51
|
Dale N, Utama MIB, Lee D, Leconte N, Zhao S, Lee K, Taniguchi T, Watanabe K, Jozwiak C, Bostwick A, Rotenberg E, Koch RJ, Jung J, Wang F, Lanzara A. Layer-Dependent Interaction Effects in the Electronic Structure of Twisted Bilayer Graphene Devices. NANO LETTERS 2023; 23:6799-6806. [PMID: 37486984 PMCID: PMC10424631 DOI: 10.1021/acs.nanolett.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Indexed: 07/26/2023]
Abstract
Near the magic angle, strong correlations drive many intriguing phases in twisted bilayer graphene (tBG) including unconventional superconductivity and chern insulation. Whether correlations can tune symmetry breaking phases in tBG at intermediate (≳ 2°) twist angles remains an open fundamental question. Here, using ARPES, we study the effects of many-body interactions and displacement field on the band structure of tBG devices at an intermediate (3°) twist angle. We observe a layer- and doping-dependent renormalization of bands at the K points that is qualitatively consistent with moiré models of the Hartree-Fock interaction. We provide evidence of correlation-enhanced inversion symmetry-breaking, manifested by gaps at the Dirac points that are tunable with doping. These results suggest that electronic interactions play a significant role in the physics of tBG even at intermediate twist angles and present a new pathway toward engineering band structure and symmetry-breaking phases in moiré heterostructures.
Collapse
Affiliation(s)
- Nicholas Dale
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - M. Iqbal Bakti Utama
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California at Berkeley, Berkeley, California 94720, United States
| | - Dongkyu Lee
- Department
of Physics, University of Seoul, Seoul, 02504, Korea
- Department
of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Nicolas Leconte
- Department
of Physics, University of Seoul, Seoul, 02504, Korea
| | - Sihan Zhao
- Interdisciplinary
Center for Quantum Information, Zhejiang Province Key Laboratory of
Quantum Technology and Device, State Key Laboratory of Silicon Materials,
and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Kyunghoon Lee
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Chris Jozwiak
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Aaron Bostwick
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Eli Rotenberg
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Roland J. Koch
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeil Jung
- Department
of Physics, University of Seoul, Seoul, 02504, Korea
- Department
of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Feng Wang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience
Institute at University of California Berkeley
and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alessandra Lanzara
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience
Institute at University of California Berkeley
and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
52
|
Liu X, Wang X, Yu S, Wang G, Li B, Cui T, Lou Z, Ge H. Polarizability characteristics of twisted bilayer graphene quantum dots in the absence of periodic moiré potential. RSC Adv 2023; 13:23590-23600. [PMID: 37555100 PMCID: PMC10404935 DOI: 10.1039/d3ra03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Recent studies have documented a rich phenomenology in twisted bilayer graphene (TBG), which is significantly relevant to interlayer electronic coupling, in particular to the cases under an applied electric field. While polarizability measures the response of electrons against applied fields, this work adopts a unique strategy of decomposing global polarizability into distributional contributions to access the interlayer polarization in TBG, as a function of varying twisting angles (θ). Through the construction of a model of twisted graphene quantum dots, we assess distributional polarizability at the first-principles level. Our findings demonstrate that the polarizability perpendicular to the graphene plates can be decomposed into intralayer dipoles and interlayer charge-transfer (CT) components, the latter of which provides an explicit measurement of the interlayer coupling strength and charge transfer potential. Our analysis further reveals that interlayer polarizability dominates the polarizability variation during twisting. Intriguingly, the largest interlayer polarizability and CT driven by an external field occur in the misaligned structures with a size-dependent small angle corresponding to the first appearance of AB stacking, rather than the well-recognized Bernal structures. A derived equation is then employed to address the size dependence on the angle corresponding to the largest values in interlayer polarizability and CT. Our investigation not only characterizes the CT features in the interlayer polarizability of TBG quantum dots, but also sheds light on the existence of the strongest interlayer coupling and charge transfer at small twist angles in the presence of an external electric field, thereby providing a comprehensive understanding of the novel properties of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Xiangyue Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Zhengzhou 450008 China
| | - Xian Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University Chengdu 610065 China
| | - Shengping Yu
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 China
| | - Guangzhao Wang
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University Chongqing 408100 China
| | - Bing Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Zhengzhou 450008 China
| | - Tiantian Cui
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Zhengzhou 450008 China
| | - Zhaoyang Lou
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Zhengzhou 450008 China
| | - Hong Ge
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Zhengzhou 450008 China
| |
Collapse
|
53
|
Liu B, Zhang YT, Qiao R, Shi R, Li Y, Guo Q, Li J, Li X, Wang L, Qi J, Du S, Ren X, Liu K, Gao P, Zhang YY. Tunable Interband Transitions in Twisted h-BN/Graphene Heterostructures. PHYSICAL REVIEW LETTERS 2023; 131:016201. [PMID: 37478456 DOI: 10.1103/physrevlett.131.016201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist-angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moiré potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M point, which becomes more pronounced up to 0.22 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices.
Collapse
Affiliation(s)
- Bingyao Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu-Tian Zhang
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixi Qiao
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ruochen Shi
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yuehui Li
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Quanlin Guo
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jiade Li
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomei Li
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Li Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiajie Qi
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Shixuan Du
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xinguo Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Yu-Yang Zhang
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
54
|
Kim KM, Kiem DH, Bednik G, Han MJ, Park MJ. Ab Initio Spin Hamiltonian and Topological Noncentrosymmetric Magnetism in Twisted Bilayer CrI 3. NANO LETTERS 2023. [PMID: 37367179 DOI: 10.1021/acs.nanolett.3c01529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Twist engineering of van der Waals magnets has emerged as an outstanding platform for manipulating exotic magnetic states. However, the complicated form of spin interactions in the large moiré superlattice obstructs a concrete understanding of such spin systems. To tackle this problem, for the first time, we developed a generic ab initio spin Hamiltonian for twisted bilayer magnets. Our atomistic model reveals that strong AB sublattice symmetry breaking due to the twist introduces a promising route to realize the novel noncentrosymmetric magnetism. Several unprecedented features and phases are uncovered including the peculiar domain structure and skyrmion phase induced by noncentrosymmetricity. The diagram of those distinctive magnetic phases has been constructed, and the detailed nature of their transitions analyzed. Further, we established the topological band theory of moiré magnons relevant to each of these phases. By respecting the full lattice structure, our theory provides the characteristic features that can be detected in experiments.
Collapse
Affiliation(s)
- Kyoung-Min Kim
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Do Hoon Kiem
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Grigory Bednik
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Moon Jip Park
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
55
|
Potočnik T, Burton O, Reutzel M, Schmitt D, Bange JP, Mathias S, Geisenhof FR, Weitz RT, Xin L, Joyce HJ, Hofmann S, Alexander-Webber JA. Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy. NANO LETTERS 2023. [PMID: 37289669 DOI: 10.1021/acs.nanolett.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Twisted bilayer graphene provides an ideal solid-state model to explore correlated material properties and opportunities for a variety of optoelectronic applications, but reliable, fast characterization of the twist angle remains a challenge. Here we introduce spectroscopic ellipsometric contrast microscopy (SECM) as a tool for mapping twist angle disorder in optically resonant twisted bilayer graphene. We optimize the ellipsometric angles to enhance the image contrast based on measured and calculated reflection coefficients of incident light. The optical resonances associated with van Hove singularities correlate well to Raman and angle-resolved photoelectron emission spectroscopy, confirming the accuracy of SECM. The results highlight the advantages of SECM, which proves to be a fast, nondestructive method for characterization of twisted bilayer graphene over large areas, unlocking process, material, and device screening and cross-correlative measurement potential for bilayer and multilayer materials.
Collapse
Affiliation(s)
- Teja Potočnik
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Oliver Burton
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Marcel Reutzel
- I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - David Schmitt
- I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Jan Philipp Bange
- I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Stefan Mathias
- I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Fabian R Geisenhof
- Physics of Nanosystems, Department of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich 80539, Germany
| | - R Thomas Weitz
- I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Physics of Nanosystems, Department of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich 80539, Germany
| | - Linyuan Xin
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Hannah J Joyce
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Jack A Alexander-Webber
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
56
|
Guo Y, Qiu D, Shao M, Song J, Wang Y, Xu M, Yang C, Li P, Liu H, Xiong J. Modulations in Superconductors: Probes of Underlying Physics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209457. [PMID: 36504310 DOI: 10.1002/adma.202209457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Indexed: 06/02/2023]
Abstract
The importance of modulations is elevated to an unprecedented level, due to the delicate conditions required to bring out exotic phenomena in quantum materials, such as topological materials, magnetic materials, and superconductors. Recently, state-of-the-art modulation techniques in material science, such as electric-double-layer transistor, piezoelectric-based strain apparatus, angle twisting, and nanofabrication, have been utilized in superconductors. They not only efficiently increase the tuning capability to the broader ranges but also extend the tuning dimensionality to unprecedented degrees of freedom, including quantum fluctuations of competing phases, electronic correlation, and phase coherence essential to global superconductivity. Here, for a comprehensive review, these techniques together with the established modulation methods, such as elemental substitution, annealing, and polarization-induced gating, are contextualized. Depending on the mechanism of each method, the modulations are categorized into stoichiometric manipulation, electrostatic gating, mechanical modulation, and geometrical design. Their recent advances are highlighted by applications in newly discovered superconductors, e.g., nickelates, Kagome metals, and magic-angle graphene. Overall, the review is to provide systematic modulations in emergent superconductors and serve as the coordinate for future investigations, which can stimulate researchers in superconductivity and other fields to perform various modulations toward a thorough understanding of quantum materials.
Collapse
Affiliation(s)
- Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingxin Shao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jingyan Song
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiwen Liu
- Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
57
|
Nunn JE, McEllistrim A, Weston A, Garcia-Ruiz A, Watson MD, Mucha-Kruczynski M, Cacho C, Gorbachev RV, Fal'ko VI, Wilson NR. ARPES Signatures of Few-Layer Twistronic Graphenes. NANO LETTERS 2023. [PMID: 37235208 DOI: 10.1021/acs.nanolett.3c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Diverse emergent correlated electron phenomena have been observed in twisted-graphene layers. Many electronic structure predictions have been reported exploring this new field, but with few momentum-resolved electronic structure measurements to test them. We use angle-resolved photoemission spectroscopy to study the twist-dependent (1° < θ < 8°) band structure of twisted-bilayer, monolayer-on-bilayer, and double-bilayer graphene (tDBG). Direct comparison is made between experiment and theory, using a hybrid k·p model for interlayer coupling. Quantitative agreement is found across twist angles, stacking geometries, and back-gate voltages, validating the models and revealing field-induced gaps in twisted graphenes. However, for tDBG at θ = 1.5 ± 0.2°, close to the magic angle θ = 1.3°, a flat band is found near the Fermi level with measured bandwidth Ew = 31 ± 5 meV. An analysis of the gap between the flat band and the next valence band shows deviations between experiment (Δh = 46 ± 5 meV) and theory (Δh = 5 meV), indicative of lattice relaxation in this regime.
Collapse
Affiliation(s)
- James E Nunn
- Diamond Light Source, Division of Science, Didcot OX11 0DE, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Andrew McEllistrim
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Booth St East, Manchester M13 9PL, U.K
| | - Astrid Weston
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Booth St East, Manchester M13 9PL, U.K
| | - Aitor Garcia-Ruiz
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Booth St East, Manchester M13 9PL, U.K
| | | | - Marcin Mucha-Kruczynski
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, U.K
| | - Cephise Cacho
- Diamond Light Source, Division of Science, Didcot OX11 0DE, U.K
| | - Roman V Gorbachev
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Booth St East, Manchester M13 9PL, U.K
| | - Vladimir I Fal'ko
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Booth St East, Manchester M13 9PL, U.K
| | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
58
|
Sukhachov PO, von Oppen F, Glazman LI. Andreev Reflection in Scanning Tunneling Spectroscopy of Unconventional Superconductors. PHYSICAL REVIEW LETTERS 2023; 130:216002. [PMID: 37295098 DOI: 10.1103/physrevlett.130.216002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/02/2023] [Indexed: 06/12/2023]
Abstract
We evaluate the differential conductance measured in an STM setting at arbitrary electron transmission between STM tip and a 2D superconductor with arbitrary gap structure. Our analytical scattering theory accounts for Andreev reflections, which become prominent at larger transmissions. We show that this provides complementary information about the superconducting gap structure beyond the tunneling density of states, strongly facilitating the ability to extract the gap symmetry and its relation to the underlying crystalline lattice. We use the developed theory to discuss recent experimental results on superconductivity in twisted bilayer graphene.
Collapse
Affiliation(s)
- P O Sukhachov
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - L I Glazman
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
59
|
Canetta A, Gonzalez-Munoz S, Nguyen VH, Agarwal K, de Crombrugghe de Picquendaele P, Hong Y, Mohapatra S, Watanabe K, Taniguchi T, Nysten B, Hackens B, Ribeiro-Palau R, Charlier JC, Kolosov OV, Spièce J, Gehring P. Quantifying the local mechanical properties of twisted double bilayer graphene. NANOSCALE 2023; 15:8134-8140. [PMID: 36974920 DOI: 10.1039/d3nr00388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomechanical measurements of minimally twisted van der Waals materials remained elusive despite their fundamental importance for device realisation. Here, we use Ultrasonic Force Microscopy (UFM) to locally quantify the variation of out-of-plane Young's modulus in minimally twisted double bilayer graphene (TDBG). We reveal a softening of the Young's modulus by 7% and 17% along single and double domain walls, respectively. Our experimental results are confirmed by force-field relaxation models. This study highlights the strong tunability of nanomechanical properties in engineered twisted materials, and paves the way for future applications of designer 2D nanomechanical systems.
Collapse
Affiliation(s)
- Alessandra Canetta
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| | | | - Viet-Hung Nguyen
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| | | | | | - Yuanzhuo Hong
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Sambit Mohapatra
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Namiki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 305-0044, Japan
| | - Bernard Nysten
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| | - Benoît Hackens
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| | - Rebeca Ribeiro-Palau
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| | | | - Jean Spièce
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| | - Pascal Gehring
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
60
|
Volkov PA, Wilson JH, Lucht KP, Pixley JH. Current- and Field-Induced Topology in Twisted Nodal Superconductors. PHYSICAL REVIEW LETTERS 2023; 130:186001. [PMID: 37204877 DOI: 10.1103/physrevlett.130.186001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 05/21/2023]
Abstract
We show that interlayer current induces topological superconductivity in twisted bilayers of nodal superconductors. A bulk gap opens and achieves its maximum near a "magic" twist angle θ_{MA}. Chiral edge modes lead to a quantized thermal Hall effect at low temperatures. Furthermore, we show that an in-plane magnetic field creates a periodic lattice of topological domains with edge modes forming low-energy bands. We predict their signatures in scanning tunneling microscopy. Estimates for candidate materials indicate that twist angles θ∼θ_{MA} are optimal for observing the predicted effects.
Collapse
Affiliation(s)
- Pavel A Volkov
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Justin H Wilson
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Physics and Astronomy, and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kevin P Lucht
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
| | - J H Pixley
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
61
|
Papaj M, Lewandowski C. Probing correlated states with plasmons. SCIENCE ADVANCES 2023; 9:eadg3262. [PMID: 37126543 DOI: 10.1126/sciadv.adg3262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the nature of strongly correlated states in flat-band materials (such as moiré heterostructures) is at the forefront of both experimental and theoretical pursuits. While magnetotransport, scanning probe, and optical techniques are often very successful in investigating the properties of the underlying order, the exact nature of the ground state often remains unknown. Here, we propose to leverage strong light-matter coupling present in the flat-band systems to gain insight through dynamical dielectric response into the structure of the many-body ground state. We argue that because of the enlargement of the effective lattice of the system arising from correlations, conventional long-range plasmon becomes "folded" to yield a multiband plasmon spectrum. We detail several mechanisms through which the structure of the plasmon spectrum and that of the dynamical dielectric response is susceptible to the underlying order, revealing valued insights such as the interaction-driven band gaps, spin-structure, and the order periodicity.
Collapse
Affiliation(s)
- Michał Papaj
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Cyprian Lewandowski
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
62
|
Ganguli SC, Aapro M, Kezilebieke S, Amini M, Lado JL, Liljeroth P. Visualization of Moiré Magnons in Monolayer Ferromagnet. NANO LETTERS 2023; 23:3412-3417. [PMID: 37040471 PMCID: PMC10141560 DOI: 10.1021/acs.nanolett.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional magnetic materials provide an ideal platform to explore collective many-body excitations associated with spin fluctuations. In particular, it should be feasible to explore, manipulate, and ultimately design magnonic excitations in two-dimensional van der Waals magnets in a controllable way. Here we demonstrate the emergence of moiré magnon excitations, stemming from the interplay of spin-excitations in monolayer CrBr3 and the moiré pattern arising from the lattice mismatch with the underlying substrate. The existence of moiré magnons is further confirmed via inelastic quasiparticle interference, showing the appearance of a dispersion pattern correlated with the moiré length scale. Our results provide a direct visualization in real-space of the dispersion of moiré magnons, demonstrating the versatility of moiré patterns in creating emergent many-body excitations.
Collapse
Affiliation(s)
| | - Markus Aapro
- Department
of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Shawulienu Kezilebieke
- Department
of Physics, Department of Chemistry and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Mohammad Amini
- Department
of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Jose L. Lado
- Department
of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Peter Liljeroth
- Department
of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
63
|
Zhang S, Xie B, Wu Q, Liu J, Yazyev OV. Chiral Decomposition of Twisted Graphene Multilayers with Arbitrary Stacking. NANO LETTERS 2023; 23:2921-2926. [PMID: 36940241 DOI: 10.1021/acs.nanolett.3c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We formulate the chiral decomposition rules that govern the electronic structure of a broad family of twisted N + M multilayer graphene configurations that combine arbitrary stacking order and a mutual twist. We show that at the magic angle in the chiral limit the low-energy bands of such systems are composed of chiral pseudospin doublets that are energetically entangled with two flat bands per valley induced by the moiré superlattice potential. The analytic construction is supported by explicit numerical calculations based on realistic parametrization. We further show that vertical displacement fields can open energy gaps between the pseudospin doublets and the two flat bands, such that the flat bands may carry nonzero valley Chern numbers. These results provide guidelines for the rational design of topological and correlated states in generic twisted graphene multilayers.
Collapse
Affiliation(s)
- ShengNan Zhang
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bo Xie
- School of Physical Sciences and Technology, ShanghaiTech University, Shanghai 200031, China and
| | - QuanSheng Wu
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jianpeng Liu
- School of Physical Sciences and Technology, ShanghaiTech University, Shanghai 200031, China and
- ShanghaiTech laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
| | - Oleg V Yazyev
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
64
|
Yu D, Li G, Wang L, Leykam D, Yuan L, Chen X. Moiré Lattice in One-Dimensional Synthetic Frequency Dimension. PHYSICAL REVIEW LETTERS 2023; 130:143801. [PMID: 37084429 DOI: 10.1103/physrevlett.130.143801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The moiré lattice has recently attracted broad interest in both solid-state physics and photonics where exotic phenomena in manipulating the quantum states are explored. In this work, we study the one-dimensional (1D) analogs of "moiré" lattices in a synthetic frequency dimension constructed by coupling two resonantly modulated ring resonators with different lengths. Unique features associated with the flatband manipulation as well as the flexible control of localization position inside each unit cell in the frequency dimension have been found, which can be controlled via the choice of flatband. Our work therefore provides insight into simulating moiré physics in 1D synthetic frequency space, which holds important promise for potential applications toward optical information processing.
Collapse
Affiliation(s)
- Danying Yu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangzhen Li
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luojia Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daniel Leykam
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
| | - Luqi Yuan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan, 250358, China
| |
Collapse
|
65
|
Du F, Zheng K, Zeng S, Yuan Y. Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1271-1284. [PMID: 39677592 PMCID: PMC11636415 DOI: 10.1515/nanoph-2022-0798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 12/17/2024]
Abstract
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
Collapse
Affiliation(s)
- Fusheng Du
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
| | - Kai Zheng
- School of Civil Aviation, Northwestern Polytechnical University, Xi’an, Shanxi, 710072, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-ERL 7004, Université de Technologie de Troyes, Troyes, 10000, France
| | - Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
66
|
Yang B, Li Y, Xiang H, Lin H, Huang B. Moiré magnetic exchange interactions in twisted magnets. NATURE COMPUTATIONAL SCIENCE 2023; 3:314-320. [PMID: 38177935 DOI: 10.1038/s43588-023-00430-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/10/2023] [Indexed: 01/06/2024]
Abstract
In addition to moiré superlattices, twisting can also generate moiré magnetic exchange interactions (MMEIs) in van der Waals magnets. However, owing to the extreme complexity and twist-angle-dependent sensitivity, all existing models fail to fully capture MMEIs and thus cannot provide an understanding of MMEI-induced physics. Here, we develop a microscopic moiré spin Hamiltonian that enables the effective description of MMEIs via a sliding-mapping approach in twisted magnets, as demonstrated in twisted bilayer CrI3. We show that the emergence of MMEIs can create a magnetic skyrmion bubble with non-conserved helicity, a 'moiré-type skyrmion bubble'. This represents a unique spin texture solely generated by MMEIs and ready to be detected under the current experimental conditions. Importantly, the size and population of skyrmion bubbles can be finely controlled by twist angle, a key step for skyrmion-based information storage. Furthermore, we reveal that MMEIs can be effectively manipulated by substrate-induced interfacial Dzyaloshinskii-Moriya interactions, modulating the twist-angle-dependent magnetic phase diagram, which solves outstanding disagreements between theories and experiments.
Collapse
Affiliation(s)
- Baishun Yang
- Beijing Computational Science Research Center, Beijing, China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, China
| | - Yang Li
- Beijing Computational Science Research Center, Beijing, China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Haiqing Lin
- Beijing Computational Science Research Center, Beijing, China
- School of Physics, Zhejiang University, Hangzhou, China
- Department of Physics, Beijing Normal University, Beijing, China
| | - Bing Huang
- Beijing Computational Science Research Center, Beijing, China.
- Department of Physics, Beijing Normal University, Beijing, China.
| |
Collapse
|
67
|
Wu YM, Wu Z, Yao H. Pair-Density-Wave and Chiral Superconductivity in Twisted Bilayer Transition Metal Dichalcogenides. PHYSICAL REVIEW LETTERS 2023; 130:126001. [PMID: 37027848 DOI: 10.1103/physrevlett.130.126001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer transition metal dichalcogenides (e.g., WSe_{2}) in the presence of an out-of-plane electric field. Using renormalization group analysis, we show that superconductivity survives even with the conventional van Hove singularities. We find that topological chiral superconducting states with Chern number N=1, 2, 4 (namely, p+ip, d+id, and g+ig) appear over a large parameter region with a moiré filling factor around n=1. At some special values of applied electric field and in the presence of a weak out-of-plane Zeeman field, spin-polarized pair-density-wave (PDW) superconductivity can emerge. This spin-polarized PDW state can be probed by experiments such as spin-polarized STM measuring spin-resolved pairing gap and quasiparticle interference. Moreover, the spin-polarized PDW could lead to a spin-polarized superconducting diode effect.
Collapse
Affiliation(s)
- Yi-Ming Wu
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
| | - Zhengzhi Wu
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
68
|
Dey A, Chowdhury SA, Peña T, Singh S, Wu SM, Askari H. An Atomistic Insight into Moiré Reconstruction in Twisted Bilayer Graphene beyond the Magic Angle. ACS APPLIED ENGINEERING MATERIALS 2023; 1:970-982. [PMID: 37008886 PMCID: PMC10043875 DOI: 10.1021/acsaenm.2c00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Twisted bilayer graphene exhibits electronic properties strongly correlated with the size and arrangement of moiré patterns. While rigid rotation of the two graphene layers results in a moiré interference pattern, local rearrangements of atoms due to interlayer van der Waals interactions result in atomic reconstruction within the moiré cells. Manipulating these patterns by controlling the twist angle and externally applied strain provides a promising route to tuning their properties. Atomic reconstruction has been extensively studied for angles close to or smaller than the magic angle (θ m = 1.1°). However, this effect has not been explored for applied strain and is believed to be negligible for high twist angles. Using interpretive and fundamental physical measurements, we use theoretical and numerical analyses to resolve atomic reconstruction in angles above θ m . In addition, we propose a method to identify local regions within moiré cells and track their evolution with strain for a range of representative high twist angles. Our results show that atomic reconstruction is actively present beyond the magic angle, and its contribution to the moiré cell evolution is significant. Our theoretical method to correlate local and global phonon behavior further validates the role of reconstruction at higher angles. Our findings provide a better understanding of moiré reconstruction in large twist angles and the evolution of moiré cells under the application of strain, which might be potentially crucial for twistronics-based applications.
Collapse
Affiliation(s)
- Aditya Dey
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Shoieb Ahmed Chowdhury
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Tara Peña
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Sobhit Singh
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Stephen M. Wu
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Hesam Askari
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
69
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
70
|
Atomic Bose-Einstein condensate in twisted-bilayer optical lattices. Nature 2023; 615:231-236. [PMID: 36813971 DOI: 10.1038/s41586-023-05695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
Observation of strong correlations and superconductivity in twisted-bilayer graphene1-4 has stimulated tremendous interest in fundamental and applied physics5-8. In this system, the superposition of two twisted honeycomb lattices, generating a moiré pattern, is the key to the observed flat electronic bands, slow electron velocity and large density of states9-12. Extension of the twisted-bilayer system to new configurations is highly desired, which can provide exciting prospects to investigate twistronics beyond bilayer graphene. Here we demonstrate a quantum simulation of superfluid to Mott insulator transition in twisted-bilayer square lattices based on atomic Bose-Einstein condensates loaded into spin-dependent optical lattices. The lattices are made of two sets of laser beams that independently address atoms in different spin states, which form the synthetic dimension accommodating the two layers. The interlayer coupling is highly controllable by a microwave field, which enables the occurrence of a lowest flat band and new correlated phases in the strong coupling limit. We directly observe the spatial moiré pattern and the momentum diffraction, which confirm the presence of two forms of superfluid and a modified superfluid to insulator transition in twisted-bilayer lattices. Our scheme is generic and can be applied to different lattice geometries and for both boson and fermion systems. This opens up a new direction for exploring moiré physics in ultracold atoms with highly controllable optical lattices.
Collapse
|
71
|
Romeo A, Supèr H. Optimal twist angle for a graphene-like bilayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:165302. [PMID: 36745921 DOI: 10.1088/1361-648x/acb985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The first optimal-or 'magic'-angle leading to the nullity of the Dirac/Fermi velocity for twisted bilayer graphene is re-evaluated in the Bistritzer-MacDonald set-up (Bistritzer and MacDonald 2011Proc. Natl Acad. Sci.10812233-7). From the details of that calculation we study the resulting alterations when the properties of the two layers are not exactly the same. A moiré combination of lattices without relative rotation but with different spacing lengths may also lead to a vanishing Dirac velocity. Hopping amplitudes can vary as well, and curvature is one of the possible causes for their change. In the case of small curvature values and situations dominated by hopping energy scales, the optimal angle becomes wider than in the 'flat' case.
Collapse
Affiliation(s)
| | - Hans Supèr
- University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
72
|
Ideal acoustic quantum spin Hall phase in a multi-topology platform. Nat Commun 2023; 14:952. [PMID: 36807583 PMCID: PMC9941186 DOI: 10.1038/s41467-023-36511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Fermionic time-reversal symmetry ([Formula: see text])-protected quantum spin Hall (QSH) materials feature gapless helical edge states when adjacent to arbitrary trivial cladding materials. However, due to symmetry reduction at the boundary, bosonic counterparts usually exhibit gaps and thus require additional cladding crystals to maintain robustness, limiting their applications. In this study, we demonstrate an ideal acoustic QSH with gapless behaviour by constructing a global Tf on both the bulk and the boundary based on bilayer structures. Consequently, a pair of helical edge states robustly winds several times in the first Brillouin zone when coupled to resonators, promising broadband topological slow waves. We further reveal that this ideal QSH phase behaves as a topological phase transition plane that bridges trivial and higher-order phases. Our versatile multi-topology platform sheds light on compact topological slow-wave and lasing devices.
Collapse
|
73
|
Aggarwal D, Narula R, Ghosh S. A primer on twistronics: a massless Dirac fermion's journey to moiré patterns and flat bands in twisted bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:143001. [PMID: 36745922 DOI: 10.1088/1361-648x/acb984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of superconductivity in magic-angle twisted bilayer graphene (TBLG) has sparked a renewed interest in the strongly-correlated physics ofsp2carbons, in stark contrast to preliminary investigations which were dominated by the one-body physics of the massless Dirac fermions. We thus provide a self-contained, theoretical perspective of the journey of graphene from its single-particle physics-dominated regime to the strongly-correlated physics of the flat bands. Beginning from the origin of the Dirac points in condensed matter systems, we discuss the effect of the superlattice on the Fermi velocity and Van Hove singularities in graphene and how it leads naturally to investigations of the moiré pattern in van der Waals heterostructures exemplified by graphene-hexagonal boron-nitride and TBLG. Subsequently, we illuminate the origin of flat bands in TBLG at the magic angles by elaborating on a broad range of prominent theoretical works in a pedagogical way while linking them to available experimental support, where appropriate. We conclude by providing a list of topics in the study of the electronic properties of TBLG not covered by this review but may readily be approached with the help of this primer.
Collapse
Affiliation(s)
| | - Rohit Narula
- Department of Physics, IIT Delhi, Hauz Khas, New Delhi, India
| | - Sankalpa Ghosh
- Department of Physics, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
74
|
Scammell HD, Scheurer MS. Tunable Superconductivity and Möbius Fermi Surfaces in an Inversion-Symmetric Twisted van der Waals Heterostructure. PHYSICAL REVIEW LETTERS 2023; 130:066001. [PMID: 36827571 DOI: 10.1103/physrevlett.130.066001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
We theoretically study a moiré superlattice geometry consisting of mirror-symmetric twisted trilayer graphene surrounded by identical transition metal dichalcogenide layers. We show that this setup allows us to switch on or off and control the spin-orbit splitting of the Fermi surfaces via application of a perpendicular displacement field D_{0} and explore two manifestations of this control: first, we compute the evolution of superconducting pairing with D_{0}; this features a complex admixture of singlet and triplet pairing and, depending on the pairing state in the parent trilayer system, phase transitions between competing superconducting phases. Second, we reveal that, with application of D_{0}, the spin-orbit-induced spin textures exhibit vortices which lead to "Möbius fermi surfaces" in the interior of the Brillouin zone: diabatic electron trajectories, which are predicted to dominate quantum oscillation experiments, require encircling the Γ point twice, making their Möbius nature directly observable. Further, we show that the superconducting order parameter inherits the unconventional, Möbius spin textures. Our findings suggest that this system provides a promising experimental avenue for systematically studying the impact of spin-orbit coupling on the multitude of topological and correlated phases in near-magic-angle twisted trilayer graphene.
Collapse
Affiliation(s)
- Harley D Scammell
- School of Physics, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
75
|
Krushynska AO, Torrent D, Aragón AM, Ardito R, Bilal OR, Bonello B, Bosia F, Chen Y, Christensen J, Colombi A, Cummer SA, Djafari-Rouhani B, Fraternali F, Galich PI, Garcia PD, Groby JP, Guenneau S, Haberman MR, Hussein MI, Janbaz S, Jiménez N, Khelif A, Laude V, Mirzaali MJ, Packo P, Palermo A, Pennec Y, Picó R, López MR, Rudykh S, Serra-Garcia M, Sotomayor Torres CM, Starkey TA, Tournat V, Wright OB. Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:659-686. [PMID: 39679340 PMCID: PMC11636487 DOI: 10.1515/nanoph-2022-0671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/17/2024]
Abstract
This broad review summarizes recent advances and "hot" research topics in nanophononics and elastic, acoustic, and mechanical metamaterials based on results presented by the authors at the EUROMECH 610 Colloquium held on April 25-27, 2022 in Benicássim, Spain. The key goal of the colloquium was to highlight important developments in these areas, particularly new results that emerged during the last two years. This work thus presents a "snapshot" of the state-of-the-art of different nanophononics- and metamaterial-related topics rather than a historical view on these subjects, in contrast to a conventional review article. The introduction of basic definitions for each topic is followed by an outline of design strategies for the media under consideration, recently developed analysis and implementation techniques, and discussions of current challenges and promising applications. This review, while not comprehensive, will be helpful especially for early-career researchers, among others, as it offers a broad view of the current state-of-the-art and highlights some unique and flourishing research in the mentioned fields, providing insight into multiple exciting research directions.
Collapse
Affiliation(s)
- Anastasiia O. Krushynska
- Engineering and Technology Institute Groningen, University of Groningen, Groningen9747AG, The Netherlands
| | - Daniel Torrent
- GROC-UJI, Institut de Noves Tecnologies de la Imatge, Universitat Jaume I, Castelló de la Plana12071, Spain
| | - Alejandro M. Aragón
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft2628 CD, The Netherlands
| | - Raffaele Ardito
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan20133, Italy
| | - Osama R. Bilal
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT06269, USA
| | - Bernard Bonello
- Institut des Nanosciences de Paris, Sorbonne Université, UMR CNRS 7588, Paris75005, France
| | | | - Yi Chen
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128Karlsruhe, Germany
| | | | - Andrea Colombi
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich8093, Switzerland
| | - Steven A. Cummer
- Department of Electrical and Computer Engineering, Duke University, DurhamNC27708, USA
| | - Bahram Djafari-Rouhani
- Institut d’Electronique, de Microléctronique et de Nanotechnologie, UMR CNRS 8520, Université de Lille, Villeneuve d’Ascq59655, France
| | - Fernando Fraternali
- Department of Civil Engineering, University of Salerno, Fisciano84084, Italy
| | - Pavel I. Galich
- Faculty of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa32000, Israel
| | - Pedro David Garcia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Barcelona08193, Spain
| | - Jean-Philippe Groby
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans72085 Cedex 09, France
| | - Sebastien Guenneau
- UMI 2004 Abraham de Moivre-CNRS, Imperial College London, LondonSW7 2AZ, UK
| | - Michael R. Haberman
- Walker Department of Mechanical Engineering, The University of Texas at Austin, AustinTX78712, USA
| | - Mahmoud I. Hussein
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, BoulderCO80303, USA
| | - Shahram Janbaz
- Machine Materials Lab, Institute of Physics, University of Amsterdam, Amsterdam1098XH, the Netherlands
| | - Noé Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de instrumentación para Imagen Molecular (i3M), Universitat Politècnica de València, Valencia46011, Spain
| | - Abdelkrim Khelif
- Institut FEMTO-ST, CNRS UMR 6174, Université de Bourgogne Franche-Comté, BesançonF-25030, France
| | - Vincent Laude
- Institut FEMTO-ST, CNRS UMR 6174, Université de Bourgogne Franche-Comté, BesançonF-25030, France
| | - Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Delft University of Technology, Delft2628CD, The Netherlands
| | - Pawel Packo
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow30-059, Poland
| | - Antonio Palermo
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna40136, Italy
| | - Yan Pennec
- UMET, UMR 8207, CNRS, Université de Lille, LilleF-59000, France
| | - Rubén Picó
- Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Grau de Gandia46730, Spain
| | | | - Stephan Rudykh
- Department of Mechanical Engineering, University of Wisconsin–Madison, Wisconsin–Madison, WI, USA
| | | | - Clivia M. Sotomayor Torres
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Barcelona08193, Spain
- ICREA, Barcelona08010, Spain
| | - Timothy A. Starkey
- Centre for Metamaterial Research and Innovation, University of Exeter, ExeterEX4 4QL, UK
| | - Vincent Tournat
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans72085 Cedex 09, France
| | - Oliver B. Wright
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka565-0871, Japan
- Hokkaido University, Sapporo060-0808, Japan
| |
Collapse
|
76
|
Ryee S, Wehling TO. Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators. NANO LETTERS 2023; 23:573-579. [PMID: 36622289 DOI: 10.1021/acs.nanolett.2c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mott-Hubbard and Hund electron correlations have been realized thus far in separate classes of materials. Here, we show that a single moiré homobilayer encompasses both kinds of physics in a controllable manner. We develop a microscopic multiband model that we solve by dynamical mean-field theory to nonperturbatively address the local many-body correlations. We demonstrate how tuning with twist angle, dielectric screening, and hole density allows us to switch between Mott-Hubbard and Hund correlated states in a twisted WSe2 bilayer. The underlying mechanism is based on controlling Coulomb-interaction-driven orbital polarization and the energetics of concomitant local singlet and triplet spin configurations. From a comparison to recent experimental transport data, we find signatures of a filling-controlled transition from a triplet charge-transfer insulator to a Hund-Mott metal. Our finding establishes twisted transition-metal dichalcogenides as a tunable platform for exotic phases of quantum matter emerging from large local spin moments.
Collapse
Affiliation(s)
- Siheon Ryee
- I. Institute of Theoretical Physics, University of Hamburg, Notkestrasse 9, 22607Hamburg, Germany
| | - Tim O Wehling
- I. Institute of Theoretical Physics, University of Hamburg, Notkestrasse 9, 22607Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
77
|
Pan G, Zhang X, Lu H, Li H, Chen BB, Sun K, Meng ZY. Thermodynamic Characteristic for a Correlated Flat-Band System with a Quantum Anomalous Hall Ground State. PHYSICAL REVIEW LETTERS 2023; 130:016401. [PMID: 36669223 DOI: 10.1103/physrevlett.130.016401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
While the ground-state phase diagram of the correlated flat-band systems has been intensively investigated, the dynamic and thermodynamic properties of such lattice models are less explored, but it is the latter which is most relevant to the experimental probes (transport, quantum capacitance, and spectroscopy) of the quantum moiré materials such as twisted bilayer graphene. Here we show, by means of momentum-space quantum Monte Carlo and exact diagonalization, in chiral limit there exists a unique thermodynamic characteristic for the correlated flat-band model with interaction-driven quantum anomalous Hall (QAH) ground state, namely, the transition from the QAH insulator to the metallic state takes place at a much lower temperature compared with the zero-temperature single-particle gap generated by the long-range Coulomb interaction. Such low transition temperature comes from the proliferation of excitonic particle-hole excitations, which transfers the electrons across the gap between different topological bands to restore the broken time-reversal symmetry and gives rise to a pronounced enhancement in the charge compressibility. Future experiments, to verify such generic thermodynamic characteristics, are proposed.
Collapse
Affiliation(s)
- Gaopei Pan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hongyu Lu
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Heqiu Li
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Bin-Bin Chen
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zi Yang Meng
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
78
|
Duden EI, Savacı U, Turan S, Sevik C, Demiroglu I. Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:085301. [PMID: 36541523 DOI: 10.1088/1361-648x/aca8e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. Theab initiomolecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.
Collapse
Affiliation(s)
- Enes Ibrahim Duden
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, TR 26555, Turkey
| | - Umut Savacı
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, TR 26555, Turkey
| | - Servet Turan
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, TR 26555, Turkey
| | - Cem Sevik
- Department of Mechanical Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, TR 26555, Turkey
- Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Ilker Demiroglu
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Eskisehir, TR 26555, Turkey
- Advanced Technologies Application and Research Center, Eskisehir Technical University, Eskisehir, TR 26555, Turkey
| |
Collapse
|
79
|
Shao H, Zhou G. Local atomic-morphology-resolved edge states in twisted bilayer graphene nanoribbons. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:035301. [PMID: 36347045 DOI: 10.1088/1361-648x/aca134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
We study the properties of edge states for a selected (10,1)[(4,3)] twisted bilayer graphene (TBG) nanoribbon with minimal edges but a majority of zigzag edges. By using the tight-binding and Green's function methods, we find a remarkable rule of a local electronic transfer for the edge states. As the energy away from the Fermi level, the transfer is in the order of convex AB-, concave AB-, concave AA- and convex AA-stacked regions of the ribbon curve edges. We illustrate that this rule comes from the difference in interlayer couplings among the four types of local geometries at edges. Further, an in-plane transverse electric field can rearrange the edge bands and enlarge the energy regimes, leading to the lowest energy states modified from AB-stacked edge states to AA-stacked ones. The realignment of the edge bands results from the interplay between the interlayer coupling and the potential difference induced by the transverse electric field, which results in different bonding and antibonding edge states, i.e. the edge bands. In contrast, the total energy regime of the edge bands remain nearly unchanged under a relative strong off-plane perpendicular electric field, and the typical AA-stacked edge states are still maintained even the rotational symmetry of two layers is broken. Until a sufficiently strong value, the TBG nanoribbon tends to behave as two noninteracting monolayer ribbons except for a band distortion in low-energy regime. The conductance spectra reflects the edge bands well. We also discussed the influence of edge defects in the TBG nanoribbon on transport properties. It is found that the contributed conductance of each type of edge states shows different degrees of suppression for a monatomic vacancy in the corresponding region of edges.
Collapse
Affiliation(s)
- Huaihua Shao
- School of Physics and Electrical Engineering, Liupanshui Normal University, Liupanshui 553004, People's Republic of China
| | - Guanghui Zhou
- School of Sciences, Shaoyang University, Shaoyang 422001, People's Republic of China
- Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, People's Republic of China
| |
Collapse
|
80
|
Su X, Huang T, Zheng B, Wang J, Wang X, Yan S, Wang X, Shi Y. Atomic-Scale Confinement and Negative Refraction of Plasmons by Twisted Bilayer Graphene. NANO LETTERS 2022; 22:8975-8982. [PMID: 36374517 DOI: 10.1021/acs.nanolett.2c03220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Moiré superlattices provide in-plane quantum restriction for light-matter interactions in twisted bilayer graphene (tBLG), leading to the exotic photon-Moiré physics and potential applications for light manipulation. Recently, our experiment identified a highly confined slow surface plasmons polaritons (SPPs) mode in tBLG. Here, we demonstrate that the propagation of the slow SPPs mode in tBLG is spatially tailored and steered at deep subwavelengths. Analysis by the perturbation theory indicates that the coupling between the slow SPPs mode and the Moiré system is greatly strengthened, which regulates the wavefront at the atomic scale and makes tBLG serve as a universal optical metamaterial. Consequently, the negative refraction is achieved at the interface of monolayer graphene and tBLG, by which a metalens with a controllable focal length and an extremely high resolution up to 1/150 of wavelength is devised. Our work paves the way for constructing optical metamaterial at the atomic scale and develops future photon-Moiré interaction systems.
Collapse
Affiliation(s)
- Xin Su
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Tianye Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Binjie Zheng
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Junzhuan Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Xinran Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Xiaomu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| |
Collapse
|
81
|
Omnidirectional flat bands in chiral magnonic crystals. Sci Rep 2022; 12:17831. [PMID: 36284121 PMCID: PMC9596476 DOI: 10.1038/s41598-022-20539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022] Open
Abstract
The magnonic band structure of two-dimensional chiral magnonic crystals is theoretically investigated. The proposed metamaterial involves a three-dimensional architecture, where a thin ferromagnetic layer is in contact with a two-dimensional periodic array of heavy-metal square islands. When these two materials are in contact, an anti-symmetric exchange coupling known as the Dzyaloshinskii–Moriya interaction (DMI) arises, which generates nonreciprocal spin waves and chiral magnetic order. The Landau–Lifshitz equation and the plane-wave method are employed to study the dynamic magnetic behavior. A systematic variation of geometric parameters, the DMI constant, and the filling fraction allows the examination of spin-wave propagation features, such as the spatial profiles of the dynamic magnetization, the isofrequency contours, and group velocities. In this study, it is found that omnidirectional flat magnonic bands are induced by a sufficiently strong Dzyaloshinskii–Moriya interaction underneath the heavy-metal islands, where the spin excitations are active. The theoretical results were substantiated by micromagnetic simulations. These findings are relevant for envisioning applications associated with spin-wave-based logic devices, where the nonreciprocity and channeling of the spin waves are of fundamental and practical scientific interest.
Collapse
|
82
|
Baby skyrmions in Chern ferromagnets and topological mechanism for spin-polaron formation in twisted bilayer graphene. Nat Commun 2022; 13:6245. [PMID: 36271002 PMCID: PMC9587044 DOI: 10.1038/s41467-022-33673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The advent of moiré materials has galvanized interest in the nature of charge carriers in topological bands. In contrast to conventional materials with electron-like charge carriers, topological bands allow for more exotic possibilities where charge is carried by nontrivial topological textures, such as skyrmions. However, the real-space description of skyrmions is ill-suited to address the limit of small skyrmions and to account for momentum-space band features. Here, we develop a momentum-space approach to study the formation of the smallest skyrmions – spin polarons, formed as bound states of an electron and a spin flip – in topological ferromagnets. We show that, quite generally, there is an attraction between an electron and a spin flip that is purely topological in origin, promoting the formation of spin polarons. Applying our results to twisted bilayer graphene, we identify a range of parameters where spin polarons are formed and discuss their possible experimental signatures. In conventional materials, charge carriers are electron-like quasiparticles, but topological bands allow for more exotic possibilities. Here, the authors predict that in the Chern-ferromagnet phase of twisted bilayer graphene charge is carried by spin polarons, bound states of an electron and a spin flip.
Collapse
|
83
|
Chen G, Rösner M, Lado JL. Controlling magnetic frustration in 1T-TaS 2via Coulomb engineered long-range interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:485805. [PMID: 36202090 DOI: 10.1088/1361-648x/ac9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Magnetic frustrations in two-dimensional materials provide a rich playground to engineer unconventional phenomena. However, despite intense efforts, a realization of tunable frustrated magnetic order in two-dimensional materials remains an open challenge. Here we propose Coulomb engineering as a versatile strategy to tailor magnetic ground states in layered materials. Using the frustrated van der Waals monolayer 1T-TaS2as an example, we show how long-range Coulomb interactions renormalize the low energy nearly flat band structure, leading to a Heisenberg model which depends on the Coulomb interactions. Based on this, we show that superexchange couplings in the material can be precisely tailored by means of environmental dielectric screening, ultimately allowing to externally drive the material towards a tunable frustrated regime. Our results put forward Coulomb engineering as a powerful tool to manipulate magnetic properties of van der Waals materials.
Collapse
Affiliation(s)
- Guangze Chen
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Malte Rösner
- Institute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands
| | - Jose L Lado
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
84
|
Georgoulea NC, Power SR, Caffrey NM. Strain-induced stacking transition in bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:475302. [PMID: 36174544 DOI: 10.1088/1361-648x/ac965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Strain, both naturally occurring and deliberately engineered, can have a considerable effect on the structural and electronic properties of 2D and layered materials. Uniaxial or biaxial heterostrain modifies the stacking arrangement of bilayer graphene (BLG) which subsequently influences the electronic structure of the bilayer. Here, we use density functional theory (DFT) calculations to investigate the interplay between an external applied heterostrain and the resulting stacking in BLG. We determine how a strain applied to one layer is transferred to a second, 'free' layer and at what critical strain the ground-state AB-stacking is disrupted. To overcome limitations introduced by periodic boundary conditions, we consider an approximate system consisting of an infinite graphene sheet and an armchair graphene nanoribbon. We find that above a critical strain of∼1%, it is energetically favourable for the free layer to be unstrained, indicating a transition between uniform AB-stacking and non-uniform mixed stacking. This is in agreement with a simple model estimate based on the individual energy contributions of strain and stacking effects. Our findings suggest that small levels of strain provide a platform to reversibly engineer stacking order and Moiré features in bilayers, providing a viable alternative to twistronics to engineer topological and exotic physical phenomena in such systems.
Collapse
Affiliation(s)
- Nina C Georgoulea
- School of Physics, AMBER & CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stephen R Power
- School of Physics, AMBER & CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
- School of Physical Sciences, Dublin City University, Dublin 9, Ireland
| | - Nuala M Caffrey
- School of Physics, University College Dublin, Dublin 4, Ireland
- Centre for Quantum Engineering, Science, and Technology, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
85
|
Yi CH, Park HC, Park MJ. Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic Moiré superlattices. LIGHT, SCIENCE & APPLICATIONS 2022; 11:289. [PMID: 36202788 PMCID: PMC9537166 DOI: 10.1038/s41377-022-00977-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 05/22/2023]
Abstract
The moiré superlattice of misaligned atomic bilayers paves the way for designing a new class of materials with wide tunability. In this work, we propose a photonic analog of the moiré superlattice based on dielectric resonator quasi-atoms. In sharp contrast to van der Waals materials with weak interlayer coupling, we realize the strong coupling regime in a moiré superlattice, characterized by cascades of robust flat bands at large twist-angles. Surprisingly, we find that these flat bands are characterized by a non-trivial band topology, the origin of which is the moiré pattern of the resonator arrangement. The physical manifestation of the flat band topology is a robust one-dimensional conducting channel on edge, protected by the reflection symmetry of the moiré superlattice. By explicitly breaking the underlying reflection symmetry on the boundary terminations, we show that the first-order topological edge modes naturally deform into higher-order topological corner modes. Our work pioneers the physics of topological phases in the designable platform of photonic moiré superlattices beyond the weakly coupled regime.
Collapse
Affiliation(s)
- Chang-Hwan Yi
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| | - Hee Chul Park
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| | - Moon Jip Park
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
86
|
Zhang Y, Polski R, Lewandowski C, Thomson A, Peng Y, Choi Y, Kim H, Watanabe K, Taniguchi T, Alicea J, von Oppen F, Refael G, Nadj-Perge S. Promotion of superconductivity in magic-angle graphene multilayers. Science 2022; 377:1538-1543. [PMID: 36173835 DOI: 10.1126/science.abn8585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Graphene moiré superlattices show an abundance of correlated insulating, topological, and superconducting phases. Whereas the origins of strong correlations and nontrivial topology can be directly linked to flat bands, the nature of superconductivity remains enigmatic. We demonstrate that magic-angle devices made of twisted tri-, quadri-, and pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and superconductivity. We also observe insulating states in the tril- and quadrilayer arising at finite electric displacement fields. As the number of layers increases, superconductivity emerges over an enhanced filling-factor range, and in the pentalayer it extends well beyond the filling of four electrons per moiré unit cell. Our results highlight the role of the interplay between flat and more dispersive bands in extending superconducting regions in graphene moiré superlattices.
Collapse
Affiliation(s)
- Yiran Zhang
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robert Polski
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cyprian Lewandowski
- Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Thomson
- Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - Yang Peng
- Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA
| | - Youngjoon Choi
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyunjin Kim
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305 0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305 0044, Japan
| | - Jason Alicea
- Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gil Refael
- Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stevan Nadj-Perge
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
87
|
Călugăru D, Regnault N, Oh M, Nuckolls KP, Wong D, Lee RL, Yazdani A, Vafek O, Bernevig BA. Spectroscopy of Twisted Bilayer Graphene Correlated Insulators. PHYSICAL REVIEW LETTERS 2022; 129:117602. [PMID: 36154402 DOI: 10.1103/physrevlett.129.117602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
We analytically compute the scanning tunneling microscopy (STM) signatures of integer-filled correlated ground states of the magic angle twisted bilayer graphene (TBG) narrow bands. After experimentally validating the strong-coupling approach at ±4 electrons/moiré unit cell, we consider the spatial features of the STM signal for 14 different many-body correlated states and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the Kramers IVC state and its nonchiral U(4) rotations do not exhibit any KD, while the time-reversal-symmetric IVC state does. Our results, obtained over a large range of energies and model parameters, show that the STM signal and Chern number of a state can be used to uniquely determine the nature of the TBG ground state.
Collapse
Affiliation(s)
- Dumitru Călugăru
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Nicolas Regnault
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Myungchul Oh
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kevin P Nuckolls
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Dillon Wong
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ryan L Lee
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ali Yazdani
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Oskar Vafek
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
- Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
88
|
Liu S, Ma S, Shao R, Zhang L, Yan T, Ma Q, Zhang S, Cui TJ. Moiré metasurfaces for dynamic beamforming. SCIENCE ADVANCES 2022; 8:eabo1511. [PMID: 35977023 PMCID: PMC9385154 DOI: 10.1126/sciadv.abo1511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 05/22/2023]
Abstract
Recent advances in digitally programmable metamaterials have accelerated the development of reconfigurable intelligent surfaces (RIS). However, the excessive use of active components (e.g., pin diodes and varactor diodes) leads to high costs, especially for those operating at millimeter-wave frequencies, impeding their large-scale deployments in RIS. Here, we introduce an entirely different approach-moiré metasurfaces-to implement dynamic beamforming through mutual twists of two closely stacked metasurfaces. The superposition of two high-spatial-frequency patterns produces a low-spatial-frequency moiré pattern through the moiré effect, which provides the surface impedance profiles to generate desired radiation patterns. We demonstrate experimentally that the direction of the radiated beams can continuously sweep over the entire reflection space along predesigned trajectories by simply adjusting the twist angle and the overall orientation. Our work opens previously unexplored directions for synthesizing far-field scattering through the direct contact of mutually twisted metallic patterns with different plane symmetry groups.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Shaojie Ma
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | - Ruiwen Shao
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Lei Zhang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Tao Yan
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Qian Ma
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, China
- Corresponding author. (T.J.C.); (S.Z.)
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
- Corresponding author. (T.J.C.); (S.Z.)
| |
Collapse
|
89
|
Ramires A. Twisted-graphene model draws inspiration from heavy elements. Nature 2022; 608:474-475. [PMID: 35941385 DOI: 10.1038/d41586-022-02108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Zhang T, Gao C, Liu D, Li Z, Zhang H, Zhu M, Zhang Z, Zhao P, Cheng Y, Huang W. Pressure Tunable van Hove Singularities of Twisted Bilayer Graphene. NANO LETTERS 2022; 22:5841-5848. [PMID: 35816385 DOI: 10.1021/acs.nanolett.2c01599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The giant light-matter interaction induced by van Hove singularities (vHSs) of twisted bilayer graphene (tBLG) is responsible for enhanced optical absorption and strong photoresponse. Here, we investigated the evolution of vHSs in tBLG under pressure by using Raman spectroscopy. Pressure not only induces a blue shift of the G/R band but also tunes the intensity of the G/R band. The blue shift of the G/R band is due to the reduction of the in-plane lattice constant, and the variation of the G/R band intensity is due to the vHSs' shift of tBLG. Moreover, the main band in the absorption spectrum of tBLG is attributed to multiple transitions from valence to conduction bands. Because the ratio of R to G band intensity increases under pressure and the origins of R and G bands are different, we claim that pressure enhances intervalley electron scattering. This study paves the way for pressure engineering of vHS and the corresponding photon-electron-phonon interaction in tBLG.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chaofeng Gao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dongdong Liu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhuolun Li
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hao Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Mengqi Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenxiao Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Puqin Zhao
- School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
91
|
Chen X, Liu S, Fry JN, Cheng HP. First-principles calculation of gate-tunable ferromagnetism in magic-angle twisted bilayer graphene under pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:385501. [PMID: 35790153 DOI: 10.1088/1361-648x/ac7e9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Magic-angle twisted bilayer graphene (MATBG) is notable as a highly tunable platform for investigating strongly correlated phenomena such as unconventional superconductivity and quantum spin liquids, due to easy control of doping level through gating and sensitive dependence of the magic angle on hydrostatic pressure. Experimental observations of correlated insulating states, unconventional superconductivity and ferromagnetism in MATBG indicate that this system exhibits rich exotic phases. In this work, using density functional theory calculations in conjunction with the effective screening medium method, we find the MATBG under pressure at a twisting angle of 2.88∘and simulate how its electronic states evolve when doping level and electric field perpendicular to plane are tuned by gating. Our calculations show that, at doping levels between two electrons and four holes per moiré unit cell, a ferromagnetic (FM) solution with spin density localized at AA stacking sites is lower in energy than the nonmagnetic solution. The magnetic moment of this FM state decreases with both electron and hole doping and vanishes at four electrons/holes doped per moiré unit cell. Hybridization between the flat bands at the Fermi level and the surrounding dispersive bands can take place at finite doping. On increasing the out-of-plane electric field at zero doping, a transition from the FM state to the nonmagnetic one is seen. An investigation of impurity effects shows that both absorption ofO2molecules and occurrence of Stone-Wales impurities suppress the FM state, and the mechanisms are understood from our calculations. We also analyze the interlayer bonding character due to flat bands via Wannier functions. Finally, we report trivial band topology of the flat bands in the FM state at a certain doping level.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
- Quantum Theory Project, University of Florida, Gainesville, FL 32611, United States of America
| | - Shuanglong Liu
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
- Quantum Theory Project, University of Florida, Gainesville, FL 32611, United States of America
| | - James N Fry
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
- Quantum Theory Project, University of Florida, Gainesville, FL 32611, United States of America
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, FL 32611, United States of America
| |
Collapse
|
92
|
Huang L, Zhang W, Zhang X. Moiré Quasibound States in the Continuum. PHYSICAL REVIEW LETTERS 2022; 128:253901. [PMID: 35802444 DOI: 10.1103/physrevlett.128.253901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The novel physics of twisted bilayer graphene has motivated extensive studies of magic-angle flat bands hosted by moiré structures in electronic, photonic, and acoustic systems. On the other hand, bound states in the continuum (BICs) have also attracted great attention in recent years because of their potential applications in the field of designing superior optical devices. Here, we combine these two independent concepts to construct a new optical state in a twisted bilayer photonic crystal slab, which is called as moiré quasi-BIC, and numerically demonstrate that such an exotic optical state possesses dual characteristics of moiré flat bands and quasi-BICs. To illustrate the mechanism for the formation of moiré flat bands, we develop an effective model at the center of the Brillouin zone and show that moiré flat bands could be fulfilled by balancing the interlayer coupling strength and the twist angle around the band edge above the light line. Moreover, by decreasing the twist angle of moiré photonic crystal slabs with flat bands, it is shown that the moiré flat-band mode at the Brillouin center gradually approaches a perfect BIC, where the total radiation loss from all diffraction channels is significantly suppressed. To clarify the advantage of moiré quasi-BICs, enhanced second-harmonic generation (SHG) is numerically proven with a wide-angle optical source. The efficiency of SHG assisted by designed moiré quasi-BICs can be greatly improved compared with that based on dispersive quasi-BICs with similar quality factors.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Weixuan Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Xiangdong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| |
Collapse
|
93
|
Liu J, Luo C, Lu H, Huang Z, Long G, Peng X. Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene. Molecules 2022; 27:molecules27123740. [PMID: 35744866 PMCID: PMC9227148 DOI: 10.3390/molecules27123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
By performing first-principles calculations, we studied hexagonal-boron-nitride (hBN)-supported graphene, in which moiré structures are formed due to lattice mismatch or interlayer rotation. A series of graphene/hBN systems has been studied to reveal the evolution of properties with respect to different twisting angles (21.78°, 13.1°, 9.43°, 7.34°, 5.1°, and 3.48°). Although AA- and AB-stacked graphene/hBN are gapped at the Dirac point by about 50 meV, the energy gap of the moiré graphene/hBN, which is much more asymmetric, is only about several meV. Although the Dirac cone of graphene residing in the wide gap of hBN is not much affected, the calculated Fermi velocity is found to decrease with the increase in the moiré super lattice constant due to charge transfer. The periodic potential imposed by hBN modulated charge distributions in graphene, leading to the shift of graphene bands. In agreement with experiments, there are dips in the calculated density of states, which get closer and closer to the Fermi energy as the moiré lattice grows larger.
Collapse
Affiliation(s)
- Jingran Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; (J.L.); (C.L.)
| | - Chaobo Luo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; (J.L.); (C.L.)
| | - Haolin Lu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300350, China;
| | - Zhongkai Huang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China
- Correspondence: (Z.H.); (G.L.); (X.P.)
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300350, China;
- Correspondence: (Z.H.); (G.L.); (X.P.)
| | - Xiangyang Peng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; (J.L.); (C.L.)
- Correspondence: (Z.H.); (G.L.); (X.P.)
| |
Collapse
|
94
|
Wang J, Liu Z. Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models. PHYSICAL REVIEW LETTERS 2022; 128:176403. [PMID: 35570419 DOI: 10.1103/physrevlett.128.176403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
We propose models of twisted multilayer graphene that exhibit exactly flat Bloch bands with arbitrary Chern numbers and ideal band geometries. The models are constructed by twisting two sheets of Bernal-stacked multiple graphene layers with only intersublattice couplings. Analytically we show that flatband wave functions in these models exhibit a momentum space holomorphic character, leading to ideal band geometries. We also explicitly demonstrate a generic "wave function exchange" mechanism that generates the high Chern numbers of these ideal flatbands. The ideal band geometries and high Chern numbers of the flatbands imply the possibility of hosting exotic fractional Chern insulators which do not have analogues in continuum Landau levels. We numerically verify that these exotic fractional Chern insulators are model states for short-range interactions, characterized by exact ground-state degeneracies at zero energy and infinite particle-cut entanglement gaps.
Collapse
Affiliation(s)
- Jie Wang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| | - Zhao Liu
- Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
95
|
Liu C, Li W, Xue L, Hao Y. Twisted graphene stabilized by organic linkers pillaring. NANOTECHNOLOGY 2022; 33:26LT01. [PMID: 35316799 DOI: 10.1088/1361-6528/ac6008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Twisted graphene, including magic angle graphene, has attracted extensive attentions for its novel properties recently. However, twisted graphene is intrinsically unstable and this will obstruct their application in practice, especially for twisted nano graphene. The twist angles between adjacent layers will change spontaneously. This relaxation process will be accelerated under heat and strain. To solve this problem, we propose a strategy of pillaring twisted graphene by organic linkers in theory. The necessity and feasibility of this strategy is proved by numerical calculation.
Collapse
Affiliation(s)
- Chengyuan Liu
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Wenlian Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Lin Xue
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yuying Hao
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| |
Collapse
|
96
|
Han Y, Gao L, Zhou J, Hou Y, Jia Y, Cao K, Duan K, Lu Y. Deep Elastic Strain Engineering of 2D Materials and Their Twisted Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8655-8663. [PMID: 35147415 DOI: 10.1021/acsami.1c23431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventionally, tuning materials' properties can be done through strategies such as alloying, doping, defect engineering, and phase engineering, while in fact mechanical straining can be another effective approach. In particular, elastic strain engineering (ESE), unlike conventional strain engineering mainly based on epitaxial growth, allows for continuous and reversible modulation of material properties by mechanical loading/unloading. The exceptional intrinsic mechanical properties (including elasticity and strength) of two-dimensional (2D) materials make them naturally attractive candidates for potential ESE applications. Here, we demonstrated that using the strain effect to modulate the physical and chemical properties toward novel functional device applications, which could be a general strategy for various 2D materials and their heterostructures. We then show how ultralarge, uniform elastic strain in free-standing 2D monolayers can permit deep elastic strain engineering (DESE), which can result in fundamentally changed electronic and optoelectronic properties for unconventional device applications. In addition to monolayers and van der Waals (vdW) heterostructures, we propose that DESE can be also applied to twisted bilayer graphene and other emerging twisted vdW structures, allowing for unprecedented functional 2D material applications.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Libo Gao
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yanwen Jia
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Cao
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ke Duan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
97
|
Hamer M, Giampietri A, Kandyba V, Genuzio F, Menteş TO, Locatelli A, Gorbachev RV, Barinov A, Mucha-Kruczyński M. Moiré Superlattice Effects and Band Structure Evolution in Near-30-Degree Twisted Bilayer Graphene. ACS NANO 2022; 16:1954-1962. [PMID: 35073479 PMCID: PMC9007532 DOI: 10.1021/acsnano.1c06439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 06/01/2023]
Abstract
In stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moiré patterns. We show that moiré superlattice effects persist in twisted bilayer graphene (tBLG) with large twists and short moiré periods. Using angle-resolved photoemission, we observe dramatic changes in valence band topology across large regions of the Brillouin zone, including the vicinity of the saddle point at M and across 3 eV from the Dirac points. In this energy range, we resolve several moiré minibands and detect signatures of secondary Dirac points in the reconstructed dispersions. For twists θ > 21.8°, the low-energy minigaps are not due to cone anticrossing as is the case at smaller twist angles but rather due to moiré scattering of electrons in one graphene layer on the potential of the other which generates intervalley coupling. Our work demonstrates the robustness of the mechanisms which enable engineering of electronic dispersions of stacks of two-dimensional crystals by tuning the interface twist angles. It also shows that large-angle tBLG hosts electronic minigaps and van Hove singularities of different origin which, given recent progress in extreme doping of graphene, could be explored experimentally.
Collapse
Affiliation(s)
- Matthew
J. Hamer
- Department
of Physics, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
| | | | | | | | | | | | - Roman V. Gorbachev
- Department
of Physics, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
- Henry
Royce Institute, Oxford
Road, Manchester M13 9PL, United Kingdom
| | | | - Marcin Mucha-Kruczyński
- Department
of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre
for Nanoscience and Nanotechnology, University
of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| |
Collapse
|
98
|
Ochoa H, Fernandes RM. Degradation of Phonons in Disordered Moiré Superlattices. PHYSICAL REVIEW LETTERS 2022; 128:065901. [PMID: 35213205 DOI: 10.1103/physrevlett.128.065901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The elastic collective modes of a moiré superlattice arise not from vibrations of a rigid crystal but from the relative displacement between the constituent layers. Despite their similarity to acoustic phonons, these modes, called phasons, are not protected by any conservation law. Here, we show that disorder in the relative orientation between the layers and thermal fluctuations associated with their sliding motion degrade the propagation of sound in the moiré superlattice. Specifically, the phason modes become overdamped at low energies and acquire a finite gap, which displays a universal dependence on the twist-angle variance. Thus, twist-angle inhomogeneity is manifested not only in the noninteracting electronic structure of moiré systems, but also in their phononlike modes. More broadly, our results have important implications for the electronic properties of twisted moiré systems that are sensitive to the electron-phonon coupling.
Collapse
Affiliation(s)
- Héctor Ochoa
- Donostia International Physics Center, 20018 Donostia-San, Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Rafael M Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
99
|
Tomić P, Rickhaus P, Garcia-Ruiz A, Zheng G, Portolés E, Fal'ko V, Watanabe K, Taniguchi T, Ensslin K, Ihn T, de Vries FK. Scattering between Minivalleys in Twisted Double Bilayer Graphene. PHYSICAL REVIEW LETTERS 2022; 128:057702. [PMID: 35179933 DOI: 10.1103/physrevlett.128.057702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be likely. Finally, we discuss the relevance of our findings for different materials and twist angles.
Collapse
Affiliation(s)
- Petar Tomić
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Peter Rickhaus
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aitor Garcia-Ruiz
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Giulia Zheng
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Elías Portolés
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Vladimir Fal'ko
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
- Henry Royce Institute for Advanced Materials, M13 9PL Manchester, United Kingdom
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Klaus Ensslin
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Thomas Ihn
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Folkert K de Vries
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
100
|
Turner AM, Berg E, Stern A. Gapping Fragile Topological Bands by Interactions. PHYSICAL REVIEW LETTERS 2022; 128:056801. [PMID: 35179934 DOI: 10.1103/physrevlett.128.056801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
We consider the stability of fragile topological bands protected by space-time inversion symmetry in the presence of strong electron-electron interactions. At the single-particle level, the topological nature of the bands prevents the opening of a gap between them. In contrast, we show that when the fragile bands are half filled, interactions can open a gap in the many-body spectrum without breaking any symmetry or mixing degrees of freedom from remote bands. Furthermore, the resulting ground state is not topologically ordered. Thus, a fragile topological band structure does not present an obstruction to forming a "featureless insulator" ground state. Our construction relies on the formation of fermionic bound states of two electrons and one hole known as "trions." The trions form a band whose coupling to the electronic band enables the gap opening. This result may be relevant to the gapped state indicated by recent experiments in magic angle twisted bilayer graphene at charge neutrality.
Collapse
Affiliation(s)
- Ari M Turner
- Physics Department, Technion, Haifa 320003, Israel
| | - Erez Berg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|