51
|
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. PLANT PHYSIOLOGY 2013; 163:1518-38. [PMID: 24130194 PMCID: PMC3850190 DOI: 10.1104/pp.113.223453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.
Collapse
|
52
|
Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn F, Linka N. An engineered plant peroxisome and its application in biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:232-40. [PMID: 23849130 DOI: 10.1016/j.plantsci.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/06/2023]
Abstract
Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.
Collapse
Affiliation(s)
- Sarah K Kessel-Vigelius
- Heinrich-Heine University, Plant Biochemistry, Universitätsstrasse 1, Building 26.03.01, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
53
|
Lopes-Caitar VS, de Carvalho MCCG, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 2013; 14:577. [PMID: 23985061 PMCID: PMC3852298 DOI: 10.1186/1471-2164-14-577] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Hsp20 genes are associated with stress caused by HS and other abiotic factors, but have recently been found to be associated with the response to biotic stresses. These genes represent the most abundant class among the HSPs in plants, but little is known about this gene family in soybean. Because of their apparent multifunctionality, these proteins are promising targets for developing crop varieties that are better adapted to biotic and abiotic stresses. Thus, in the present study an in silico identification of GmHsp20 gene family members was performed, and the genes were characterized and subjected to in vivo expression analysis under biotic and abiotic stresses. RESULTS A search of the available soybean genome databases revealed 51 gene models as potential GmHsp20 candidates. The 51 GmHsp20 genes were distributed across a total of 15 subfamilies where a specific predicted secondary structure was identified. Based on in vivo analysis, only 47 soybean Hsp20 genes were responsive to heat shock stress. Among the GmHsp20 genes that were potentials HSR, five were also cold-induced, and another five, in addition to one GmAcd gene, were responsive to Meloidogyne javanica infection. Furthermore, one predicted GmHsp20 was shown to be responsive only to nematode infection; no expression change was detected under other stress conditions. Some of the biotic stress-responsive GmHsp20 genes exhibited a divergent expression pattern between resistant and susceptible soybean genotypes under M. javanica infection. The putative regulatory elements presenting some conservation level in the GmHsp20 promoters included HSE, W-box, CAAT box, and TA-rich elements. Some of these putative elements showed a unique occurrence pattern among genes responsive to nematode infection. CONCLUSIONS The evolution of Hsp20 family in soybean genome has most likely involved a total of 23 gene duplications. The obtained expression profiles revealed that the majority of the 51 GmHsp20 candidates are induced under HT, but other members of this family could also be involved in normal cellular functions, unrelated to HT. Some of the GmHsp20 genes might be specialized to respond to nematode stress, and the predicted promoter structure of these genes seems to have a particular conserved pattern related to their biological function.
Collapse
Affiliation(s)
- Valéria S Lopes-Caitar
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | | | | | - Marcia K Kuwahara
- Brazilian Agricultural Research Corporation’s – EMBRAPA Soybean, Londrina, Brazil
| | | | - Waldir P Dias
- Brazilian Agricultural Research Corporation’s – EMBRAPA Soybean, Londrina, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation’s – EMBRAPA Soybean, Londrina, Brazil
| | | |
Collapse
|
54
|
Hsieh EJ, Cheng MC, Lin TP. Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 82:223-37. [PMID: 23625358 DOI: 10.1007/s11103-013-0054-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/28/2013] [Indexed: 05/25/2023]
Abstract
AP2/ERF proteins play crucial roles in plant growth and development and in responses to biotic and abiotic stresses. ETHYLENE RESPONSE FACTOR 53 (AtERF53) belongs to group 1 in the ERF family and is induced in the early hours of dehydration and salt treatment. The functional study of AtERF53 is hampered because its protein expression in Arabidopsis is vulnerable to degradation in overexpressed transgenic lines. Taking advantage of the RING domain ligase1/RING domain ligase2 (rglg1rglg2) double mutant in which the AtERF53 can express stably, we investigate the physiological function of AtERF53. In this study, we demonstrate that expression of AtERF53 in wild-type Arabidopsis was responsive to heat and abscisic acid (ABA) treatment. From results of the cotransfection experiment, we concluded that AtERF53 has positive transactivation activity. Overexpression of AtERF53 in the rglg1rglg2 double mutant conferred better heat-stress tolerance and had resulted in higher endogenous ABA and proline levels compared to rglg1rglg2 double mutants. AtERF53 also has a function to regulate guard-cell movement because the stomatal aperture of AtERF53 overexpressed in rglg1rglg2 double mutant was smaller than that in the rglg1rglg2 double mutant under ABA treatment. In a global gene expression study, we found higher expressions of many stress-related genes, such as DREB1A, COR15A, COR15B, PLC, P5CS1, cpHSC70 s and proline and ABA metabolic-related genes. Furthermore, we identified several downstream target genes of AtERF53 by chromatin immunoprecipitation assay. In conclusion, the genetic, molecular and biochemical result might explain how AtERF53 serving as a transcription factor contributes to abiotic stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | |
Collapse
|
55
|
Heldens L, van Genesen ST, Hanssen LLP, Hageman J, Kampinga HH, Lubsen NH. Protein refolding in peroxisomes is dependent upon an HSF1-regulated function. Cell Stress Chaperones 2012; 17:603-13. [PMID: 22477622 PMCID: PMC3535170 DOI: 10.1007/s12192-012-0335-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022] Open
Abstract
Post-heat shock refolding of luciferase requires chaperones. Expression of a dominant negative HSF1 mutant (dnHSF1), which among other effects depletes cells of HSF1-regulated chaperones, blocked post-heat shock refolding of luciferase targeted to the cytoplasm, nucleus, or peroxisomes, while refolding of endoplasmic reticulum (ER)-targeted luciferase was inhibited by about 50 %. Luciferase refolding in the cytoplasm could be partially restored by expression of HSPA1A and fully by both HSPA1A and DNAJB1. For full refolding of ER luciferase, HSPA1A expression sufficed. Neither nuclear nor peroxisomal refolding was rescued by HSPA1A. A stimulatory effect of DNAJB1 on post-heat shock peroxisomal luciferase refolding was seen in control cells, while refolding in the cytoplasm or nucleus in control cells was inhibited by DNAJB1 expression in the absence of added HSPA1A. HSPB1 also improved refolding of peroxisomal luciferase in control cells, but not in dnHSF1 expressing cells. HSP90, HSPA5, HSPA6, and phosphomevalonate kinase (of which the synthesis is also downregulated by dnHSF1) had no effect on peroxisomal refolding in either control or chaperone-depleted cells. The chaperone requirement for post-heat shock refolding of peroxisomal luciferase in control cells is thus unusual in that it can be augmented by DNAJB1 or HSPB1 but not by HSPA1A; in dnHSF1 expressing cells, expression of none of the (co)-chaperones tested was effective, and an as yet to be identified, HSF1-regulated function is required.
Collapse
Affiliation(s)
- Lonneke Heldens
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lars L. P. Hanssen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jurre Hageman
- Section of Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, 9700 AD The Netherlands
| | - Harm H. Kampinga
- Section of Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, 9700 AD The Netherlands
| | - Nicolette H. Lubsen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
56
|
Chowdhary G, Kataya ARA, Lingner T, Reumann S. Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis. BMC PLANT BIOLOGY 2012; 12:142. [PMID: 22882975 PMCID: PMC3487989 DOI: 10.1186/1471-2229-12-142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/13/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND High-accuracy prediction tools are essential in the post-genomic era to define organellar proteomes in their full complexity. We recently applied a discriminative machine learning approach to predict plant proteins carrying peroxisome targeting signals (PTS) type 1 from genome sequences. For Arabidopsis thaliana 392 gene models were predicted to be peroxisome-targeted. The predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. RESULTS In this study, we experimentally validated the predictions in greater depth by focusing on the most challenging Arabidopsis proteins with unknown non-canonical PTS1 tripeptides and prediction scores close to the threshold. By in vivo subcellular targeting analysis, three novel PTS1 tripeptides (QRL>, SQM>, and SDL>) and two novel tripeptide residues (Q at position -3 and D at pos. -2) were identified. To understand why, among many Arabidopsis proteins carrying the same C-terminal tripeptides, these proteins were specifically predicted as peroxisomal, the residues upstream of the PTS1 tripeptide were computationally permuted and the changes in prediction scores were analyzed. The newly identified Arabidopsis proteins were found to contain four to five amino acid residues of high predicted targeting enhancing properties at position -4 to -12 in front of the non-canonical PTS1 tripeptide. The identity of the predicted targeting enhancing residues was unexpectedly diverse, comprising besides basic residues also proline, hydroxylated (Ser, Thr), hydrophobic (Ala, Val), and even acidic residues. CONCLUSIONS Our computational and experimental analyses demonstrate that the plant PTS1 tripeptide motif is more diverse than previously thought, including an increasing number of non-canonical sequences and allowed residues. Specific targeting enhancing elements can be predicted for particular sequences of interest and are far more diverse in amino acid composition and positioning than previously assumed. Machine learning methods become indispensable to predict which specific proteins, among numerous candidate proteins carrying the same non-canonical PTS1 tripeptide, contain sufficient enhancer elements in terms of number, positioning and total strength to cause peroxisome targeting.
Collapse
Affiliation(s)
- Gopal Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
- KIIT School of Biotechnology, Campus XI, KIIT University, Bhubaneswar, 751024, India
| | - Amr RA Kataya
- Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| | - Thomas Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077, Goettingen, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| |
Collapse
|
57
|
Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. PLANT CELL REPORTS 2012; 31:1473-84. [PMID: 22534681 DOI: 10.1007/s00299-012-1262-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/15/2012] [Accepted: 04/02/2012] [Indexed: 05/21/2023]
Abstract
UNLABELLED Various organisms produce HSPs in response to high temperature and other stresses. The function of heat shock proteins, including small heat shock protein (sHSP), in stress tolerance is not fully explored. To improve our understanding of sHSPs, we isolated ZmHSP16.9 from maize. Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. ZmHSP16.9 expressed in root, leaf and stem tissues under 40 °C treatment, and was up-regulated by heat stress and exogenous H₂O₂. Overexpression of ZmHSP16.9 in transgenic tobacco conferred tolerance to heat and oxidative stresses by increased seed germination rate, root length, and antioxidant enzyme activities compared with WT plants. These results support the positive role of ZmHSP16.9 in response to heat stress in plant. KEY MESSAGE The overexpression of ZmHSP16.9 enhanced tolerance to heat and oxidative stress in transgenic tobacco.
Collapse
Affiliation(s)
- Liping Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Fang X, Chen W, Xin Y, Zhang H, Yan C, Yu H, Liu H, Xiao W, Wang S, Zheng G, Liu H, Jin L, Ma H, Ruan S. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. J Proteomics 2012; 75:4074-90. [DOI: 10.1016/j.jprot.2012.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
59
|
Bondino HG, Valle EM, Ten Have A. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. PLANTA 2012; 235:1299-313. [PMID: 22210597 DOI: 10.1007/s00425-011-1575-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/07/2011] [Indexed: 05/03/2023]
Abstract
Small heat shock proteins (sHSPs) are chaperones that play an important role in stress tolerance. They consist of an alpha-crystallin domain (ACD) flanked by N- and C-terminal regions. However, not all proteins that contain an ACD, hereafter referred to as ACD proteins, are sHSPs because certain ACD proteins are known to have different functions. Furthermore, since not all ACD proteins have been identified yet, current classifications are incomplete. A total of 17 complete plant proteomes were screened for the presence of ACD proteins by HMMER profiling and the identified ACD protein sequences were classified by maximum likelihood phylogeny. Differences among and within groups were analysed, and levels of functional constraint were determined. There are 29 different classes of ACD proteins, eight of which contain classical sHSPs and five likely chaperones. The other classes contain proteins with uncharacterised or poorly characterised functions. N- and C-terminal sequences are conserved within the phylogenetic classes. Phylogenetics suggests a single duplication of the CI sHSP ancestor that occurred prior to the speciation of mono- and dicotyledons. This was followed by a number of more recent duplications that resulted in the presence of many paralogues. The results suggest that N- and C-terminal sequences of sHSPs play a role in class-specific functionality and that non-sHSP ACD proteins have conserved but unexplored functions, which are mainly determined by subsequences other than that of the ACD.
Collapse
Affiliation(s)
- Hernán Gabriel Bondino
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas-IIB-CONICET-UNMdP, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
60
|
Bondino HG, Valle EM, Ten Have A. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. PLANTA 2012; 235:1299-1313. [PMID: 22210597 DOI: 10.1007/s00425-011-1575-9/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/07/2011] [Indexed: 05/25/2023]
Abstract
Small heat shock proteins (sHSPs) are chaperones that play an important role in stress tolerance. They consist of an alpha-crystallin domain (ACD) flanked by N- and C-terminal regions. However, not all proteins that contain an ACD, hereafter referred to as ACD proteins, are sHSPs because certain ACD proteins are known to have different functions. Furthermore, since not all ACD proteins have been identified yet, current classifications are incomplete. A total of 17 complete plant proteomes were screened for the presence of ACD proteins by HMMER profiling and the identified ACD protein sequences were classified by maximum likelihood phylogeny. Differences among and within groups were analysed, and levels of functional constraint were determined. There are 29 different classes of ACD proteins, eight of which contain classical sHSPs and five likely chaperones. The other classes contain proteins with uncharacterised or poorly characterised functions. N- and C-terminal sequences are conserved within the phylogenetic classes. Phylogenetics suggests a single duplication of the CI sHSP ancestor that occurred prior to the speciation of mono- and dicotyledons. This was followed by a number of more recent duplications that resulted in the presence of many paralogues. The results suggest that N- and C-terminal sequences of sHSPs play a role in class-specific functionality and that non-sHSP ACD proteins have conserved but unexplored functions, which are mainly determined by subsequences other than that of the ACD.
Collapse
Affiliation(s)
- Hernán Gabriel Bondino
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas-IIB-CONICET-UNMdP, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
61
|
The relevance of the non-canonical PTS1 of peroxisomal catalase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1133-41. [PMID: 22546606 DOI: 10.1016/j.bbamcr.2012.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, but invariably is sorted to peroxisomes via a non-canonical sorting sequence. We analyzed the relevance of the non-canonical PTS1 of catalase of the yeast Hansenula polymorpha (-SKI). Using isothermal titration microcalorimetry, we show that the affinity of H. polymorpha Pex5 for a peptide containing -SKI at the C-terminus is 8-fold lower relative to a peptide that has a C-terminal -SKL. Fluorescence microscopy indicated that green fluorescent protein containing the -SKI tripeptide (GFP-SKI) has a prolonged residence time in the cytosol compared to GFP containing -SKL. Replacing the -SKI sequence of catalase into -SKL resulted in reduced levels of enzymatically active catalase in whole cell lysates together with the occurrence of catalase protein aggregates in the peroxisomal matrix. Moreover, the cultures showed a reduced growth yield in methanol-limited chemostats. Finally, we show that a mutant catalase variant that is unable to properly fold mislocalizes in protein aggregates in the cytosol. However, by replacing the PTS1 into -SKL the mutant variant accumulates in protein aggregates inside peroxisomes. Based on our findings we propose that the relatively weak PTS1 of catalase is important to allow proper folding of the enzyme prior to import into peroxisomes, thereby preventing the accumulation of catalase protein aggregates in the organelle matrix.
Collapse
|
62
|
Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EWT, Jiang L, Wu K, Huang S. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2012; 31:379-89. [PMID: 22009054 DOI: 10.1007/s00299-011-1173-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 05/23/2023]
Abstract
In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.
Collapse
Affiliation(s)
- Yuliang Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Verne S, Jaquish B, White R, Ritland C, Ritland K. Global transcriptome analysis of constitutive resistance to the white pine weevil in spruce. Genome Biol Evol 2011; 3:851-67. [PMID: 21852250 PMCID: PMC3296464 DOI: 10.1093/gbe/evr069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2011] [Indexed: 01/06/2023] Open
Abstract
Constitutive defense mechanisms are critical to the understanding of defense mechanisms in conifers because they constitute the first barrier to attacks by insect pests. In interior spruce, trees that are putatively resistant and susceptible to attacks by white pine weevil (Pissodes strobi) typically exhibit constitutive differences in traits such as resin duct size and number, bark thickness, and terpene content. To improve our knowledge of their genetic basis, we compared globally the constitutive expression levels of 17,825 genes between 20 putatively resistant and 20 putatively susceptible interior spruce trees from the British Columbia tree improvement program. We identified 54 upregulated and 137 downregulated genes in resistant phenotypes, relative to susceptible phenotypes, with a maximum fold change of 2.24 and 3.91, respectively. We found a puzzling increase of resistance by downregulated genes, as one would think that "procuring armaments" is the best defense. Also, although terpenes and phenolic compounds play an important role in conifer defense, we found few of these genes to be differentially expressed. We found 15 putative small heat-shock proteins (sHSP) and several other stress-related proteins to be downregulated in resistant trees. Downregulated putative sHSP belong to several sHSP classes and represented 58% of all tested putative sHSP. These proteins are well known to be involved in plant response to various kinds of abiotic stress; however, their role in constitutive resistance is not yet understood. The lack of correspondence between transcriptome profile clusters and phenotype classifications suggests that weevil resistance in spruce is a complex trait.
Collapse
Affiliation(s)
- Sébastien Verne
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barry Jaquish
- Kalamalka Forestry Centre, British Columbia Ministry of Forests, Lands and Natural Resource Operations, Vernon, British Columbia, Canada
| | - Rick White
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kermit Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
65
|
Zhang X, Hu Y, Jiang C, Zhang W, Li Z, Ming F. Isolation of the Chinese rose sHSP gene promoter and its differential regulation analysis in transgenic Arabidopsis plants. Mol Biol Rep 2011; 39:1145-51. [PMID: 21573789 DOI: 10.1007/s11033-011-0843-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
Abstract
In our previous study, we identified a Rosa chinensis heat shock protein (HSP) gene, RcHSP17.8, which was induced by abiotic stresses, such as high temperature and osmotic stress. To analyze the expression of RcHSP17.8 and the function of cis-acting elements in the promoter region, a 1,910 bp fragment of the upstream sequence of the RcHSP17.8 translation initiation codon and five promoter deletion fragments were fused to a β-glucuronidase (GUS) report gene. These plasmids were transferred to Arabidopsis thaliana via Agrobacterium. GUS staining was seen in all the organs, especially in the vascular tissues after heat treatment. In transgenic Arabidopsis, GUS expression driven by the full length promoter was significantly higher under heat shock, but no GUS activity was detected under other abiotic stresses. Deletion analysis indicated that the region from -178 to -771 was essential for the promoter's response to high temperature.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, 220 Handan Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
66
|
Reumann S. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics. Proteomics 2011; 11:1764-79. [PMID: 21472859 DOI: 10.1002/pmic.201000681] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 12/23/2022]
Abstract
In the past few years, proteome analysis of Arabidopsis peroxisomes has been established by the complementary efforts of four research groups and has emerged as the major unbiased approach to identify new peroxisomal proteins on a large scale. Collectively, more than 100 new candidate proteins from plant peroxisomes have been identified, including long-awaited low-abundance proteins. More than 50 proteins have been validated as peroxisome targeted, nearly doubling the number of established plant peroxisomal proteins. Sequence homologies of the new proteins predict unexpected enzyme activities, novel metabolic pathways and unknown non-metabolic peroxisome functions. Despite this remarkable success, proteome analyses of plant peroxisomes remain highly material intensive and require major preparative efforts. Characterization of the membrane proteome or post-translational protein modifications poses major technical challenges. New strategies, including quantitative mass spectrometry methods, need to be applied to allow further identifications of plant peroxisomal proteins, such as of stress-inducible proteins. In the long process of defining the complete proteome of plant peroxisomes, the prediction of peroxisome-targeted proteins from plant genome sequences emerges as an essential complementary approach to identify additional peroxisomal proteins that are, for instance, specific to peroxisome variants from minor tissues and organs or to abiotically stressed model and crop plants.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
67
|
Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen XY, Siemsen T, Morgenstern B, Meinicke P, Reumann S. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. THE PLANT CELL 2011; 23:1556-72. [PMID: 21487095 PMCID: PMC3101550 DOI: 10.1105/tpc.111.084095] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/04/2011] [Accepted: 03/24/2011] [Indexed: 05/18/2023]
Abstract
In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.
Collapse
Affiliation(s)
- Thomas Lingner
- Georg-August University of Goettingen, Institute for Microbiology, Department of Bioinformatics, D-37077 Goettingen, Germany
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Amr R. Kataya
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Gerardo E. Antonicelli
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Georg-August-University of Goettingen, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Aline Benichou
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Kjersti Nilssen
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Xiong-Yan Chen
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Tanja Siemsen
- Georg-August-University of Goettingen, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Burkhard Morgenstern
- Georg-August University of Goettingen, Institute for Microbiology, Department of Bioinformatics, D-37077 Goettingen, Germany
| | - Peter Meinicke
- Georg-August University of Goettingen, Institute for Microbiology, Department of Bioinformatics, D-37077 Goettingen, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Georg-August-University of Goettingen, Department of Plant Biochemistry, D-37077 Goettingen, Germany
- Address correspondence to
| |
Collapse
|
68
|
Kaur N, Hu J. Defining the plant peroxisomal proteome: from Arabidopsis to rice. FRONTIERS IN PLANT SCIENCE 2011; 2:103. [PMID: 22645559 PMCID: PMC3355810 DOI: 10.3389/fpls.2011.00103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/08/2011] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Plant Biology Department, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Jianping Hu, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
69
|
Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage, Chiifu and Kenshin. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0004-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
70
|
Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S. The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1441-53. [PMID: 20150517 DOI: 10.1093/jxb/erq014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf peroxisomes are fragile, low-abundance plant cell organelles that are difficult to isolate from one of the few plant species whose nuclear genome has been sequenced. Leaf peroxisomes were enriched at high purity from spinach (Spinacia oleracea) and approximately 100 protein spots identified from 2-dimensional gels by a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and de novo sequencing. In addition to the predominant enzymes involved in photorespiration and detoxification, several minor enzymes were detected, underscoring the high sensitivity of the protein identification. The tryptic peptides of three unknown proteins shared high sequence similarity with Arabidopsis proteins that carry putative peroxisomal targeting signals type 1 or 2 (PTS1/2). The apparent Arabidopsis orthologues are a short-chain alcohol dehydrogenase (SDRa/IBR1, At4g05530, SRL>) and two enoyl-CoA hydratases/isomerases (ECHIa, At4g16210, SKL>; NS/ECHId, At1g60550, RLx(5)HL). The peroxisomal localization of the three proteins was confirmed in vivo by tagging with enhanced yellow fluorescent protein (EYFP), and the targeting signals were identified. The single Arabidopsis isoform of naphthoate synthase (NS) is orthologous to MenB from cyanobacteria, which catalyses an essential reaction in phylloquinone biosynthesis, a pathway previously assumed to be entirely compartmentalized in plastids in higher plants. In an extension of a previous study, the present in vivo targeting data furthermore demonstrate that the enzyme upstream of NS, chloroplastic acyl-CoA activating enzyme isoform 14 (AAE14, SSL>), is dually targeted to both plastids and peroxisomes. This proteomic study, extended by in vivo subcellular localization analyses, indicates a novel function for plant peroxisomes in phylloquinone biosynthesis.
Collapse
Affiliation(s)
- Lavanya Babujee
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
71
|
Kataya ARA, Reumann S. Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. PLANT SIGNALING & BEHAVIOR 2010; 5:171-5. [PMID: 20038819 PMCID: PMC2884127 DOI: 10.4161/psb.5.2.10527] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 05/20/2023]
Abstract
We recently established a proteome methodology for Arabidopsis leaf peroxisomes and identified more than 90 putative novel proteins of the organelle. These proteins included glutathione reductase isoform 1 (GR1), a major enzyme of the antioxidative defense system that was previously reported to be cytosolic. In this follow-up study, we validated the proteome data by analyzing the in vivo subcellular targeting of GR1 and the function of its C-terminal tripeptide, TNL>, as a putative novel peroxisome targeting signal type 1 (PTS1). The full-length protein was targeted to peroxisomes in onion epidermal cells when fused N-terminally with the reporter protein. The efficiency of peroxisome targeting, however, was weak upon expression from a strong promoter, consistent with the idea that the enzyme is dually targeted to peroxisomes and the cytosol in vivo. The reporter protein that was extended C-terminally by 10 amino acid residues of GR1 was directed to peroxisomes, characterizing TNL> as a novel PTS1. The data thus identify plant peroxisomal GR at the molecular level in the first plant species and complete the plant peroxisomal ascorbate-glutathione cycle. Moreover, GR1 is the first plant protein that is dually targeted to peroxisomes and the cytosol. The evolutionary origin and regulatory mechanisms of dual targeting are discussed.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | |
Collapse
|
72
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
73
|
Palma JM, Corpas FJ, del Río LA. Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 2009; 9:2301-12. [PMID: 19343723 DOI: 10.1002/pmic.200700732] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisomes are cell organelles bounded by a single membrane with a basically oxidative metabolism. Peroxisomes house catalase and H(2)O(2)-producing flavin-oxidases as the main protein constituents. However, since their discovery in early fifties, a number of new enzymes and metabolic pathways have been reported to be also confined to these organelles. Thus, the presence of exo- and endo-peptidases, superoxide dismutases, the enzymes of the plant ascorbate-glutathione cycle plus ascorbate and glutathione, several NADP-dehydrogenases, and also L-arginine-dependent nitric oxide synthase activity has evidenced the relevant role of these organelles in cell physiology. In recent years, the study of new functions of peroxisomes has become a field of intensive research in cell biology, and these organelles have been proposed to be a source of important signal molecules for different transduction pathways. In plants, peroxisomes participate in seed germination, leaf senescence, fruit maturation, response to abiotic and biotic stress, photomorphogenesis, biosynthesis of the plant hormones jasmonic acid and auxin, and in cell signaling by reactive oxygen and nitrogen species (ROS and RNS, respectively). In order to decipher the nature and specific role of the peroxisomal proteins in these processes, several approaches including in vivo and in vitro import assays and generation of mutants have been used. In the last decade, the development of genomics and the report of the first plant genomes provided plant biologists a powerful tool to assign to peroxisomes those proteins which harbored any of the two peroxisomal targeting signals (PTS, either PTS1 or PTS2) described so far. Unfortunately, those molecular approaches could not give any response to those proteins previously localized in plant peroxisomes by classical biochemical and cell biology methods that did not contain any PTS. However, more recently, proteomic studies of highly purified organelles have provided evidence of the presence in peroxisomes of new proteins not previously reported. Thus, the contribution of proteomic approaches to the biology of peroxisomes is essential, not only for elucidation of the mechanisms involved in the import of the PTS1- and PTS2-independent proteins, but also to the understanding of the role of these organelles in the cell physiology of plant growth and development.
Collapse
Affiliation(s)
- José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | |
Collapse
|
74
|
Sarkar NK, Kim YK, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 2009; 10:393. [PMID: 19703271 PMCID: PMC2746236 DOI: 10.1186/1471-2164-10-393] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/24/2009] [Indexed: 12/29/2022] Open
Abstract
Background Heat shock proteins (Hsps) constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20), Hsp20 or small Hsps (sHsps) are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD) at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed that these genes are differentially expressed under stress and at different stages in the life cycle of rice plant.
Collapse
Affiliation(s)
- Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, N Delhi 110021, India.
| | | | | |
Collapse
|
75
|
Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2009; 32:1046-59. [PMID: 19422616 DOI: 10.1111/j.1365-3040.2009.01987.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis. Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. RcHSP17.8 expression in R. chinensis was induced by heat, cold, salt, drought, osmotic and oxidative stresses. Recombinant RcHSP17.8 was overexpressed in Escherichia coli and yeast to study its possible function under stress conditions. The recombinant E. coli and yeast cells that accumulated RcHSP17.8 showed improved viability under thermal, salt and oxidative stress conditions compared with control cultures. We also produced transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8. These plants exhibited increased tolerance to heat, salt, osmotic and drought stresses. These results suggest that R. chinensis cytosolic class I sHSP (RcHSP17.8) has the ability to confer stress resistance not only to E. coli and yeast but also to plants grown under a wide variety of unfavorable environmental conditions.
Collapse
Affiliation(s)
- Changhua Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Ouyang Y, Chen J, Xie W, Wang L, Zhang Q. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. PLANT MOLECULAR BIOLOGY 2009; 70:341-57. [PMID: 19277876 DOI: 10.1007/s11103-009-9477-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/23/2009] [Indexed: 05/08/2023]
Abstract
The Hsp20 genes represent the most abundant small heat shock proteins (sHSPs) in plants. Hsp20 gene family has been shown to be involved in preventing heat shock and promoting resistance to environmental stress factors, but very little is known about this gene family in rice. Here, we report the identification and characterization of 39 OsHsp20 genes in rice, describing the gene structure, gene expression, genome localization, and phylogenetic relationship of each member. We have used RT-PCR to perform a characterization of the normal and heat shock-induced expression of selective OsHsp20 genes. A genome-wide microarray based gene expression analysis involving 25 stages of vegetative and reproductive development in three rice cultivars has revealed that 36 OsHsp20 genes were expressed in at least one of the experimental stages studied. Among these, transcripts of OsHsp20 were accumulated differentially during vegetative and reproductive developmental stages and preferentially down-regulated in Shanyou 63. In addition, OsHsp20 genes were identified as showing prominent heterosis in family-level expression. Our results suggest that the expression patterns of the OsHsp20 genes are diversified not only in developmental stages but also in variety level.
Collapse
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China.
| | | | | | | | | |
Collapse
|
77
|
Aksam EB, de Vries B, van der Klei IJ, Kiel JAKW. Preserving organelle vitality: peroxisomal quality control mechanisms in yeast. FEMS Yeast Res 2009; 9:808-20. [PMID: 19538506 DOI: 10.1111/j.1567-1364.2009.00534.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin-proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the translocon (RADAR pathway). Even upon maturation of peroxisomes, matrix enzymes and peroxisomal membranes remain subjected to quality control. As a result of their oxidative metabolism, peroxisomes are producers of reactive oxygen species (ROS), which may damage proteins and lipids. To counteract ROS-induced damage, yeast peroxisomes contain two important antioxidant enzymes: catalase and an organelle-specific peroxiredoxin. Additionally, a Lon-type protease has recently been identified in the peroxisomal matrix, which is capable of degrading nonfunctional proteins. Finally, cellular housekeeping processes keep track of the functioning of peroxisomes so that dysfunctional organelles can be quickly removed via selective autophagy (pexophagy). This review provides an overview of the major processes involved in quality control of yeast peroxisomes.
Collapse
Affiliation(s)
- Eda Bener Aksam
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
78
|
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber APM, Olsen LJ, Hu J. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. PLANT PHYSIOLOGY 2009; 150:125-43. [PMID: 19329564 PMCID: PMC2675712 DOI: 10.1104/pp.109.137703] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/23/2009] [Indexed: 05/18/2023]
Abstract
Peroxisomes are metabolically diverse organelles with essential roles in plant development. The major protein constituents of plant peroxisomes are well characterized, whereas only a few low-abundance and regulatory proteins have been reported to date. We performed an in-depth proteome analysis of Arabidopsis (Arabidopsis thaliana) leaf peroxisomes using one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry. We detected 65 established plant peroxisomal proteins, 30 proteins whose association with Arabidopsis peroxisomes had been previously demonstrated only by proteomic data, and 55 putative novel proteins of peroxisomes. We subsequently tested the subcellular targeting of yellow fluorescent protein fusions for selected proteins and confirmed the peroxisomal localization for 12 proteins containing predicted peroxisome targeting signals type 1 or 2 (PTS1/2), three proteins carrying PTS-related peptides, and four proteins that lack conventional targeting signals. We thereby established the tripeptides SLM> and SKV> (where > indicates the stop codon) as new PTS1s and the nonapeptide RVx(5)HF as a putative new PTS2. The 19 peroxisomal proteins conclusively identified from this study potentially carry out novel metabolic and regulatory functions of peroxisomes. Thus, this study represents an important step toward defining the complete plant peroxisomal proteome.
Collapse
Affiliation(s)
- Sigrun Reumann
- Michigan State University-Department of Energy Plant Research Laboratory , Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. PLANT PHYSIOLOGY 2009; 150:229-43. [PMID: 19279198 PMCID: PMC2675729 DOI: 10.1104/pp.108.131524] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/08/2009] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 mum CdCl(2) affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO.
Collapse
Affiliation(s)
- María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
80
|
Tripp J, Mishra SK, Scharf KD. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. PLANT, CELL & ENVIRONMENT 2009; 32:123-33. [PMID: 19154229 DOI: 10.1111/j.1365-3040.2008.01902.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The heat stress response is universal to all organisms. Upon elevated temperatures, heat stress transcription factors (Hsfs) are activated to up-regulate the expression of molecular chaperones to protect cells against heat damages. In higher plants, the phenomenon is unusually complex both at the level of Hsfs and heat stress proteins (Hsps). Over-expression of both Hsfs and Hsps and the use of RNA interference for gene knock-down in a transient system in tomato protoplasts allowed us to dissect the in vivo chaperone functions of essential components of thermotolerance, such as the cytoplasmic sHsp, Hsp70 and Hsp100 chaperone families, and the regulation of their expression. The results point to specific functions of the different components in protection from protein denaturation and in refolding of denatured proteins.
Collapse
Affiliation(s)
- Joanna Tripp
- J. W. Goethe-University, Molecular Cell Biology of Plants, Biocenter N200, 3OG, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
81
|
Reactive Oxygen Species and Signaling in Cadmium Toxicity. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
82
|
Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 2008. [PMID: 18759000 DOI: 10.1007/s12192‐008‐0023‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not possess the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity.
Collapse
|
83
|
Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. PLANT & CELL PHYSIOLOGY 2008; 49:526-39. [PMID: 18281324 DOI: 10.1093/pcp/pcn027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To identify previously unknown peroxisomal proteins, we established an optimized method for isolating highly purified peroxisomes from etiolated soybean cotyledons using Percoll density gradient centrifugation followed by iodixanol density gradient centrifugation. Proteins in highly purified peroxisomes were separated by two-dimensional PAGE. We performed peptide mass fingerprinting of proteins separated in the gel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry and used the peptide mass fingerprints to search a non-redundant soybean expressed sequence tag database. We succeeded in assigning 92 proteins to 70 sequences in the database. Among them, proteins encoded by 30 sequences were judged to be located in peroxisomes. These included enzymes for fatty acid beta-oxidation, the glyoxylate cycle, photorespiratory glycolate metabolism, stress response and metabolite transport. We also show experimental evidence that plant peroxisomes contain a short-chain dehydrogenase/reductase family protein, enoyl-CoA hydratase/isomerase family protein, 3-hydroxyacyl-CoA dehydrogenase-like protein and a voltage-dependent anion-selective channel protein.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
84
|
Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 2008; 13:183-97. [PMID: 18369739 PMCID: PMC2673886 DOI: 10.1007/s12192-008-0032-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022] Open
Abstract
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants.
Collapse
Affiliation(s)
- Masood Siddique
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Biochemistry II, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Sascha Gernhard
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Biochemistry II, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Pascal von Koskull-Döring
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1007 E Lowell Street, Tucson, AZ 85721 USA
| | - Klaus-Dieter Scharf
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
85
|
Waters ER, Aevermann BD, Sanders-Reed Z. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 2008; 13:127-42. [PMID: 18759000 PMCID: PMC2673885 DOI: 10.1007/s12192-008-0023-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/23/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022] Open
Abstract
The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not possess the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | | | |
Collapse
|
86
|
Ma C, Reumann S. Improved prediction of peroxisomal PTS1 proteins from genome sequences based on experimental subcellular targeting analyses as exemplified for protein kinases from Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3767-79. [PMID: 18836189 DOI: 10.1093/jxb/ern221] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Due to current experimental limitations in peroxisome proteome research, the identification of low-abundance regulatory proteins such as protein kinases largely relies on computational protein prediction. To test and improve the identification of regulatory proteins by such a prediction-based approach, the Arabidopsis genome was screened for genes that encode protein kinases with predicted type 1 or type 2 peroxisome targeting signals (PTS1 or PTS2). Upon transient expression in onion epidermal cells, the predicted PTS1 domains of four of the seven protein kinases re-directed the reporter protein, enhanced yellow green fluorescent (EYFP), to peroxisomes and were thus verified as functional PTS1 domains. The full-length fusions, however, remained cytosolic, suggesting that PTS1 exposure is induced by specific signals. To investigate why peroxisome targeting of three other kinases was incorrectly predicted and ultimately to improve the prediction algorithms, selected amino acid residues located upstream of PTS1 tripeptides were mutated and the effect on subcellular targeting of the reporter protein was analysed. Acidic residues in close proximity to major PTS1 tripeptides were demonstrated to inhibit protein targeting to plant peroxisomes even in the case of the prototypical PTS1 tripeptide SKL>, whereas basic residues function as essential auxiliary targeting elements in front of weak PTS1 tripeptides such as SHL>. The functional characterization of these inhibitory and essential enhancer-targeting elements allows their consideration in predictive algorithms to improve the prediction accuracy of PTS1 proteins from genome sequences.
Collapse
Affiliation(s)
- Changle Ma
- Department of Plant Biochemistry, Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | | |
Collapse
|
87
|
Hageman J, Vos MJ, van Waarde MAWH, Kampinga HH. Comparison of Intra-organellar Chaperone Capacity for Dealing with Stress-induced Protein Unfolding. J Biol Chem 2007; 282:34334-45. [PMID: 17875648 DOI: 10.1074/jbc.m703876200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.
Collapse
Affiliation(s)
- Jurre Hageman
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
88
|
Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. THE PLANT CELL 2007; 19:3170-93. [PMID: 17951448 PMCID: PMC2174697 DOI: 10.1105/tpc.107.050989] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 09/12/2007] [Accepted: 09/24/2007] [Indexed: 05/18/2023]
Abstract
We have established a protocol for the isolation of highly purified peroxisomes from mature Arabidopsis thaliana leaves and analyzed the proteome by complementary gel-based and gel-free approaches. Seventy-eight nonredundant proteins were identified, of which 42 novel proteins had previously not been associated with plant peroxisomes. Seventeen novel proteins carried predicted peroxisomal targeting signals (PTS) type 1 or type 2; 11 proteins contained PTS-related peptides. Peroxisome targeting was supported for many novel proteins by in silico analyses and confirmed for 11 representative full-length fusion proteins by fluorescence microscopy. The targeting function of predicted and unpredicted signals was investigated and SSL>, SSI>, and ASL> were established as novel functional PTS1 peptides. In contrast with the generally accepted confinement of PTS2 peptides to the N-terminal domain, the bifunctional transthyretin-like protein was demonstrated to carry internally a functional PTS2. The novel enzymes include numerous enoyl-CoA hydratases, short-chain dehydrogenases, and several enzymes involved in NADP and glutathione metabolism. Seven proteins, including beta-glucosidases and myrosinases, support the currently emerging evidence for an important role of leaf peroxisomes in defense against pathogens and herbivores. The data provide new insights into the biology of plant peroxisomes and improve the prediction accuracy of peroxisome-targeted proteins from genome sequences.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry, Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, D-37077 Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mi J, Kirchner E, Cristobal S. Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics 2007; 7:1916-28. [PMID: 17474143 DOI: 10.1002/pmic.200600638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The peroxisome plays a central role in the catabolic and anabolic pathways that contribute to the lipid homeostasis. Besides this main function, this organelle has gained functional diversity. Although several approaches have been used for peroxisomal proteome analysis, a quantitative protein expression analysis of peroxisomes from different tissues has not been elucidated yet. Here, we applied a 2-DE-based method on mouse liver and kidney peroxisomal enriched fractions to study the tissue-dependent protein expression. Ninety-one spots were identified from the 2-DE maps from pH 3.0-10.0 and 51 spots from the basic range corresponding to 31 peroxisomal proteins, 10 putative peroxisomal, 6 cytosolic, 17 mitochondrial and 1 protein from endoplasmic reticulum. Based on the identification and on the equivalent quality of both tissue preparations, the differences emerging from the comparison could be quantified. In liver, proteins involved in pathways such as alpha- and beta-oxidation, isoprenoid biosynthesis, amino acid metabolism and purine and pyrimidine metabolism were more abundant whereas in kidney, proteins from the straight-chain fatty acid beta-oxidation were highly expressed. These results indicate that tissue-specific functional classes of peroxisomal proteins could be relevant to study peroxisomal cellular responses or pathologies. Finally, a web-based peroxisomal proteomic database was built.
Collapse
Affiliation(s)
- Jia Mi
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
90
|
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:310-6. [PMID: 17482504 DOI: 10.1016/j.pbi.2007.04.011] [Citation(s) in RCA: 697] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Plants have evolved a variety of responses to elevated temperatures that minimize damage and ensure protection of cellular homeostasis. New information about the structure and function of heat stress proteins and molecular chaperones has become available. At the same time, transcriptome analysis of Arabidopsis has revealed the involvement of factors other than classical heat stress responsive genes in thermotolerance. Recent reports suggest that both plant hormones and reactive oxygen species also contribute to heat stress signaling. Additionally, an increasing number of mutants that have altered thermotolerance have extended our understanding of the complexity of the heat stress response in plants.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Molecular Cell Biology, JW Goethe University, Biocenter, Max-von-Laue-Strasse, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. THE PLANT CELL 2007; 19:333-50. [PMID: 17220199 PMCID: PMC1820951 DOI: 10.1105/tpc.106.045831] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 11/24/2006] [Accepted: 12/05/2006] [Indexed: 05/13/2023]
Abstract
PEROXIN11 (PEX11) is a peroxisomal membrane protein in fungi and mammals and was proposed to play a major role in peroxisome proliferation. To begin understanding how peroxisomes proliferate in plants and how changes in peroxisome abundance affect plant development, we characterized the extended Arabidopsis thaliana PEX11 protein family, consisting of the three phylogenetically distinct subfamilies PEX11a, PEX11b, and PEX11c to PEX11e. All five Arabidopsis PEX11 proteins target to peroxisomes, as demonstrated for endogenous and cyan fluorescent protein fusion proteins by fluorescence microscopy and immunobiochemical analysis using highly purified leaf peroxisomes. PEX11a and PEX11c to PEX11e behave as integral proteins of the peroxisome membrane. Overexpression of At PEX11 genes in Arabidopsis induced peroxisome proliferation, whereas reduction in gene expression decreased peroxisome abundance. PEX11c and PEX11e, but not PEX11a, PEX11b, and PEX11d, complemented to significant degrees the growth phenotype of the Saccharomyces cerevisiae pex11 null mutant on oleic acid. Heterologous expression of PEX11e in the yeast mutant increased the number and reduced the size of the peroxisomes. We conclude that all five Arabidopsis PEX11 proteins promote peroxisome proliferation and that individual family members play specific roles in distinct peroxisomal subtypes and environmental conditions and possibly in different steps of peroxisome proliferation.
Collapse
Affiliation(s)
- Travis Orth
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Reumann S, Weber APM. Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled--others remain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1496-510. [PMID: 17046077 DOI: 10.1016/j.bbamcr.2006.09.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022]
Abstract
The most prominent role of peroxisomes in photosynthetic plant tissues is their participation in photorespiration, a process also known as the oxidative C2 cycle or the oxidative photosynthetic carbon cycle. Photorespiration is an essential process in land plants, as evident from the conditionally lethal phenotype of mutants deficient in enzymes or transport proteins involved in this pathway. The oxidative C2 cycle is a salvage pathway for phosphoglycolate, the product of the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to the Calvin cycle intermediate phosphoglycerate. The pathway is highly compartmentalized and involves reactions in chloroplasts, peroxisomes, and mitochondria. The H2O2-producing enzyme glycolate oxidase, catalase, and several aminotransferases of the photorespiratory cycle are located in peroxisomes, with catalase representing the major constituent of the peroxisomal matrix in photosynthetic tissues. Although photorespiration is of major importance for photosynthesis, the identification of the enzymes involved in this process has only recently been completed. Only little is known about the metabolite transporters for the exchange of photorespiratory intermediates between peroxisomes and the other organelles involved, and about the regulation of the photorespiratory pathway. This review highlights recent developments in understanding photorespiration and identifies remaining gaps in our knowledge of this important metabolic pathway.
Collapse
Affiliation(s)
- Sigrun Reumann
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University of Goettingen, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany.
| | | |
Collapse
|
93
|
Léon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1552-64. [PMID: 17011644 DOI: 10.1016/j.bbamcr.2006.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
94
|
Jahn O, Hesse D, Reinelt M, Kratzin HD. Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry. Anal Bioanal Chem 2006; 386:92-103. [PMID: 16821028 DOI: 10.1007/s00216-006-0592-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/30/2006] [Accepted: 06/02/2006] [Indexed: 01/30/2023]
Abstract
The combination of gel-based two-dimensional protein separations with protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the workhorse for the large-scale analyses of proteomes. Such high-throughput proteomic approaches require automation of all post-separation steps and the in-gel digest of proteins especially is often the bottleneck in the protein identification workflow. With the objective of reaching the same high performance of manual low-throughput in-gel digest procedures, we have developed a novel stack-type digestion device and implemented it into a commercially available robotic liquid handling system. This modified system is capable of performing in-gel digest, extraction of proteolytic peptides, and subsequent sample preparation for MALDI-MS without any manual intervention, but with a performance at least identical to manual procedures as indicated on the basis of the sequence coverage obtained by peptide mass fingerprinting. For further refinement of the automated protein identification workflow, we have also developed a motor-operated matrix application device to reproducibly obtain homogenous matrix preparation of high quality. This matrix preparation was found to be suitable for the automated acquisition of both peptide mass fingerprint and fragment ion spectra from the same sample spot, a prerequisite for high confidence protein identifications on the basis of peptide mass and sequence information. Due to the implementation of the stack-type digestion device and the motor-operated matrix application device, the entire platform works in a reliable, cost-effective, and sensitive manner, yielding high confidence protein identifications even for samples in the concentration range of as low as 100 fmol protein per gel plug.
Collapse
Affiliation(s)
- Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|