51
|
Jones SA, Barfield JH, Norman VK, Shew WL. Scale-free behavioral dynamics directly linked with scale-free cortical dynamics. eLife 2023; 12:e79950. [PMID: 36705565 PMCID: PMC9931391 DOI: 10.7554/elife.79950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.
Collapse
Affiliation(s)
- Sabrina A Jones
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Jacob H Barfield
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - V Kindler Norman
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| |
Collapse
|
52
|
Scale free avalanches in excitatory-inhibitory populations of spiking neurons with conductance based synaptic currents. J Comput Neurosci 2023; 51:149-172. [PMID: 36280652 PMCID: PMC9840601 DOI: 10.1007/s10827-022-00838-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023]
Abstract
We investigate spontaneous critical dynamics of excitatory and inhibitory (EI) sparsely connected populations of spiking leaky integrate-and-fire neurons with conductance-based synapses. We use a bottom-up approach to derive a single neuron gain function and a linear Poisson neuron approximation which we use to study mean-field dynamics of the EI population and its bifurcations. In the low firing rate regime, the quiescent state loses stability due to saddle-node or Hopf bifurcations. In particular, at the Bogdanov-Takens (BT) bifurcation point which is the intersection of the Hopf bifurcation and the saddle-node bifurcation lines of the 2D dynamical system, the network shows avalanche dynamics with power-law avalanche size and duration distributions. This matches the characteristics of low firing spontaneous activity in the cortex. By linearizing gain functions and excitatory and inhibitory nullclines, we can approximate the location of the BT bifurcation point. This point in the control parameter phase space corresponds to the internal balance of excitation and inhibition and a slight excess of external excitatory input to the excitatory population. Due to the tight balance of average excitation and inhibition currents, the firing of the individual cells is fluctuation-driven. Around the BT point, the spiking of neurons is a Poisson process and the population average membrane potential of neurons is approximately at the middle of the operating interval [Formula: see text]. Moreover, the EI network is close to both oscillatory and active-inactive phase transition regimes.
Collapse
|
53
|
Apicella I, Scarpetta S, de Arcangelis L, Sarracino A, de Candia A. Power spectrum and critical exponents in the 2D stochastic Wilson-Cowan model. Sci Rep 2022; 12:21870. [PMID: 36536058 PMCID: PMC9763404 DOI: 10.1038/s41598-022-26392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The power spectrum of brain activity is composed by peaks at characteristic frequencies superimposed to a background that decays as a power law of the frequency, [Formula: see text], with an exponent [Formula: see text] close to 1 (pink noise). This exponent is predicted to be connected with the exponent [Formula: see text] related to the scaling of the average size with the duration of avalanches of activity. "Mean field" models of neural dynamics predict exponents [Formula: see text] and [Formula: see text] equal or near 2 at criticality (brown noise), including the simple branching model and the fully-connected stochastic Wilson-Cowan model. We here show that a 2D version of the stochastic Wilson-Cowan model, where neuron connections decay exponentially with the distance, is characterized by exponents [Formula: see text] and [Formula: see text] markedly different from those of mean field, respectively around 1 and 1.3. The exponents [Formula: see text] and [Formula: see text] of avalanche size and duration distributions, equal to 1.5 and 2 in mean field, decrease respectively to [Formula: see text] and [Formula: see text]. This seems to suggest the possibility of a different universality class for the model in finite dimension.
Collapse
Affiliation(s)
- I Apicella
- Department of Physics "E. Pancini", University of Naples Federico II, Napoli, Italy
- INFN, Section of Naples, Gruppo collegato di Salerno, Fisciano, Italy
| | - S Scarpetta
- INFN, Section of Naples, Gruppo collegato di Salerno, Fisciano, Italy
- Department of Physics "E. Caianiello", University of Salerno, Fisciano, Italy
| | - L de Arcangelis
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - A Sarracino
- Deparment of Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - A de Candia
- Department of Physics "E. Pancini", University of Naples Federico II, Napoli, Italy.
- INFN, Section of Naples, Gruppo collegato di Salerno, Fisciano, Italy.
| |
Collapse
|
54
|
Fosque LJ, Alipour A, Zare M, Williams-García RV, Beggs JM, Ortiz G. Quasicriticality explains variability of human neural dynamics across life span. Front Comput Neurosci 2022; 16:1037550. [PMID: 36532868 PMCID: PMC9747757 DOI: 10.3389/fncom.2022.1037550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aging impacts the brain's structural and functional organization and over time leads to various disorders, such as Alzheimer's disease and cognitive impairment. The process also impacts sensory function, bringing about a general slowing in various perceptual and cognitive functions. Here, we analyze the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) resting-state magnetoencephalography (MEG) dataset-the largest aging cohort available-in light of the quasicriticality framework, a novel organizing principle for brain functionality which relates information processing and scaling properties of brain activity to brain connectivity and stimulus. Examination of the data using this framework reveals interesting correlations with age and gender of test subjects. Using simulated data as verification, our results suggest a link between changes to brain connectivity due to aging and increased dynamical fluctuations of neuronal firing rates. Our findings suggest a platform to develop biomarkers of neurological health.
Collapse
Affiliation(s)
- Leandro J. Fosque
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | | | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, IN, United States
| |
Collapse
|
55
|
Neto JP, Spitzner FP, Priesemann V. Sampling effects and measurement overlap can bias the inference of neuronal avalanches. PLoS Comput Biol 2022; 18:e1010678. [PMID: 36445932 PMCID: PMC9733887 DOI: 10.1371/journal.pcbi.1010678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/09/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.
Collapse
Affiliation(s)
- Joao Pinheiro Neto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
56
|
Trejo EJA, Martin DA, De Zoysa D, Bowen Z, Grigera TS, Cannas SA, Losert W, Chialvo DR. Finite-size correlation behavior near a critical point: A simple metric for monitoring the state of a neural network. Phys Rev E 2022; 106:054313. [PMID: 36559402 DOI: 10.1103/physreve.106.054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
In this article, a correlation metric κ_{c} is proposed for the inference of the dynamical state of neuronal networks. κ_{C} is computed from the scaling of the correlation length with the size of the observation region, which shows qualitatively different behavior near and away from the critical point of a continuous phase transition. The implementation is first studied on a neuronal network model, where the results of this new metric coincide with those obtained from neuronal avalanche analysis, thus well characterizing the critical state of the network. The approach is further tested with brain optogenetic recordings in behaving mice from a publicly available database. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.
Collapse
Affiliation(s)
- Eyisto J Aguilar Trejo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Daniel A Martin
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Dulara De Zoysa
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Zac Bowen
- Fraunhofer USA Center Mid-Atlantic, Riverdale, Maryland 20737, USA
| | - Tomas S Grigera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB-CONICET) Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Sergio A Cannas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Wolfgang Losert
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Dante R Chialvo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| |
Collapse
|
57
|
Spasojević D, Graovac S, Janićević S. Interplay of disorder and type of driving in disordered ferromagnetic systems. Phys Rev E 2022; 106:044107. [PMID: 36397527 DOI: 10.1103/physreve.106.044107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We investigate the effects of adiabatic, quasistatic, and finite-rate types of driving on the evolution of disordered three-dimensional ferromagnetic systems, studied within the frame of the nonequilibrium athermal random field Ising model. The effects were examined in all three domains of disorder (low, high, and transitional) for all types of driving, and in a wide range of driving rates for quasistatic and finite-rate driving, providing an extensive overview and comparison of the joint effects that the disorder, type of driving, and rate regime have on the system's behavior.
Collapse
Affiliation(s)
- Djordje Spasojević
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Stefan Graovac
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|
58
|
Tian Y, Tan Z, Hou H, Li G, Cheng A, Qiu Y, Weng K, Chen C, Sun P. Theoretical foundations of studying criticality in the brain. Netw Neurosci 2022; 6:1148-1185. [PMID: 38800464 PMCID: PMC11117095 DOI: 10.1162/netn_a_00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 05/29/2024] Open
Abstract
Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information-processing capacities in the brain. While considerable evidence generally supports this hypothesis, nonnegligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the nontriviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, that is, ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistical techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
- Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China
| | - Zeren Tan
- Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China
| | - Hedong Hou
- UFR de Mathématiques, Université de Paris, Paris, France
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Aohua Cheng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yike Qiu
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Kangyu Weng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Chun Chen
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Pei Sun
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
59
|
Yu C, Zhai J. Scale-free avalanche dynamics possibly generated by randomly jumping among many stable states. CHAOS (WOODBURY, N.Y.) 2022; 32:103116. [PMID: 36319307 DOI: 10.1063/5.0104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A large amount of research has used the scale-free statistics of neuronal avalanches as a signature of the criticality of neural systems, which bears criticisms. For instance, the work of Touboul and Destexhe demonstrated that non-critical systems could also display such scale-free dynamics, which passed their rigorous statistical analyses. In this paper, we show that a fully connected stochastic neural network may also generate scale-free dynamics simply by jumping among many stable states.
Collapse
Affiliation(s)
- Chaojun Yu
- School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhai
- School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
60
|
Beggs JM. Addressing skepticism of the critical brain hypothesis. Front Comput Neurosci 2022; 16:703865. [PMID: 36185712 PMCID: PMC9520604 DOI: 10.3389/fncom.2022.703865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothesis that living neural networks operate near a critical phase transition point has received substantial discussion. This “criticality hypothesis” is potentially important because experiments and theory show that optimal information processing and health are associated with operating near the critical point. Despite the promise of this idea, there have been several objections to it. While earlier objections have been addressed already, the more recent critiques of Touboul and Destexhe have not yet been fully met. The purpose of this paper is to describe their objections and offer responses. Their first objection is that the well-known Brunel model for cortical networks does not display a peak in mutual information near its phase transition, in apparent contradiction to the criticality hypothesis. In response I show that it does have such a peak near the phase transition point, provided it is not strongly driven by random inputs. Their second objection is that even simple models like a coin flip can satisfy multiple criteria of criticality. This suggests that the emergent criticality claimed to exist in cortical networks is just the consequence of a random walk put through a threshold. In response I show that while such processes can produce many signatures criticality, these signatures (1) do not emerge from collective interactions, (2) do not support information processing, and (3) do not have long-range temporal correlations. Because experiments show these three features are consistently present in living neural networks, such random walk models are inadequate. Nevertheless, I conclude that these objections have been valuable for refining research questions and should always be welcomed as a part of the scientific process.
Collapse
Affiliation(s)
- John M. Beggs
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
- *Correspondence: John M. Beggs,
| |
Collapse
|
61
|
Heiney K, Huse Ramstad O, Fiskum V, Sandvig A, Sandvig I, Nichele S. Neuronal avalanche dynamics and functional connectivity elucidate information propagation in vitro. Front Neural Circuits 2022; 16:980631. [PMID: 36188125 PMCID: PMC9520060 DOI: 10.3389/fncir.2022.980631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cascading activity is commonly observed in complex dynamical systems, including networks of biological neurons, and how these cascades spread through the system is reliant on how the elements of the system are connected and organized. In this work, we studied networks of neurons as they matured over 50 days in vitro and evaluated both their dynamics and their functional connectivity structures by observing their electrophysiological activity using microelectrode array recordings. Correlations were obtained between features of their activity propagation and functional connectivity characteristics to elucidate the interplay between dynamics and structure. The results indicate that in vitro networks maintain a slightly subcritical state by striking a balance between integration and segregation. Our work demonstrates the complementarity of these two approaches—functional connectivity and avalanche dynamics—in studying information propagation in neurons in vitro, which can in turn inform the design and optimization of engineered computational substrates.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Kristine Heiney
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
- Department of Community Medicine and Rehabilitation, St. Olav's Hospital, Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| |
Collapse
|
62
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
63
|
Suryadi, Cheng RK, Birkett E, Jesuthasan S, Chew LY. Dynamics and potential significance of spontaneous activity in the habenula. eNeuro 2022; 9:ENEURO.0287-21.2022. [PMID: 35981869 PMCID: PMC9450562 DOI: 10.1523/eneuro.0287-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The habenula is an evolutionarily conserved structure of the vertebrate brain that is essential for behavioural flexibility and mood control. It is spontaneously active and is able to access diverse states when the animal is exposed to sensory stimuli. Here we investigate the dynamics of habenula spontaneous activity, to gain insight into how sensitivity is optimized. Two-photon calcium imaging was performed in resting zebrafish larvae at single cell resolution. An analysis of avalanches of inferred spikes suggests that the habenula is subcritical. Activity had low covariance and a small mean, arguing against dynamic criticality. A multiple regression estimator of autocorrelation time suggests that the habenula is neither fully asynchronous nor perfectly critical, but is reverberating. This pattern of dynamics may enable integration of information and high flexibility in the tuning of network properties, thus providing a potential mechanism for the optimal responses to a changing environment.Significance StatementSpontaneous activity in neurons shapes the response to stimuli. One structure with a high level of spontaneous neuronal activity is the habenula, a regulator of broadly acting neuromodulators involved in mood and learning. How does this activity influence habenula function? We show here that the habenula of a resting animal is near criticality, in a state termed reverberation. This pattern of dynamics is consistent with high sensitivity and flexibility, and may enable the habenula to respond optimally to a wide range of stimuli.
Collapse
Affiliation(s)
- Suryadi
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Elliot Birkett
- Institute of Molecular and Cell Biology, Singapore 138673
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Lock Yue Chew
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Complexity Institute, Nanyang Technological University, Singapore 637335
| |
Collapse
|
64
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
65
|
Nandi MK, Sarracino A, Herrmann HJ, de Arcangelis L. Scaling of avalanche shape and activity power spectrum in neuronal networks. Phys Rev E 2022; 106:024304. [PMID: 36109993 DOI: 10.1103/physreve.106.024304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
Many systems in nature exhibit avalanche dynamics with scale-free features. A general scaling theory has been proposed for critical avalanche profiles in crackling noise, predicting the collapse onto a universal avalanche shape, as well as the scaling behavior of the activity power spectrum as Brown noise. Recently, much attention has been given to the profile of neuronal avalanches, measured in neuronal systems in vitro and in vivo. Although a universal profile was evidenced, confirming the validity of the general scaling theory, the parallel study of the power spectrum scaling under the same conditions was not performed. The puzzling observation is that in the majority of healthy neuronal systems the power spectrum exhibits a behavior close to 1/f, rather than Brown, noise. Here we perform a numerical study of the scaling behavior of the avalanche shape and the power spectrum for a model of integrate and fire neurons with a short-term plasticity parameter able to tune the system to criticality. We confirm that, at criticality, the average avalanche size and the avalanche profile fulfill the general avalanche scaling theory. However, the power spectrum consistently exhibits Brown noise behavior, for both fully excitatory networks and systems with 30% inhibitory networks. Conversely, a behavior closer to 1/f noise is observed in systems slightly off criticality. Results suggest that the power spectrum is a good indicator to determine how close neuronal activity is to criticality.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Alessandro Sarracino
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Hans J Herrmann
- PMMH, ESPCI, 7 Quai Saint Bernard, Paris 75005, France
- Departamento de Fisica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
| | - Lucilla de Arcangelis
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| |
Collapse
|
66
|
Carstens N, Adejube B, Strunskus T, Faupel F, Brown S, Vahl A. Brain-like critical dynamics and long-range temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix. NANOSCALE ADVANCES 2022; 4:3149-3160. [PMID: 36132822 PMCID: PMC9418118 DOI: 10.1039/d2na00121g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/07/2022] [Indexed: 06/16/2023]
Abstract
Random networks of nanoparticle-based memristive switches enable pathways for emulating highly complex and self-organized synaptic connectivity together with their emergent functional behavior known from biological neuronal networks. They therefore embody a distinct class of neuromorphic hardware architectures and provide an alternative to highly regular arrays of memristors. Especially, networks of memristive nanoparticles (NPs) poised at the percolation threshold are promising due to their capabilities of showing brain-like activity such as critical dynamics or long-range temporal correlation (LRTC), which are closely connected to the computational capabilities in biological neuronal networks. Here, we adapt this concept to networks of Ag-NPs poised at the electrical percolation threshold, where the memristive properties are governed by electro-chemical metallization. We show that critical dynamics and LRTC are preserved although the nature of individual memristive gaps throughout the network is fundamentally changed by filling the gaps with an insulating matrix. The results in this work generate important contributions towards the practical applicability of critical dynamics and LRTC in percolating NP networks by elucidating the consequences of NP network encapsulation, which is considered as an important step towards device integration.
Collapse
Affiliation(s)
- Niko Carstens
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Blessing Adejube
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Thomas Strunskus
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Franz Faupel
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Simon Brown
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, Te Kura Matū, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Alexander Vahl
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| |
Collapse
|
67
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Vassanelli S, Suweis S. Disentangling the critical signatures of neural activity. Sci Rep 2022; 12:10770. [PMID: 35750684 PMCID: PMC9232560 DOI: 10.1038/s41598-022-13686-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
The critical brain hypothesis has emerged as an attractive framework to understand neuronal activity, but it is still widely debated. In this work, we analyze data from a multi-electrodes array in the rat's cortex and we find that power-law neuronal avalanches satisfying the crackling-noise relation coexist with spatial correlations that display typical features of critical systems. In order to shed a light on the underlying mechanisms at the origin of these signatures of criticality, we introduce a paradigmatic framework with a common stochastic modulation and pairwise linear interactions inferred from our data. We show that in such models power-law avalanches that satisfy the crackling-noise relation emerge as a consequence of the extrinsic modulation, whereas scale-free correlations are solely determined by internal interactions. Moreover, this disentangling is fully captured by the mutual information in the system. Finally, we show that analogous power-law avalanches are found in more realistic models of neural activity as well, suggesting that extrinsic modulation might be a broad mechanism for their generation.
Collapse
Affiliation(s)
| | - Giorgio Nicoletti
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padua, Italy.
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| | - Samir Suweis
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
68
|
Walter N, Hinterberger T. Determining states of consciousness in the electroencephalogram based on spectral, complexity, and criticality features. Neurosci Conscious 2022; 2022:niac008. [PMID: 35903410 PMCID: PMC9319002 DOI: 10.1093/nc/niac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
This study was based on the contemporary proposal that distinct states of consciousness are quantifiable by neural complexity and critical dynamics. To test this hypothesis, it was aimed at comparing the electrophysiological correlates of three meditation conditions using nonlinear techniques from the complexity and criticality framework as well as power spectral density. Thirty participants highly proficient in meditation were measured with 64-channel electroencephalography (EEG) during one session consisting of a task-free baseline resting (eyes closed and eyes open), a reading condition, and three meditation conditions (thoughtless emptiness, presence monitoring, and focused attention). The data were analyzed applying analytical tools from criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), complexity measures (multiscale entropy, Higuchi's fractal dimension), and power spectral density. Task conditions were contrasted, and effect sizes were compared. Partial least square regression and receiver operating characteristics analysis were applied to determine the discrimination accuracy of each measure. Compared to resting with eyes closed, the meditation categories emptiness and focused attention showed higher values of entropy and fractal dimension. Long-range temporal correlations were declined in all meditation conditions. The critical exponent yielded the lowest values for focused attention and reading. The highest discrimination accuracy was found for the gamma band (0.83-0.98), the global power spectral density (0.78-0.96), and the sample entropy (0.86-0.90). Electrophysiological correlates of distinct meditation states were identified and the relationship between nonlinear complexity, critical brain dynamics, and spectral features was determined. The meditation states could be discriminated with nonlinear measures and quantified by the degree of neuronal complexity, long-range temporal correlations, and power law distributions in neuronal avalanches.
Collapse
Affiliation(s)
- Nike Walter
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| | - Thilo Hinterberger
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| |
Collapse
|
69
|
Mellor NG, Graham ES, Unsworth CP. Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human hNT Astrocytes in Vitro. Front Physiol 2022; 13:808730. [PMID: 35784870 PMCID: PMC9247335 DOI: 10.3389/fphys.2022.808730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Networks of neurons are typically studied in the field of Criticality. However, the study of astrocyte networks in the brain has been recently lauded to be of equal importance to that of the neural networks. To date criticality assessments have only been performed on networks astrocytes from healthy rats, and astrocytes from cultured dissociated resections of intractable epilepsy. This work, for the first time, presents studies of the critical dynamics and shape collapse of calcium waves observed in cultures of healthy human astrocyte networks in vitro, derived from the human hNT cell line. In this article, we demonstrate that avalanches of spontaneous calcium waves display strong critical dynamics, including power-laws in both the size and duration distributions. In addition, the temporal profiles of avalanches displayed self-similarity, leading to shape collapse of the temporal profiles. These findings are significant as they suggest that cultured networks of healthy human hNT astrocytes self-organize to a critical point, implying that healthy astrocytic networks operate at a critical point to process and transmit information. Furthermore, this work can serve as a point of reference to which other astrocyte criticality studies can be compared.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- *Correspondence: Nicholas G. Mellor,
| | - E. Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
70
|
Yu C. Toward a Unified Analysis of the Brain Criticality Hypothesis: Reviewing Several Available Tools. Front Neural Circuits 2022; 16:911245. [PMID: 35669452 PMCID: PMC9164306 DOI: 10.3389/fncir.2022.911245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The study of the brain criticality hypothesis has been going on for about 20 years, various models and methods have been developed for probing this field, together with large amounts of controversial experimental findings. However, no standardized protocol of analysis has been established so far. Therefore, hoping to make some contributions to standardization of such analysis, we review several available tools used for estimating the criticality of the brain in this paper.
Collapse
|
71
|
Wang L, Fan H, Xiao J, Lan Y, Wang X. Criticality in reservoir computer of coupled phase oscillators. Phys Rev E 2022; 105:L052201. [PMID: 35706173 DOI: 10.1103/physreve.105.l052201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence shows that the cerebral cortex is operating near a critical state featured by power-law size distribution of neural avalanche activities, yet evidence of this critical state in artificial neural networks mimicking the cerebral cortex is still lacking. Here we design an artificial neural network of coupled phase oscillators and, by the technique of reservoir computing in machine learning, train it for predicting chaos. It is found that when the machine is properly trained, oscillators in the reservoir are synchronized into clusters whose sizes follow a power-law distribution. This feature, however, is absent when the machine is poorly trained. Additionally, it is found that despite the synchronization degree of the original network, once properly trained, the reservoir network is always developed to the same critical state, exemplifying the "attractor" nature of this state in machine learning. The generality of the results is verified in different reservoir models and by different target systems, and it is found that the scaling exponent of the distribution is independent of the reservoir details and the bifurcation parameters of the target system, but is modified when the dynamics of the target system is changed to a different type. The findings shed light on the nature of machine learning, and are helpful to the design of high-performance machines in physical systems.
Collapse
Affiliation(s)
- Liang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Huawei Fan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Jinghua Xiao
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xingang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
72
|
Mikaberidze G, D'Souza RM. Sandpile cascades on oscillator networks: The BTW model meets Kuramoto. CHAOS (WOODBURY, N.Y.) 2022; 32:053121. [PMID: 35649989 DOI: 10.1063/5.0095094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Cascading failures abound in complex systems and the Bak-Tang-Weisenfeld (BTW) sandpile model provides a theoretical underpinning for their analysis. Yet, it does not account for the possibility of nodes having oscillatory dynamics, such as in power grids and brain networks. Here, we consider a network of Kuramoto oscillators upon which the BTW model is unfolding, enabling us to study how the feedback between the oscillatory and cascading dynamics can lead to new emergent behaviors. We assume that the more out-of-sync a node is with its neighbors, the more vulnerable it is and lower its load-carrying capacity accordingly. Also, when a node topples and sheds load, its oscillatory phase is reset at random. This leads to novel cyclic behavior at an emergent, long timescale. The system spends the bulk of its time in a synchronized state where load builds up with minimal cascades. Yet, eventually, the system reaches a tipping point where a large cascade triggers a "cascade of larger cascades," which can be classified as a dragon king event. The system then undergoes a short transient back to the synchronous, buildup phase. The coupling between capacity and synchronization gives rise to endogenous cascade seeds in addition to the standard exogenous ones, and we show their respective roles. We establish the phenomena from numerical studies and develop the accompanying mean-field theory to locate the tipping point, calculate the load in the system, determine the frequency of the long-time oscillations, and find the distribution of cascade sizes during the buildup phase.
Collapse
Affiliation(s)
- Guram Mikaberidze
- Department of Mathematics, University of California, Davis, Davis, California 95616, USA
| | - Raissa M D'Souza
- Department of Computer Science and Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
73
|
Khoshkhou M, Montakhab A. Optimal reinforcement learning near the edge of a synchronization transition. Phys Rev E 2022; 105:044312. [PMID: 35590577 DOI: 10.1103/physreve.105.044312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Recent experimental and theoretical studies have indicated that the putative criticality of cortical dynamics may correspond to a synchronization phase transition. The critical dynamics near such a critical point needs further investigation specifically when compared to the critical behavior near the standard absorbing state phase transition. Since the phenomena of learning and self-organized criticality (SOC) at the edge of synchronization transition can emerge jointly in spiking neural networks due to the presence of spike-timing dependent plasticity (STDP), it is tempting to ask the following: what is the relationship between synchronization and learning in neural networks? Further, does learning benefit from SOC at the edge of synchronization transition? In this paper, we intend to address these important issues. Accordingly, we construct a biologically inspired model of a cognitive system which learns to perform stimulus-response tasks. We train this system using a reinforcement learning rule implemented through dopamine-modulated STDP. We find that the system exhibits a continuous transition from synchronous to asynchronous neural oscillations upon increasing the average axonal time delay. We characterize the learning performance of the system and observe that it is optimized near the synchronization transition. We also study neuronal avalanches in the system and provide evidence that optimized learning is achieved in a slightly supercritical state.
Collapse
Affiliation(s)
- Mahsa Khoshkhou
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Afshin Montakhab
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
74
|
Bose SK, Mallinson JB, Galli E, Acharya SK, Minnai C, Bones PJ, Brown SA. Neuromorphic behaviour in discontinuous metal films. NANOSCALE HORIZONS 2022; 7:437-445. [PMID: 35262143 DOI: 10.1039/d1nh00620g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Physical systems that exhibit brain-like behaviour are currently under intense investigation as platforms for neuromorphic computing. We show that discontinuous metal films, comprising irregular flat islands on a substrate and formed using simple evaporation processes, exhibit correlated avalanches of electrical signals that mimic those observed in the cortex. We further demonstrate that these signals meet established criteria for criticality. We perform a detailed experimental investigation of the atomic-scale switching processes that are responsible for these signals, and show that they mimic the integrate-and-fire mechanism of biological neurons. Using numerical simulations and a simple circuit model, we show that the characteristic features of the switching events are dependent on the network state and the local position of the switch within the complex network. We conclude that discontinuous films provide an interesting potential platform for brain-inspired computing.
Collapse
Affiliation(s)
- Saurabh K Bose
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Joshua B Mallinson
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Edoardo Galli
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Susant K Acharya
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Chloé Minnai
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Philip J Bones
- Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simon A Brown
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
75
|
Universality, criticality and complexity of information propagation in social media. Nat Commun 2022; 13:1308. [PMID: 35288567 PMCID: PMC8921196 DOI: 10.1038/s41467-022-28964-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Statistical laws of information avalanches in social media appear, at least according to existing empirical studies, not robust across systems. As a consequence, radically different processes may represent plausible driving mechanisms for information propagation. Here, we analyze almost one billion time-stamped events collected from several online platforms – including Telegram, Twitter and Weibo – over observation windows longer than ten years, and show that the propagation of information in social media is a universal and critical process. Universality arises from the observation of identical macroscopic patterns across platforms, irrespective of the details of the specific system at hand. Critical behavior is deduced from the power-law distributions, and corresponding hyperscaling relations, characterizing size and duration of avalanches of information. Statistical testing on our data indicates that a mixture of simple and complex contagion characterizes the propagation of information in social media. Data suggest that the complexity of the process is correlated with the semantic content of the information that is propagated. The authors identify characteristic patterns that describe the propagation of information in online social media platforms. They show that, depending on the topic, the information flows can spread as simple or complex contagion processes, operating at a critical regime.
Collapse
|
76
|
Xu L, Feng J, Yu L. Avalanche criticality in individuals, fluid intelligence, and working memory. Hum Brain Mapp 2022; 43:2534-2553. [PMID: 35146831 PMCID: PMC9057106 DOI: 10.1002/hbm.25802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
Collapse
Affiliation(s)
- Longzhou Xu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China.,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, China.,The School of Nationalities' Educators, Qinghai Normal University, Xining, China
| |
Collapse
|
77
|
Liang J, Zhou C. Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Comput Biol 2022; 18:e1009848. [PMID: 35100254 PMCID: PMC8830719 DOI: 10.1371/journal.pcbi.1009848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes. The complexity and variability of brain dynamical activity range from neuronal spiking and neural avalanches to oscillatory local field potentials of local neural circuits in both spontaneous and stimulus-evoked states. Such multilevel variable brain dynamics are functionally and behaviorally relevant and are principal components of the underlying circuit organization. To more comprehensively clarify their neural mechanisms, we use a bottom-up approach to study the stimulus–response dynamics of neural circuits. Our model assumes the following key biologically plausible components: excitation–inhibition (E–I) neuronal interaction and chemical synaptic coupling. We show that the circuits with E–I balance have a special dynamic sub-region, the critical region. Circuits around this region could account for the emergence of multilevel brain response patterns, both ongoing and stimulus-induced, observed in different experiments, including the reduction of trial-to-trial variability, effective modulation of gamma frequency, and preservation of criticality in the presence of a stimulus. We further analyze the corresponding nonlinear dynamical principles using a novel and highly generalizable semi-analytical mean-field theory. Our computational and theoretical studies explain the cross-level brain dynamical organization of spontaneous and evoked states in a more integrative manner.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Physics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
78
|
Arvin S, Glud AN, Yonehara K. Short- and Long-Range Connections Differentially Modulate the Dynamics and State of Small-World Networks. Front Comput Neurosci 2022; 15:783474. [PMID: 35145389 PMCID: PMC8821822 DOI: 10.3389/fncom.2021.783474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain contains billions of neurons that flexibly interconnect to support local and global computational spans. As neuronal activity propagates through the neural medium, it approaches a critical state hedged between ordered and disordered system regimes. Recent work demonstrates that this criticality coincides with the small-world topology, a network arrangement that accommodates both local (subcritical) and global (supercritical) system properties. On one hand, operating near criticality is thought to offer several neurocomputational advantages, e.g., high-dynamic range, efficient information capacity, and information transfer fidelity. On the other hand, aberrations from the critical state have been linked to diverse pathologies of the brain, such as post-traumatic epileptiform seizures and disorders of consciousness. Modulation of brain activity, through neuromodulation, presents an attractive mode of treatment to alleviate such neurological disorders, but a tractable neural framework is needed to facilitate clinical progress. Using a variation on the generative small-world model of Watts and Strogatz and Kuramoto's model of coupled oscillators, we show that the topological and dynamical properties of the small-world network are divided into two functional domains based on the range of connectivity, and that these domains play distinct roles in shaping the behavior of the critical state. We demonstrate that short-range network connections shape the dynamics of the system, e.g., its volatility and metastability, whereas long-range connections drive the system state, e.g., a seizure. Together, these findings lend support to combinatorial neuromodulation approaches that synergistically normalize the system dynamic while mobilizing the system state.
Collapse
Affiliation(s)
- Simon Arvin
- Department of Neurosurgery, Center for Experimental Neuroscience – CENSE, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
- *Correspondence: Simon Arvin
| | - Andreas Nørgaard Glud
- Department of Neurosurgery, Center for Experimental Neuroscience – CENSE, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Keisuke Yonehara
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Keisuke Yonehara
| |
Collapse
|
79
|
olde Scheper TV. Controlled bio-inspired self-organised criticality. PLoS One 2022; 17:e0260016. [PMID: 35073308 PMCID: PMC8786161 DOI: 10.1371/journal.pone.0260016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022] Open
Abstract
Complex biological systems are considered to be controlled using feedback mechanisms. Reduced systems modelling has been effective to describe these mechanisms, but this approach does not sufficiently encompass the required complexity that is needed to understand how localised control in a biological system can provide global stable states. Self-Organised Criticality (SOC) is a characteristic property of locally interacting physical systems, which readily emerges from changes to its dynamic state due to small nonlinear perturbations. These small changes in the local states, or in local interactions, can greatly affect the total system state of critical systems. It has long been conjectured that SOC is cardinal to biological systems, that show similar critical dynamics, and also may exhibit near power-law relations. Rate Control of Chaos (RCC) provides a suitable robust mechanism to generate SOC systems, which operates at the edge of chaos. The bio-inspired RCC method requires only local instantaneous knowledge of some of the variables of the system, and is capable of adapting to local perturbations. Importantly, connected RCC controlled oscillators can maintain global multi-stable states, and domains where power-law relations may emerge. The network of oscillators deterministically stabilises into different orbits for different perturbations, and the relation between the perturbation and amplitude can show exponential and power-law correlations. This can be considered to be representative of a basic mechanism of protein production and control, that underlies complex processes such as homeostasis. Providing feedback from the global state, the total system dynamic behaviour can be boosted or reduced. Controlled SOC can provide much greater understanding of biological control mechanisms, that are based on distributed local producers, with remote consumers of biological resources, and globally defined control.
Collapse
Affiliation(s)
- Tjeerd V. olde Scheper
- School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Oxford, United Kingdom
| |
Collapse
|
80
|
Páscoa dos Santos F, Verschure PFMJ. Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex. Front Syst Neurosci 2022; 15:806544. [PMID: 35082606 PMCID: PMC8785563 DOI: 10.3389/fnsys.2021.806544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients.
Collapse
Affiliation(s)
- Francisco Páscoa dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Department of Information and Communications Technologies (DTIC), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paul F. M. J. Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
81
|
Polizzi S, Pérez-Reche FJ, Arneodo A, Argoul F. Power-law and log-normal avalanche size statistics in random growth processes. Phys Rev E 2021; 104:L052101. [PMID: 34942825 DOI: 10.1103/physreve.104.l052101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/14/2021] [Indexed: 11/07/2022]
Abstract
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes.
Collapse
Affiliation(s)
- Stefano Polizzi
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France.,Université Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - Francisco-José Pérez-Reche
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, AB24 3UE, United Kingdom
| | - Alain Arneodo
- Université Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - Françoise Argoul
- Université Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| |
Collapse
|
82
|
Liu C, Dong JQ, Chen QJ, Huang ZG, Huang L, Zhou HJ, Lai YC. Controlled generation of self-sustained oscillations in complex artificial neural networks. CHAOS (WOODBURY, N.Y.) 2021; 31:113127. [PMID: 34881621 DOI: 10.1063/5.0069333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Spatially distinct, self-sustained oscillations in artificial neural networks are fundamental to information encoding, storage, and processing in these systems. Here, we develop a method to induce a large variety of self-sustained oscillatory patterns in artificial neural networks and a controlling strategy to switch between different patterns. The basic principle is that, given a complex network, one can find a set of nodes-the minimum feedback vertex set (mFVS), whose removal or inhibition will result in a tree-like network without any loop structure. Reintroducing a few or even a single mFVS node into the tree-like artificial neural network can recover one or a few of the loops and lead to self-sustained oscillation patterns based on these loops. Reactivating various mFVS nodes or their combinations can then generate a large number of distinct neuronal firing patterns with a broad distribution of the oscillation period. When the system is near a critical state, chaos can arise, providing a natural platform for pattern switching with remarkable flexibility. With mFVS guided control, complex networks of artificial neurons can thus be exploited as potential prototypes for local, analog type of processing paradigms.
Collapse
Affiliation(s)
- Chang Liu
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia-Qi Dong
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qing-Jian Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zi-Gang Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Huang
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hai-Jun Zhou
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
83
|
Lombardi F, Shriki O, Herrmann HJ, de Arcangelis L. Long-range temporal correlations in the broadband resting state activity of the human brain revealed by neuronal avalanches. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
The effect of noise on the synchronization dynamics of the Kuramoto model on a large human connectome graph. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.04.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
85
|
Critical behaviour of the stochastic Wilson-Cowan model. PLoS Comput Biol 2021; 17:e1008884. [PMID: 34460811 PMCID: PMC8432901 DOI: 10.1371/journal.pcbi.1008884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022] Open
Abstract
Spontaneous brain activity is characterized by bursts and avalanche-like dynamics, with scale-free features typical of critical behaviour. The stochastic version of the celebrated Wilson-Cowan model has been widely studied as a system of spiking neurons reproducing non-trivial features of the neural activity, from avalanche dynamics to oscillatory behaviours. However, to what extent such phenomena are related to the presence of a genuine critical point remains elusive. Here we address this central issue, providing analytical results in the linear approximation and extensive numerical analysis. In particular, we present results supporting the existence of a bona fide critical point, where a second-order-like phase transition occurs, characterized by scale-free avalanche dynamics, scaling with the system size and a diverging relaxation time-scale. Moreover, our study shows that the observed critical behaviour falls within the universality class of the mean-field branching process, where the exponents of the avalanche size and duration distributions are, respectively, 3/2 and 2. We also provide an accurate analysis of the system behaviour as a function of the total number of neurons, focusing on the time correlation functions of the firing rate in a wide range of the parameter space.
Collapse
|
86
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
Affiliation(s)
- Benedetta Mariani
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Padova, Italy
| | | | - Samir Suweis
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
87
|
Oyama N, Mizuno H, Ikeda A. Unified view of avalanche criticality in sheared glasses. Phys Rev E 2021; 104:015002. [PMID: 34412287 DOI: 10.1103/physreve.104.015002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Plastic events in sheared glasses are considered an example of so-called avalanches, whose sizes obey a power-law probability distribution with the avalanche critical exponent τ. Although the so-called mean-field depinning (MFD) theory predicts a universal value of this exponent, τ_{MFD}=1.5, such a simplification is now known to connote qualitative disagreement with realistic systems. Numerically and experimentally, different values of τ have been reported depending on the literature. Moreover, in the elastic regime, it has been noted that the critical exponent can be different from that in the steady state, and even criticality itself is a matter of debate. Because these confusingly varying results have been reported under different setups, our knowledge of avalanche criticality in sheared glasses is greatly limited. To gain a unified understanding, in this work, we conduct a comprehensive numerical investigation of avalanches in Lennard-Jones glasses under athermal quasistatic shear. In particular, by excluding the ambiguity and arbitrariness that has crept into the conventional measurement schemes, we achieve high-precision measurement and demonstrate that the exponent τ in the steady state follows the prediction of MFD theory, τ_{MFD}=1.5. Our results also suggest that there are two qualitatively different avalanche events. This binariness leads to the nonuniversal behavior of the avalanche size distribution and is likely to be the cause of the varying values of τ reported thus far. To investigate the dependence of criticality and universality on applied shear, we further study the statistics of avalanches in the elastic regime and the ensemble of the first avalanche event in different samples, which provide information about the unperturbed system. We show that while the unperturbed system is indeed off-critical, criticality gradually develops as shear is applied. The degree of criticality is encoded in the fractal dimension of the avalanches, which starts from zero in the off-critical unperturbed state and saturates in the steady state. Moreover, the critical exponent τ is consistent with the prediction of the MFD τ_{MFD} universally, regardless of the amount of applied shear, once the system becomes critical.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
88
|
Bansal K, Garcia JO, Lauharatanahirun N, Muldoon SF, Sajda P, Vettel JM. Scale-specific dynamics of high-amplitude bursts in EEG capture behaviorally meaningful variability. Neuroimage 2021; 241:118425. [PMID: 34303795 DOI: 10.1016/j.neuroimage.2021.118425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022] Open
Abstract
Cascading high-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-state show scale-invariant dynamics, supporting the hypothesis that the brain operates near a critical point that enables long range spatial communication. In fact, it has been suggested that such scale-invariant dynamics, characterized by a power-law distribution in these avalanches, are universal in neural systems and emerge through a common mechanism. While the analysis of avalanches and subsequent criticality is increasingly seen as a framework for using complex systems theory to understand brain function, it is unclear how the framework would account for the omnipresent cognitive variability, whether across individuals or tasks. To address this, we analyzed avalanches in the EEG activity of healthy humans during rest as well as two distinct task conditions that varied in cognitive demands and produced behavioral measures unique to each individual. In both rest and task conditions we observed that avalanche dynamics demonstrate scale-invariant characteristics, but differ in their specific features, demonstrating individual variability. Using a new metric we call normalized engagement, which estimates the likelihood for a brain region to produce high-amplitude bursts, we also investigated regional features of avalanche dynamics. Normalized engagement showed not only the expected individual and task dependent variability, but also scale-specificity that correlated with individual behavior. Our results suggest that the study of avalanches in human brain activity provides a tool to assess cognitive variability. Our findings expand our understanding of avalanche features and are supportive of the emerging theoretical idea that the dynamics of an active human brain operate close to a critical-like region and not a singular critical-state.
Collapse
Affiliation(s)
- Kanika Bansal
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Javier O Garcia
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Nina Lauharatanahirun
- Department of Biomedical Engineering and Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Sarah F Muldoon
- Mathematics Department, CDSE Program, and Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA
| | - Jean M Vettel
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
89
|
Graovac S, Mijatović S, Spasojević D. Mechanism of subcritical avalanche propagation in three-dimensional disordered systems. Phys Rev E 2021; 103:062123. [PMID: 34271753 DOI: 10.1103/physreve.103.062123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
We present a numerical study on necessary conditions for the appearance of infinite avalanche below the critical point in disordered systems that evolve throughout metastable states. The representative of those systems is the nonequilibrium athermal random-field Ising model. We investigate the impact on propagation of infinite avalanche of both the interface of flipped spins at the avalanche's starting point and the number of independent islands of flipped spins in the system at the moment when the avalanche starts. To deduce what effects are originated due to finite system's size, and to distinguish them from the real necessary conditions for the appearance of the infinite avalanche, we examined lattices of different sizes as well as other key parameters for the avalanche propagation.
Collapse
Affiliation(s)
- Stefan Graovac
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
90
|
Jovković D, Janićević S, Mijatović S, Laurson L, Spasojević D. Effects of external noise on threshold-induced correlations in ferromagnetic systems. Phys Rev E 2021; 103:062114. [PMID: 34271613 DOI: 10.1103/physreve.103.062114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
In the present paper we investigate the impact of the external noise and detection threshold level on the simulation data for the systems that evolve through metastable states. As a representative model of such systems we chose the nonequilibrium athermal random-field Ising model with two types of the external noise, uniform white noise and Gaussian white noise with various different standard deviations, imposed on the original response signal obtained in model simulations. We applied a wide range of detection threshold levels in analysis of the signal and show how these quantities affect the values of exponent γ_{S/T} (describing the scaling of the average avalanche size with duration), the shift of waiting time between the avalanches, and finally the collapses of the waiting time distributions. The results are obtained via extensive numerical simulations on the equilateral three-dimensional cubic lattices of various sizes and disorders.
Collapse
Affiliation(s)
- Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, P.O. Box 162, 11000 Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
91
|
Fekete T, Hinrichs H, Sitt JD, Heinze HJ, Shriki O. Multiscale criticality measures as general-purpose gauges of proper brain function. Sci Rep 2021; 11:14441. [PMID: 34262121 PMCID: PMC8280148 DOI: 10.1038/s41598-021-93880-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
The brain is universally regarded as a system for processing information. If so, any behavioral or cognitive dysfunction should lend itself to depiction in terms of information processing deficiencies. Information is characterized by recursive, hierarchical complexity. The brain accommodates this complexity by a hierarchy of large/slow and small/fast spatiotemporal loops of activity. Thus, successful information processing hinges upon tightly regulating the spatiotemporal makeup of activity, to optimally match the underlying multiscale delay structure of such hierarchical networks. Reduced capacity for information processing will then be expressed as deviance from this requisite multiscale character of spatiotemporal activity. This deviance is captured by a general family of multiscale criticality measures (MsCr). MsCr measures reflect the behavior of conventional criticality measures (such as the branching parameter) across temporal scale. We applied MsCr to MEG and EEG data in several telling degraded information processing scenarios. Consistently with our previous modeling work, MsCr measures systematically varied with information processing capacity: MsCr fingerprints showed deviance in the four states of compromised information processing examined in this study, disorders of consciousness, mild cognitive impairment, schizophrenia and even during pre-ictal activity. MsCr measures might thus be able to serve as general gauges of information processing capacity and, therefore, as normative measures of brain health.
Collapse
Affiliation(s)
- Tomer Fekete
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jacobo Diego Sitt
- INSERM, U 1127, Paris, France
- Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hans-Jochen Heinze
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
92
|
Hochstetter J, Zhu R, Loeffler A, Diaz-Alvarez A, Nakayama T, Kuncic Z. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat Commun 2021; 12:4008. [PMID: 34188085 PMCID: PMC8242064 DOI: 10.1038/s41467-021-24260-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
The brain's efficient information processing is enabled by the interplay between its neuro-synaptic elements and complex network structure. This work reports on the neuromorphic dynamics of nanowire networks (NWNs), a unique brain-inspired system with synapse-like memristive junctions embedded within a recurrent neural network-like structure. Simulation and experiment elucidate how collective memristive switching gives rise to long-range transport pathways, drastically altering the network's global state via a discontinuous phase transition. The spatio-temporal properties of switching dynamics are found to be consistent with avalanches displaying power-law size and life-time distributions, with exponents obeying the crackling noise relationship, thus satisfying criteria for criticality, as observed in cortical neuronal cultures. Furthermore, NWNs adaptively respond to time varying stimuli, exhibiting diverse dynamics tunable from order to chaos. Dynamical states at the edge-of-chaos are found to optimise information processing for increasingly complex learning tasks. Overall, these results reveal a rich repertoire of emergent, collective neural-like dynamics in NWNs, thus demonstrating the potential for a neuromorphic advantage in information processing.
Collapse
Affiliation(s)
- Joel Hochstetter
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| | - Ruomin Zhu
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Alon Loeffler
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Adrian Diaz-Alvarez
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Tomonobu Nakayama
- School of Physics, University of Sydney, Sydney, NSW, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zdenka Kuncic
- School of Physics, University of Sydney, Sydney, NSW, Australia.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
- The University of Sydney Nano Institute, Sydney, NSW, Australia.
| |
Collapse
|
93
|
Wang L, Cao S, Jiang X, Salje EKH. Cracking of human teeth: An avalanche and acoustic emission study. J Mech Behav Biomed Mater 2021; 122:104666. [PMID: 34229170 DOI: 10.1016/j.jmbbm.2021.104666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Teeth are the hardest part of the human body. Cracking of human teeth under compression progresses by avalanches emitting acoustic noise. Acoustic emission (AE) spectroscopy reveals that tooth avalanches are statistically fully compatible with predictions of mean field (MF) theory. Avalanche energies collapse into a power law distributed which is stable over more than five decades with an energy exponent ε = 1.4. Acoustic amplitudes (exponent ~τ), durations (~α), correlations between amplitudes and energies (~x), and correlations between amplitude and duration (~χ) follow equally power laws with MF values of all exponents. The exponents correlation: τ-1 = x(ε-1) = (α-1)/χ is confirmed. Crack propagation bifurcates and shows the hallmarks of avalanches where main cracks nucleate secondary cracks.
Collapse
Affiliation(s)
- Lei Wang
- School of Civil Engineering, Chongqing University, 400045, Chongqing, People's Republic of China
| | - Shutian Cao
- Department of Geotechnical Engineering College of Civil Engineering, Tongji University, 200092, Shanghai, People's Republic of China
| | - Xiang Jiang
- School of Civil Engineering, Chongqing University, 400045, Chongqing, People's Republic of China; Department of Earth Sciences, Cambridge University, Cambridge CB2 3EQ, UK.
| | - Ekhard K H Salje
- School of Civil Engineering, Chongqing University, 400045, Chongqing, People's Republic of China; Department of Earth Sciences, Cambridge University, Cambridge CB2 3EQ, UK
| |
Collapse
|
94
|
Lotfi N, Fontenele AJ, Feliciano T, Aguiar LAA, de Vasconcelos NAP, Soares-Cunha C, Coimbra B, Rodrigues AJ, Sousa N, Copelli M, Carelli PV. Signatures of brain criticality unveiled by maximum entropy analysis across cortical states. Phys Rev E 2021; 102:012408. [PMID: 32795006 DOI: 10.1103/physreve.102.012408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
It has recently been reported that statistical signatures of brain criticality, obtained from distributions of neuronal avalanches, can depend on the cortical state. We revisit these claims with a completely different and independent approach, employing a maximum entropy model to test whether signatures of criticality appear in urethane-anesthetized rats. To account for the spontaneous variation of cortical states, we parse the time series and perform the maximum entropy analysis as a function of the variability of the population spiking activity. To compare data sets with different numbers of neurons, we define a normalized distance to criticality that takes into account the peak and width of the specific heat curve. We found a universal collapse of the normalized distance to criticality dependence on the cortical state, on an animal by animal basis. This indicates a universal dynamics and a critical point at an intermediate value of spiking variability.
Collapse
Affiliation(s)
- Nastaran Lotfi
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Antonio J Fontenele
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Thaís Feliciano
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Leandro A A Aguiar
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Nivaldo A P de Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| |
Collapse
|
95
|
Gu L, Wu R. Robust cortical criticality and diverse dynamics resulting from functional specification. Phys Rev E 2021; 103:042407. [PMID: 34005915 DOI: 10.1103/physreve.103.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Despite the recognition of the layered structure and evident criticality in the cortex, how the specification of input, output, and computational layers affects the self-organized criticality has not been much explored. By constructing heterogeneous structures with a well-accepted model of leaky neurons, we find that the specification can lead to robust criticality rather insensitive to the strength of external stimuli. This naturally unifies the adaptation to strong inputs without extra synaptic plasticity mechanisms. Low degree of recurrence constitutes an alternative explanation to subcriticality other than the high-frequency inputs. Unlike fully recurrent networks where external stimuli always render subcriticality, the dynamics of networks with sufficient feedforward connections can be driven to criticality and supercriticality. These findings indicate that functional and structural specification and their interplay with external stimuli are of crucial importance for the network dynamics. The robust criticality puts forward networks of the leaky neurons as promising platforms for realizing artificial neural networks that work in the vicinity of critical points.
Collapse
Affiliation(s)
- Lei Gu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
96
|
Is There Sufficient Evidence for Criticality in Cortical Systems? eNeuro 2021; 8:ENEURO.0551-20.2021. [PMID: 33811087 PMCID: PMC8059881 DOI: 10.1523/eneuro.0551-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have proposed that specific brain activity statistics provide evidence that the brain operates at a critical point, which could have implications for the brain’s information processing capabilities. A recent paper reported that identical scalings and criticality signatures arise in a variety of different neural systems (neural cultures, cortical slices, anesthetized or awake brains, across both reptiles and mammals). The diversity of these states calls into question the claimed role of criticality in information processing. We analyze the methodology used to assess criticality and replicate this analysis for spike trains of two non-critical systems. These two non-critical systems pass all the tests used to assess criticality in the aforementioned recent paper. This analysis provides a crucial control (which is absent from the original study) and suggests that the methodology used may not be sufficient to establish that a system operates at criticality. Hence whether the brain operates at criticality or not remains an open question and it is of evident interest to develop more robust methods to address these questions.
Collapse
|
97
|
Landmann S, Baumgarten L, Bornholdt S. Self-organized criticality in neural networks from activity-based rewiring. Phys Rev E 2021; 103:032304. [PMID: 33862737 DOI: 10.1103/physreve.103.032304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Neural systems process information in a dynamical regime between silence and chaotic dynamics. This has lead to the criticality hypothesis, which suggests that neural systems reach such a state by self-organizing toward the critical point of a dynamical phase transition. Here, we study a minimal neural network model that exhibits self-organized criticality in the presence of stochastic noise using a rewiring rule which only utilizes local information. For network evolution, incoming links are added to a node or deleted, depending on the node's average activity. Based on this rewiring-rule only, the network evolves toward a critical state, showing typical power-law-distributed avalanche statistics. The observed exponents are in accord with criticality as predicted by dynamical scaling theory, as well as with the observed exponents of neural avalanches. The critical state of the model is reached autonomously without the need for parameter tuning, is independent of initial conditions, is robust under stochastic noise, and independent of details of the implementation as different variants of the model indicate. We argue that this supports the hypothesis that real neural systems may utilize such a mechanism to self-organize toward criticality, especially during early developmental stages.
Collapse
Affiliation(s)
- Stefan Landmann
- Institut für Theoretische Physik, Universität Bremen, Germany
| | | | | |
Collapse
|
98
|
Hagemann A, Wilting J, Samimizad B, Mormann F, Priesemann V. Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex. PLoS Comput Biol 2021; 17:e1008773. [PMID: 33684101 PMCID: PMC7971851 DOI: 10.1371/journal.pcbi.1008773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/18/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Epileptic seizures are characterized by abnormal and excessive neural activity, where cortical network dynamics seem to become unstable. However, most of the time, during seizure-free periods, cortex of epilepsy patients shows perfectly stable dynamics. This raises the question of how recurring instability can arise in the light of this stable default state. In this work, we examine two potential scenarios of seizure generation: (i) epileptic cortical areas might generally operate closer to instability, which would make epilepsy patients generally more susceptible to seizures, or (ii) epileptic cortical areas might drift systematically towards instability before seizure onset. We analyzed single-unit spike recordings from both the epileptogenic (focal) and the nonfocal cortical hemispheres of 20 epilepsy patients. We quantified the distance to instability in the framework of criticality, using a novel estimator, which enables an unbiased inference from a small set of recorded neurons. Surprisingly, we found no evidence for either scenario: Neither did focal areas generally operate closer to instability, nor were seizures preceded by a drift towards instability. In fact, our results from both pre-seizure and seizure-free intervals suggest that despite epilepsy, human cortex operates in the stable, slightly subcritical regime, just like cortex of other healthy mammalians.
Collapse
Affiliation(s)
- Annika Hagemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Jens Wilting
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bita Samimizad
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Germany
| |
Collapse
|
99
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
100
|
Carvalho TTA, Fontenele AJ, Girardi-Schappo M, Feliciano T, Aguiar LAA, Silva TPL, de Vasconcelos NAP, Carelli PV, Copelli M. Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain. Front Neural Circuits 2021; 14:576727. [PMID: 33519388 PMCID: PMC7843423 DOI: 10.3389/fncir.2020.576727] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/30/2002] [Indexed: 12/14/2022] Open
Abstract
Recent experimental results on spike avalanches measured in the urethane-anesthetized rat cortex have revealed scaling relations that indicate a phase transition at a specific level of cortical firing rate variability. The scaling relations point to critical exponents whose values differ from those of a branching process, which has been the canonical model employed to understand brain criticality. This suggested that a different model, with a different phase transition, might be required to explain the data. Here we show that this is not necessarily the case. By employing two different models belonging to the same universality class as the branching process (mean-field directed percolation) and treating the simulation data exactly like experimental data, we reproduce most of the experimental results. We find that subsampling the model and adjusting the time bin used to define avalanches (as done with experimental data) are sufficient ingredients to change the apparent exponents of the critical point. Moreover, experimental data is only reproduced within a very narrow range in parameter space around the phase transition.
Collapse
Affiliation(s)
- Tawan T A Carvalho
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Mauricio Girardi-Schappo
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.,Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís Feliciano
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Leandro A A Aguiar
- Departamento de Ciências Fundamentais e Sociais, Universidade Federal da Paraíba, Areia, Brazil
| | - Thais P L Silva
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Nivaldo A P de Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics, Braga, Portugal
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|