis on microRNA-associated gene activation. EBioMedicine 2019; 43:82-97. [PMID: 30956173 PMCID: PMC6557760 DOI: 10.1016/j.ebiom.2019.03.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Background While microRNAs (miRNAs) were widely considered to repress target genes at mRNA and/or protein levels, emerging evidence from in vitro experiments has shown that miRNAs can also activate gene expression in particular contexts. However, this counterintuitive observation has rarely been reported or interpreted in in vivo conditions. Methods We systematically explored the positive correlation between miRNA and gene expressions and its potential implications in tumorigenesis, based on 8375 patient samples across 31 major human cancers from The Cancer Genome Atlas (TCGA). Findings We found that positive miRNA-gene correlations are surprisingly prevalent and consistent across cancer types, and show distinct patterns than negative correlations. The top-ranked positive correlations are significantly involved in the immune cell differentiation and cell membrane signaling related processes, and display strong power in stratifying patients in terms of survival rate. Although intragenic miRNAs generally tend to co-express with their host genes, a substantial portion of miRNAs shows no obvious correlation with their host gene plausibly due to non-conservation. A miRNA can upregulate a gene by inhibiting its upstream suppressor, or shares transcription factors with that gene, both leading to positive correlation. The miRNA/gene sites associated with the top-ranked positive correlations are more likely to form super-enhancers compared to randomly chosen pairs. Wet-lab experiments revealed that positive correlations partially remain in in vitro condition. Interpretation Our study brings new insights into the critical role of miRNA in gene regulation and the complex mechanisms underlying miRNA functions, and reveals both biological and clinical significance of miRNA-associated gene activation.
Collapse
Affiliation(s)
- Hua Tan
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Shan Huang
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhigang Zhang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaohua Qian
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
75
|
Liu K, He B, Xu J, Li Y, Guo C, Cai Q, Wang S. miR-483-5p Targets MKNK1 to Suppress Wilms' Tumor Cell Proliferation and Apoptosis In Vitro and In Vivo. Med Sci Monit 2019; 25:1459-1468. [PMID: 30798328 PMCID: PMC6398281 DOI: 10.12659/msm.913005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Wilms’ tumor (WT) is the most common type of renal tumor in children and it has high mortality rates. MicroRNAs (miRNAs) are important regulators of cellular differentiation processes that have been discovered to contribute to the development of various kinds of tumors. Material/Methods The Wilms’ tumor tissues and adjacent tissues were obtained from 28 patients to quantity miR-483-5p expression level. The miR-483-5p mimics and scrambles were transfected into the human kidney WT cell line GHINK-1 to evaluate the effect of miR-483-5p on Wilms’ tumor cell proliferation and apoptosis in vitro. A total of 18 female BALB/c nu/nu mice were used to further confirm how miR-483-5p affects Wilms’ tumor in vivo. Results In the present study, miR-483-5p was identified to be downregulated in Wilms’ tumor tissues compared with the normal adjacent tissues. Additionally, low expression of mir-483-5p was significantly correlated with unfavorable histology subtypes, lymphatic metastasis, and late clinical stage (stage III and IV). Overexpression of miR-483-5p inhibited the proliferation and colony formation of GHINK-1 (Wilms’ tumor) cells compared with the control group due to enhanced cell apoptosis. Furthermore, miR-483-5p upregulated the protein expression level of caspase-3. Finally, MAP kinase-interacting serine/threonine-protein kinase 1 was identified as a direct target of miR-483-5p, which was confirmed by luciferase reporter assay and Western blotting. Conclusions MiR-483-5p suppressed WT cell proliferation via inducing apoptosis through targeting MKNK1. This may provide novel insights into the mechanisms underlying WT and a potential therapeutic candidate for the treatment of WT in the future.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Bingsen He
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jiang Xu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yang Li
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Cheng Guo
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qinhui Cai
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Shuya Wang
- Department of Rheumatology and Immune Disease, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
76
|
Kuschnerus K, Straessler ET, Müller MF, Lüscher TF, Landmesser U, Kränkel N. Increased Expression of miR-483-3p Impairs the Vascular Response to Injury in Type 2 Diabetes. Diabetes 2019; 68:349-360. [PMID: 30257976 DOI: 10.2337/db18-0084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022]
Abstract
Aggravated endothelial injury and impaired endothelial repair capacity contribute to the high cardiovascular risk in patients with type 2 diabetes (T2D), but the underlying mechanisms are still incompletely understood. Here we describe the functional role of a mature form of miRNA (miR) 483-3p, which limits endothelial repair capacity in patients with T2D. Expression of human (hsa)-miR-483-3p was higher in endothelial-supportive M2-type macrophages (M2MΦs) and in the aortic wall of patients with T2D than in control subjects without diabetes. Likewise, the murine (mmu)-miR-483* was higher in T2D than in nondiabetic murine carotid samples. Overexpression of miR-483-3p increased endothelial and macrophage apoptosis and impaired reendothelialization in vitro. The inhibition of hsa-miR-483-3p in human T2D M2MΦs transplanted to athymic nude mice (NMRI-Foxn1ν/Foxn1ν ) or systemic inhibition of mmu-miR-483* in B6.BKS(D)-Leprdb /J diabetic mice rescued diabetes-associated impairment of reendothelialization in the murine carotid-injury model. We identified the endothelial transcription factor vascular endothelial zinc finger 1 (VEZF1) as a direct target of miR-483-3p. VEZF1 expression was reduced in aortae of diabetic mice and upregulated in diabetic murine aortae upon systemic inhibition of mmu-483*. The miRNA miR-483-3p is a critical regulator of endothelial integrity in patients with T2D and may represent a therapeutic target to rescue endothelial regeneration after injury in patients with T2D.
Collapse
Affiliation(s)
- Kira Kuschnerus
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Elisabeth T Straessler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Maja F Müller
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
| | - Thomas F Lüscher
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Ulf Landmesser
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Nicolle Kränkel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
77
|
Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 2019; 76:441-451. [PMID: 30374521 PMCID: PMC11105547 DOI: 10.1007/s00018-018-2940-7] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that participate in a majority of biological processes via regulating target gene expression. The post-transcriptional repression through miRNA seed region binding to 3' UTR of target mRNA is considered as the canonical mode of miRNA-mediated gene regulation. However, emerging evidence suggests that other regulatory modes exist beyond the canonical mechanism. In particular, the function of intranuclear miRNA in gene transcriptional regulation is gradually revealed, with evidence showing their contribution to gene silencing or activating. Therefore, miRNA-mediated regulation of gene transcription not only expands our understanding of the molecular mechanism underlying miRNA regulatory function, but also provides new evidence to explain its ability in the sophisticated regulation of many bioprocesses. In this review, mechanisms of miRNA-mediated gene transcriptional and post-transcriptional regulation are summarized, and the synergistic effects among these actions which form a regulatory network of a miRNA on its target are particularly elaborated. With these discussions, we aim to emphasize the importance of miRNA regulatory network on target gene regulation and further highlight the potential application of the network mode in the achievement of a more effective and stable modulation of the target gene expression.
Collapse
Affiliation(s)
- Mengfan Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Lingling Miao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| |
Collapse
|
78
|
Song C, Yang Z, Dong D, Xu J, Wang J, Li H, Huang Y, Lan X, Lei C, Ma Y, Chen H. miR-483 inhibits bovine myoblast cell proliferation and differentiation via IGF1/PI3K/AKT signal pathway. J Cell Physiol 2018; 234:9839-9848. [PMID: 30422322 DOI: 10.1002/jcp.27672] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle-associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.
Collapse
Affiliation(s)
- Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dong Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiawei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yun Ma
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
79
|
Mullany LE, Herrick JS, Sakoda LC, Samowitz W, Stevens JR, Wolff RK, Slattery ML. MicroRNA-messenger RNA interactions involving JAK-STAT signaling genes in colorectal cancer. Genes Cancer 2018; 9:232-246. [PMID: 30603058 PMCID: PMC6305104 DOI: 10.18632/genesandcancer.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.0 data, respectively, using a negative binomial mixed effects model to test 122 JAK-STAT-signaling genes in 217 colorectal cancer (CRC) cases. Overall, 42 mRNAs were differentially expressed with a fold change of >1.50 or <0.67, remaining significant with a false discovery rate of < 0.05; four were dysregulated in microsatellite stable (MSS) tumors, eight were for microsatellite unstable (MSI)-specific tumors. Of these 54 mRNAs, 17 were associated with differential expression of 46 miRNAs, comprising 116 interactions: 16 were significant overall, one for MSS tumors only. Twenty of the 29 interactions with negative beta coefficients involved miRNA seed sequence matches with mRNAs, supporting miRNA-mediated mRNA repression; 17 of these mRNAs encode for receptor molecules. Receptor molecule degradation is an established JAK-STAT signaling control mechanism; our results suggest that miRNAs facilitate this process. Interactions involving positive beta coefficients may illustrate downstream effects of disrupted STAT activity, and subsequent miRNA upregulation.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Wade Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| |
Collapse
|
80
|
Zhi Z, Zhu H, Lv X, Lu C, Li Y, Wu F, Zhou L, Li H, Tang W. IGF2-derived miR-483-3p associated with Hirschsprung's disease by targeting FHL1. J Cell Mol Med 2018; 22:4913-4921. [PMID: 30073757 PMCID: PMC6156468 DOI: 10.1111/jcmm.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic miRNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR-483-3p along with its host gene IGF2 (Insulin-like growth factor 2) was found down-regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR-483-3p via dual-luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SH-SY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR-483-3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR-483-3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 siRNA may inverse the function of miR-483-3p inhibitor. This study revealed that miR-483-3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.
Collapse
Affiliation(s)
- Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hairong Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Wu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
81
|
Steiman-Shimony A, Shtrikman O, Margalit H. Assessing the functional association of intronic miRNAs with their host genes. RNA (NEW YORK, N.Y.) 2018; 24:991-1004. [PMID: 29752351 PMCID: PMC6049507 DOI: 10.1261/rna.064386.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/26/2018] [Indexed: 05/07/2023]
Abstract
In human, nearly half of the known microRNAs (miRNAs) are encoded within the introns of protein-coding genes. The embedment of these miRNA genes within the sequences of protein-coding genes alludes to a possible functional relationship between intronic miRNAs and their hosting genes. Several studies, using predicted targets, suggested that intronic miRNAs influence their hosts' function either antagonistically or synergistically. New experimental data of miRNA expression patterns and targets enable exploring this putative association by relying on actual data rather than on predictions. Here, our analysis based on currently available experimental data implies that the potential functional association between intronic miRNAs and their hosting genes is limited. For host-miRNA examples where functional associations were detected, it was manifested by either autoregulation, common targets of the miRNA and hosting gene, or through the targeting of transcripts participating in pathways in which the host gene is involved. This low prevalence of functional association is consistent with our observation that many intronic miRNAs have independent transcription start sites and are not coexpressed with the hosting gene. Yet, the intronic miRNAs that do show functional association with their hosts were found to be more evolutionarily conserved compared to other intronic miRNAs. This might suggest a selective pressure to maintain this architecture when it has a functional consequence.
Collapse
Affiliation(s)
- Avital Steiman-Shimony
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Orr Shtrikman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
82
|
Coto E, Díaz Corte C, Tranche S, Gómez J, Reguero JR, Alonso B, Iglesias S, Gil-Peña H, Yin X, Coto-Segura P. Genetic Variation in the H19-IGF2 Cluster Might Confer Risk of Developing Impaired Renal Function. DNA Cell Biol 2018; 37:617-625. [PMID: 29889555 DOI: 10.1089/dna.2017.4135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The H19-IGF2 imprinted gene region could be implicated in the risk of developing impaired renal function (IRF). Our aim was to determine the association of several common H19-IGF2 variants and IRF in a cohort of elderly healthy individuals. The study involved 675 individuals >65 years of age, 184 with type 2 diabetes mellitus (T2DM), and 105 with IRF (estimated glomerular filtration rate [eGFR] <60). They were genotyped for two common H19 single nucleotide polymorphisms (SNPs) (rs2839698 and rs10732516), one H19-IGF2 intergenic indel (rs201858505), and one indel in the 3'UTR of the IGF2. For the H19 SNPs, we also determined the allele present in the methylated chromosome through genotyping the DNA digested with a methylation-sensitive endonuclease. None of the four H19-IGF2 variants was associated with IRF in our cohort. We found a significantly higher frequency of the 3'UTR IGF2 deletion (D) in the eGFR <60 group (p = 0.01; odds ratio = 1.16, 95% confidence interval = 1.10-2.51). This association was independent of age and T2DM, two strong predictors of IRF. In conclusion, a common indel variant in the 3'UTR of the IGF2 gene was associated with the risk of IRF. This association could be explained by the role of IGF2 in podocyte survival, through regulation of IGF2 expression by differential binding of miRNAs to the indel sequences. Functional studies should be necessary to clarify this issue.
Collapse
Affiliation(s)
- Eliecer Coto
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain .,2 Universidad de Oviedo , Oviedo, Spain .,3 Red de Investigación Renal (REDINREN) , Madrid, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain
| | - Carmen Díaz Corte
- 2 Universidad de Oviedo , Oviedo, Spain .,3 Red de Investigación Renal (REDINREN) , Madrid, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain .,5 Nefrología , HUCA, Oviedo, Spain
| | | | - Juan Gómez
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | | | - Belén Alonso
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Sara Iglesias
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Helena Gil-Peña
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Xueqian Yin
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Pablo Coto-Segura
- 2 Universidad de Oviedo , Oviedo, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain .,7 Cardiología , HUCA, Oviedo, Spain .,8 Dermatología , HUCA, Oviedo, Spain
| |
Collapse
|
83
|
MicroRNA co-expression patterns unravel the relevance of extra cellular matrix and immunity in breast cancer. Breast 2018; 39:46-52. [DOI: 10.1016/j.breast.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
|
84
|
Transgenic expression of the RNA binding protein IMP2 stabilizes miRNA targets in murine microsteatosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3099-3108. [PMID: 29859241 DOI: 10.1016/j.bbadis.2018.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Adult expression of IMP2 is often associated with several types of disease and cancer. The RNA binding protein IMP2 binds and stabilizes the IGF2 mRNA as well as hundreds of other transcripts during development. To gain insight into the molecular action of IMP2 and its contribution to disease in context of adult cellular metabolism, we analyze transgenic overexpression of IMP2 in mouse livers, which has been shown to induce a steatosis-like phenotype and enhanced risk to develop hepatocellular carcinoma (HCC). Our data show up-regulation of several HCC marker genes and miRNAs (miR438-3p and miR151-5p). To characterize the impact of miRNAs to their targets, integrative analysis of transcriptome-and miRNAome-dynamics in combination with IMP2 target prediction was carried out. Our analyses show that targets of expressed miRNAs become accumulated in the case that these transcripts have positive IMP2 binding prediction. Therefore, our data indicates that overexpression of IMP2 alters the regulatory capacity of many miRNAs and we conclude that IMP2 competes with miRNAs for binding sites on thousands of transcripts. As a result, our data implicates that overexpression of IMP2 has distinct effects to the regulatory capacity of miRNAs with yet unknown consequences for translational efficiency.
Collapse
|
85
|
Vaschetto LM. miRNA activation is an endogenous gene expression pathway. RNA Biol 2018; 15:826-828. [PMID: 29537927 PMCID: PMC6152443 DOI: 10.1080/15476286.2018.1451722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Transfection of small non-coding RNAs (sncRNAs) molecules has become a routine technique widely used for silencing gene expression by triggering post-transcriptional and transcriptional RNA interference (RNAi) pathways. Moreover, in the past decade, small activating (saRNA) sequences targeting promoter regions were also reported, thereby a RNA-based gene activation (RNAa) mechanism has been proposed. In this regard, Turner and colleagues recently discovered an endogenous microRNA (miRNA) which binds its promoter in order to upregulate its own expression. Interestingly, several miRNA-induced RNA activation (miRNAa) phenomena have since then been identified. My objective here is to introduce the reader into the emergent miRNAa research field, as well as bring together important discoveries about this unexplored transcriptional activation pathway.
Collapse
Affiliation(s)
- Luis M. Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
- Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| |
Collapse
|
86
|
Inflammatory-Related P62 Triggers Malignant Transformation of Mesenchymal Stem Cells through the Cascade of CUDR-CTCF-IGFII-RAS Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:367-381. [PMID: 29858072 PMCID: PMC5992448 DOI: 10.1016/j.omtn.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 03/04/2018] [Indexed: 12/27/2022]
Abstract
Inflammatory and autophagy-related gene P62 is highly expressed in most human tumor tissues. Herein, we demonstrate that P62 promotes human mesenchymal stem cells' malignant transformation via the cascade of P62-tumor necrosis factor alpha (TNF-α)-CUDR-CTCF-insulin growth factor II (IGFII)-H-Ras signaling. Mechanistically, we reveal P62 enhances IGFII transcriptional activity through forming IGFII promoter-enhancer chromatin loop and increasing METTL3 occupancy on IGFII 3' UTR and enhances H-Ras overexpression by harboring inflammation-related factors, e.g., TNFR1, CLYD, EGR1, NFκB, TLR4, and PPARγ. Furthermore, the P62 cooperates with TNF-α to promote malignant transformation of mesenchymal stem cells. These findings, for the first time, provide insight into the positive role that P62 plays in malignant transformation of mesenchymal stem cells and reveal a novel link between P62 and the inflammation factors in mesenchymal stem cells.
Collapse
|
87
|
Zhang Y, Hu JF, Wang H, Cui J, Gao S, Hoffman AR, Li W. CRISPR Cas9-guided chromatin immunoprecipitation identifies miR483 as an epigenetic modulator of IGF2 imprinting in tumors. Oncotarget 2018; 8:34177-34190. [PMID: 27486969 PMCID: PMC5470959 DOI: 10.18632/oncotarget.10918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022] Open
Abstract
The normally imprinted insulin-like growth factor II (IGF2) gene is aberrantly upregulated in a variety of human malignancies, yet the mechanisms underlying this dysregulation are still poorly defined. In this report, we used a CRISPR Cas9-guided chromatin immunoprecipitation assay to characterize the molecular components that participate in the control of IGF2 gene expression in human tumor cells. We found that miR483, an oncogenic intronic miRNA, binds to the most upstream imprinted IGF2 promoter, P2. Ectopic expression of miR483 induced upregulation of IGF2 expression, in parallel with an increase in tumor cell proliferation, migration, invasion, and tumor colony formation. miR483 induced loss of IGF2 imprinting by altering the epigenotype at P2, with reduction in histone H3K27 methylation and a decrease in chromatin binding of two imprinting regulatory factors, CTCF and SUZ12. This study identifies a new role for miR483 in the regulation of IGF2 gene expression through the alteration of the promoter epigenotype.
Collapse
Affiliation(s)
- Yiqun Zhang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Department of Medicine, Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Department of Medicine, Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Hong Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Department of Medicine, Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Sujun Gao
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Andrew R Hoffman
- Department of Medicine, Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
88
|
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17:64. [PMID: 29471827 PMCID: PMC5822656 DOI: 10.1186/s12943-018-0765-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus-cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies.
Collapse
Affiliation(s)
- Hongyu Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Cheng Lei
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Qin He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Zou Pan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
89
|
Galatenko VV, Galatenko AV, Samatov TR, Turchinovich AA, Shkurnikov MY, Makarova JA, Tonevitsky AG. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci Rep 2018; 8:2418. [PMID: 29402894 PMCID: PMC5799291 DOI: 10.1038/s41598-018-20215-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of short noncoding RNAs that posttranscriptionally regulate gene expression and play an important role in multiple cellular processes. A significant percentage of miRNAs are intragenic, which is often functionally related to their host genes playing either antagonistic or synergistic roles. In this study, we constructed and analyzed the entire network of intergenic interactions induced by intragenic miRNAs. We further focused on the core of this network, which was defined as a union of nontrivial strongly connected components, i.e., sets of nodes (genes) mutually connected via directed paths. Both the entire network and its core possessed statistically significant non-random properties. Specifically, genes forming the core had high expression levels and low expression variance. Furthermore, the network core did not split into separate components corresponding to individual signalling or metabolic pathways, but integrated genes involved in key cellular processes, including DNA replication, transcription, protein homeostasis and cell metabolism. We suggest that the network core, consisting of genes mutually regulated by their intragenic miRNAs, could coordinate adjacent pathways or homeostatic control circuits, serving as a horizontal inter-circuit link. Notably, expression patterns of these genes had an efficient prognostic potential for breast and colorectal cancer patients.
Collapse
Affiliation(s)
- Vladimir V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. .,SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,Tauber Bioinformatics Research Center, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Alexey V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Timur R Samatov
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.,Evotec International GmbH, Marie-Curie Str. 7, 37079, Göttingen, Germany
| | | | - Maxim Yu Shkurnikov
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia
| | - Julia A Makarova
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
| | - Alexander G Tonevitsky
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.
| |
Collapse
|
90
|
Epigenetics and MicroRNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020459. [PMID: 29401683 PMCID: PMC5855681 DOI: 10.3390/ijms19020459] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
The ability to reprogram the transcriptional circuitry by remodeling the three-dimensional structure of the genome is exploited by cancer cells to promote tumorigenesis. This reprogramming occurs because of hereditable chromatin chemical modifications and the consequent formation of RNA-protein-DNA complexes that represent the principal actors of the epigenetic phenomena. In this regard, the deregulation of a transcribed non-coding RNA may be both cause and consequence of a cancer-related epigenetic alteration. This review summarizes recent findings that implicate microRNAs in the aberrant epigenetic regulation of cancer cells.
Collapse
|
91
|
Rotwein P. The complex genetics of human insulin-like growth factor 2 are not reflected in public databases. J Biol Chem 2018; 293:4324-4333. [PMID: 29414792 DOI: 10.1074/jbc.ra117.001573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
Recent advances in genetics present unique opportunities for enhancing knowledge about human physiology and disease susceptibility. Understanding this information at the individual gene level is challenging and requires extracting, collating, and interpreting data from a variety of public gene repositories. Here, I illustrate this challenge by analyzing the gene for human insulin-like growth factor 2 (IGF2) through the lens of several databases. IGF2, a 67-amino acid secreted peptide, is essential for normal prenatal growth and is involved in other physiological and pathophysiological processes in humans. Surprisingly, none of the genetic databases accurately described or completely delineated human IGF2 gene structure or transcript expression, even though all relevant information could be found in the published literature. Although IGF2 shares multiple features with the mouse Igf2 gene, it has several unique properties, including transcription from five promoters. Both genes undergo parental imprinting, with IGF2/Igf2 being expressed primarily from the paternal chromosome and the adjacent H19 gene from the maternal chromosome. Unlike mouse Igf2, whose expression declines after birth, human IGF2 remains active throughout life. This characteristic has been attributed to a unique human gene promoter that escapes imprinting, but as shown here, it involves several different promoters with distinct tissue-specific expression patterns. Because new testable hypotheses could lead to critical insights into IGF2 actions in human physiology and disease, it is incumbent that our fundamental understanding is accurate. Similar challenges affecting knowledge of other human genes should promote attempts to critically evaluate, interpret, and correct human genetic data in publicly available databases.
Collapse
Affiliation(s)
- Peter Rotwein
- From the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
92
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
93
|
Zhou W, Yang W, Ma J, Zhang H, Li Z, Zhang L, Liu J, Han Z, Wang H, Hong L. Role of miR-483 in digestive tract cancers: from basic research to clinical value. J Cancer 2018; 9:407-414. [PMID: 29344287 PMCID: PMC5771348 DOI: 10.7150/jca.21394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Digestive tract cancers (DTCs) is the most common malignant tumors in the world. Despite surgery and medical technology have witnessed the increasing development and sharp advancement in the past decade, DTCs remain a critical concern with high morbidity and mortality. Since a class of small noncoding RNAs termed miRNAs were identified several years ago, increasing studies have attempted to illustrate the relationship between the specific miRNAs dysregulated expression levels and the diseases phenotypic changes. For example, microRNA-483 (miR-483) aberrant expression plays a pivotal part in tumor biology in a variety of human cancer, including DTCs. In this review, we focus on the present key findings from recent profiling studies, discuss the use of miR-483 as a novel biomarker for DTCs. At the same time, we emphasize the significant diversities and technical difficulties must be overcome before clinically relevant signatures arose. It is believed that this might provide researchers an insight into the molecular targeting cancer treatment.
Collapse
Affiliation(s)
- Wei Zhou
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wanli Yang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jiaojiao Ma
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hongwei Zhang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zeng Li
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lei Zhang
- Department of General Surgery, NO.406 Hospital, Dalian 116041, Liaoning Province, China
| | - Jinqiang Liu
- Xinyang Cadres Sanatorium of Wuhan Military Logistics Base, Xinyang 464000, Henan Province, China
| | - Zhenyu Han
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hu Wang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Liu Hong
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
94
|
De Martino M, Palma G, Azzariti A, Arra C, Fusco A, Esposito F. The HMGA1 Pseudogene 7 Induces miR-483 and miR-675 Upregulation by Activating Egr1 through a ceRNA Mechanism. Genes (Basel) 2017; 8:genes8110330. [PMID: 29149041 PMCID: PMC5704243 DOI: 10.3390/genes8110330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
Several studies have established that pseudogene mRNAs can work as competing endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias. Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes have a critical role in cancer progression, acting as micro RNA (miRNA) sponges for HMGA1 and other cancer-related genes. HMGA1 pseudogenes were found overexpressed in several human carcinomas, and their expression levels positively correlate with an advanced cancer stage and a poor prognosis. In order to investigate the molecular alterations following HMGA1 pseudogene 7 overexpression, we carried out miRNA sequencing analysis on HMGA1P7 overexpressing mouse embryonic fibroblasts. Intriguingly, the most upregulated miRNAs were miR-483 and miR-675 that have been described as key regulators in cancer progression. Here, we report that HMGA1P7 upregulates miR-483 and miR-675 through a competing endogenous RNA mechanism with Egr1, a transcriptional factor that positively regulates miR-483 and miR-675 expression.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| | - Giuseppe Palma
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Amalia Azzariti
- IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari, Italy.
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
95
|
Jacob R, Zander S, Gutschner T. The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. Int J Mol Sci 2017; 18:ijms18112387. [PMID: 29125541 PMCID: PMC5713356 DOI: 10.3390/ijms18112387] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
The broad application of next-generation sequencing technologies in conjunction with improved bioinformatics has helped to illuminate the complexity of the transcriptome, both in terms of quantity and variety. In humans, 70–90% of the genome is transcribed, but only ~2% carries the blueprint for proteins. Hence, there is a huge class of non-translated transcripts, called long non-coding RNAs (lncRNAs), which have received much attention in the past decade. Several studies have shown that lncRNAs are involved in a plethora of cellular signaling pathways and actively regulate gene expression via a broad selection of molecular mechanisms. Only recently, sequencing-based, transcriptome-wide studies have characterized different types of post-transcriptional chemical modifications of RNAs. These modifications have been shown to affect the fate of RNA and further expand the variety of the transcriptome. However, our understanding of their biological function, especially in the context of lncRNAs, is still in its infancy. In this review, we will focus on three epitranscriptomic marks, namely pseudouridine (Ψ), N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We will introduce writers, readers, and erasers of these modifications, and we will present methods for their detection. Finally, we will provide insights into the distribution and function of these chemical modifications in selected, cancer-related lncRNAs.
Collapse
Affiliation(s)
- Roland Jacob
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Sindy Zander
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Tony Gutschner
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
96
|
Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J Orthop Res 2017; 35:2369-2377. [PMID: 28244607 PMCID: PMC5573664 DOI: 10.1002/jor.23552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/18/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) can regulate cellular differentiation processes by modulating multiple pathways simultaneously. Previous studies to analyze in vivo miRNA expression patterns in developing human limb cartilage tissue identified significant downregulation of miR-483 in hypertrophic chondrocytes relative to proliferating and differentiated chondrocytes. To test the function of miR-483 during chondrogenesis, lentiviral strategies were used to overexpress miR-483 during in vitro chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While the in vivo expression patterns led us to hypothesize that miR-483 may enhance chondrogenesis or suppress hypertrophic marker expression, surprisingly, miR-483 overexpression reduced chondrocyte gene expression and cartilage matrix production. In addition, cell death was induced at later stages of the chondrogenesis assay. Mechanistic studies revealed that miR-483 overexpression resulted in downregulation of the TGF-β pathway member SMAD4, a known direct target of miR-483-3p. From these studies, we conclude that constitutive overexpression of miR-483 in hBM-MSCs inhibits chondrogenesis of these cells and does not represent an effective strategy to attempt to enhance chondrocyte differentiation and anabolism in this system in vitro. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2369-2377, 2017.
Collapse
Affiliation(s)
- Britta A. Anderson
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO,Corresponding author:: , Phone: (314) 454-8860
| |
Collapse
|
97
|
Tang S, Chen Y, Feng S, Yi T, Liu X, Li Q, Liu Z, Zhu C, Hu J, Yu X, Wang M, Cao G, Tang H, Bie C, Ma F, Tang H, Du G, Huang J. MiR-483-5p promotes IGF-II transcription and is associated with poor prognosis of hepatocellular carcinoma. Oncotarget 2017; 8:99871-99888. [PMID: 29245946 PMCID: PMC5725137 DOI: 10.18632/oncotarget.21737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
The human insulin-like growth factor-II (IGF-II) gene transcribes four mRNAs (P1 mRNA-P4 mRNA), and P3 mRNA overexpression contributes to hepatocarcinogenesis. IGF-II-derived miR-483-5p is implicated in the development of cancers. Here, we investigated the involvement of miR-483-5p in P3 mRNA overexpression regulation and its role in hepatocellular carcinoma. Our results showed that miR-483-5p up-regulated P3 mRNA transcription by targeting the 5′-untranslated region (5′UTR) of P3 mRNA in hepatocellular carcinoma. The mechanism was involved in recruiting of an argonaute 1(Ago1)-argonaute 2 (Ago2) complex to the P3 mRNA 5′UTR and the P3 promoter of IGF-II gene by miR-483-5p, accompanied by increased enrichment of RNA polymerase II and activating histone marks histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 27 acetylation (H3K27ac), and histone 4 lysine 5/8/12/16 acetylation (H4Kac) at the P3 promoter. High miR-483-5p expression was an independent predictor for shorter survival of HCC patients. The findings suggest that miR-483-5p promotes P3 mRNA transcription by recruiting the Ago1-Ago2 complex to the P3 mRNA 5′UTR and is associated with poor prognosis of HCC. Our results display a potential new model for miRNAs to up-regulate gene expression.
Collapse
Affiliation(s)
- Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shufen Feng
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Tingzhuang Yi
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationlities, Baise, Guangxi, China
| | - Xuyou Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhilong Liu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Cuiping Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jianjun Hu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xi Yu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Min Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Guoli Cao
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Hui Tang
- Clinical Medicine Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Caiqun Bie
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Feng Ma
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Huijun Tang
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Gang Du
- Clinical Medicine Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jianwei Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
98
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
99
|
Liu Y, Li H, Liu J, Han P, Li X, Bai H, Zhang C, Sun X, Teng Y, Zhang Y, Yuan X, Chu Y, Zhao B. Variations in MicroRNA-25 Expression Influence the Severity of Diabetic Kidney Disease. J Am Soc Nephrol 2017; 28:3627-3638. [PMID: 28923913 DOI: 10.1681/asn.2015091017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 08/16/2017] [Indexed: 01/19/2023] Open
Abstract
Diabetic nephropathy is characterized by persistent albuminuria, progressive decline in GFR, and secondary hypertension. MicroRNAs are dysregulated in diabetic nephropathy, but identification of the specific microRNAs involved remains incomplete. Here, we show that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of microRNA-25 (miR-25) compared with those of their nondiabetic counterparts. Furthermore, treatment with high glucose decreased the expression of miR-25 in cultured kidney cells. In db/db mice, systemic administration of an miR-25 agomir repressed glomerular fibrosis and reduced high BP. Notably, knockdown of miR-25 in normal mice by systemic administration of an miR-25 antagomir resulted in increased proteinuria, extracellular matrix accumulation, podocyte foot process effacement, and hypertension with renin-angiotensin system activation. However, excessive miR-25 did not cause kidney dysfunction in wild-type mice. RNA sequencing showed the alteration of miR-25 target genes in antagomir-treated mice, including the Ras-related gene CDC42. In vitro, cotransfection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the CDC42 3' untranslated region. In conclusion, these results reveal a role for miR-25 in diabetic nephropathy and indicate a potential novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Yunshuang Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and.,Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People's Republic of China
| | - Hongzhi Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Pengfei Han
- Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People's Republic of China
| | - Xuefeng Li
- Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People's Republic of China
| | - He Bai
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Chunlei Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Xuelian Sun
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Yanjie Teng
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Yufei Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| | - Binghai Zhao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People's Republic of China; and
| |
Collapse
|
100
|
Jurkovicova D, Smolkova B, Magyerkova M, Sestakova Z, Kajabova VH, Kulcsar L, Zmetakova I, Kalinkova L, Krivulcik T, Karaba M, Benca J, Sedlackova T, Minarik G, Cierna Z, Danihel L, Mego M, Chovanec M, Fridrichova I. Down-regulation of traditional oncomiRs in plasma of breast cancer patients. Oncotarget 2017; 8:77369-77384. [PMID: 29100393 PMCID: PMC5652785 DOI: 10.18632/oncotarget.20484] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Deregulated expression of microRNAs has the oncogenic or tumor suppressor function in cancer. Since miRNAs in plasma are highly stable, their quantification could contribute to more precise cancer diagnosis, prognosis and therapy prediction. We have quantified expression of seven oncomiRs, namely miR-17/92 cluster (miR-17, miR-18a, miR-19a and miR-20a), miR-21, miR-27a and miR-155, in plasma of 137 breast cancer (BC) patients. We detected down-regulation of six miRNAs in patients with invasive BC compared to controls; however, only miR-20a and miR-27a down-regulations were statistically significant. Comparing miRNA expression between early and advanced stages of BC, we observed statistically significant decrease of miR-17 and miR-19a. We identified down-regulation of miR-17 and miR-20a in patients with clinical parameters of advanced BC (lymph node metastasis, tumor grade 3, circulating tumor cells, higher Ki-67-related proliferation, hormone receptor negativity and HER2 amplification), when compared to controls. Moreover, decreased level of miR-17 was found from low to high grade. Therefore, miR-17 could represent an indicator of advanced BC. Down-regulated miR-27a expression levels were observed in all clinical categories regardless of tumor progression. Hence, miR-27a could be used as a potential diagnostic marker for BC. Our data indicates that any changes in miRNA expression levels in BC patients in comparison to controls could be highly useful for cancer-associated pathology discrimination. Moreover, dynamics of miRNA expression changes could be used for BC progression monitoring.
Collapse
Affiliation(s)
- Dana Jurkovicova
- KRD Molecular Technologies Ltd., Bratislava, Slovakia.,Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bozena Smolkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Zuzana Sestakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Horvathova Kajabova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Iveta Zmetakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Krivulcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marian Karaba
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovakia
| | - Juraj Benca
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovakia.,Medical Department of St. Elizabeth University, Bratislava, Slovakia
| | - Tatiana Sedlackova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Gabriel Minarik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Cierna
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, University Hospital, Bratislava, Slovakia
| | - Ludovit Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, University Hospital, Bratislava, Slovakia.,Pathological-Anatomical Workplace, Health Care Surveillance Authority, Bratislava, Slovakia
| | - Michal Mego
- 2 Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|