51
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
52
|
A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.). PLoS Genet 2016; 12:e1006152. [PMID: 27367609 PMCID: PMC4930220 DOI: 10.1371/journal.pgen.1006152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
The sessile plants have evolved diverse intrinsic mechanisms to control their proper development under variable environments. In contrast to plastic vegetative development, reproductive traits like floral identity often show phenotypic robustness against environmental variations. However, it remains obscure about the molecular basis of this phenotypic robustness. In this study, we found that eg1 (extra glume1) mutants of rice (Oryza savita L.) showed floral phenotypic variations in different growth locations resulting in a breakdown of floral identity robustness. Physiological and biochemical analyses showed that EG1 encodes a predominantly mitochondria-localized functional lipase and functions in a high temperature-dependent manner. Furthermore, we found that numerous environmentally responsive genes including many floral identity genes are transcriptionally repressed in eg1 mutants and OsMADS1, OsMADS6 and OsG1 genetically act downstream of EG1 to maintain floral robustness. Collectively, our results demonstrate that EG1 promotes floral robustness against temperature fluctuation by safeguarding the expression of floral identify genes through a high temperature-dependent mitochondrial lipid pathway and uncovers a novel mechanistic insight into floral developmental control.
Collapse
|
53
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
54
|
Widemann E, Smirnova E, Aubert Y, Miesch L, Heitz T. Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana. PLANTS 2016; 5:plants5010004. [PMID: 27135224 PMCID: PMC4844418 DOI: 10.3390/plants5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022]
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an intermediate situation where young flower buds show detectable jasmonate oxidation (probably originating from stamen metabolism) which becomes exacerbated upon flower opening. Our data illustrate that in spite conserved enzymatic routes, the jasmonate metabolic grid shows considerable flexibility and dynamically equilibrates into specific blends in different physiological situations.
Collapse
Affiliation(s)
- Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Yann Aubert
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Unité Mixte de Recherche 7177, Université de Strasbourg, 67008 Strasbourg Cedex, France.
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
55
|
Lin YT, Chen LJ, Herrfurth C, Feussner I, Li HM. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. THE PLANT CELL 2016; 28:219-32. [PMID: 26721860 PMCID: PMC4746690 DOI: 10.1105/tpc.15.01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cornelia Herrfurth
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
56
|
Abstract
Jasmonates (JAs) constitute a major class of plant regulators that coordinate responses to biotic and abiotic threats and important aspects of plant development. The core biosynthetic pathway converts linolenic acid released from plastid membrane lipids to the cyclopentenone cis-oxo-phytodienoic acid (OPDA) that is further reduced and shortened to jasmonic acid (JA) in peroxisomes. Abundant pools of OPDA esterified to plastid lipids also occur upon stress, mainly in the Arabidopsis genus. Long thought to be the bioactive hormone, JA only gains its pleiotropic hormonal properties upon conjugation into jasmonoyl-isoleucine (JA-Ile). The signaling pathway triggered when JA-Ile promotes the assembly of COI1-JAZ (Coronatine Insensitive 1-JAsmonate Zim domain) co-receptor complexes has been the focus of most recent research in the jasmonate field. In parallel, OPDA and several other JA derivatives are recognized for their separate activities and contribute to the diversity of jasmonate action in plant physiology. We summarize in this chapter the properties of different bioactive JAs and review elements known for their perception and signal transduction. Much progress has also been gained on the enzymatic processes governing JA-Ile removal. Two JA-Ile catabolic pathways, operating through ω-oxidation (cytochromes P450) or conjugate cleavage (amido hydrolases) shape signal dynamics to allow optimal control on defense. JA-Ile turnover not only participates in signal attenuation, but also impact the homeostasis of the entire JA metabolic pathway.
Collapse
|
57
|
Savchenko TV, Zastrijnaja OM, Klimov VV. Oxylipins and plant abiotic stress resistance. BIOCHEMISTRY (MOSCOW) 2015; 79:362-75. [PMID: 24910209 DOI: 10.1134/s0006297914040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.
Collapse
Affiliation(s)
- T V Savchenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
58
|
Westbrook JW, Walker AR, Neves LG, Munoz P, Resende MFR, Neale DB, Wegrzyn JL, Huber DA, Kirst M, Davis JM, Peter GF. Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations. THE NEW PHYTOLOGIST 2015; 205:627-641. [PMID: 25266813 DOI: 10.1111/nph.13074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P. taeda × Pinus elliottii) × P. elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2) ˜ 0.12-0.21) and positively genetically correlated with xylem growth (rg ˜ 0.32-0.72) and oleoresin flow (rg ˜ 0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.
Collapse
Affiliation(s)
- Jared W Westbrook
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA; Plant Molecular and Cellular Biology graduate program, University of Florida, Gainesville, PO Box 110410, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Christeller JT, Galis I. α-linolenic acid concentration and not wounding per se is the key regulator of octadecanoid (oxylipin) pathway activity in rice (Oryza sativa L.) leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:117-25. [PMID: 25129550 DOI: 10.1016/j.plaphy.2014.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/17/2014] [Indexed: 05/25/2023]
Abstract
Using an in vitro system composed of crushed leaf tissues to simulate the wounding response in rice leaves, we established that synthesis of jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) can only occur in unwounded tissue and, in wounded tissue, that only the chloroplast-located section of the octadecanoid pathway is active, resulting in the accumulation of 12-oxo-phytodienoic acid (OPDA). We further showed that OPDA accumulation in vitro was inhibited by 90% using the general lipase inhibitor, tetrahydrolipstatin, indicating that production of α-linolenic acid was the rate-limiting step in octadecanoid pathway activity in rice following wounding and the enzyme capacity for an active pathway was already present. We confirmed this result by showing that added α-linolenic acid stimulated OPDA synthesis in vitro and stimulated OPDA, JA and JA-Ile synthesis in vivo in unwounded tissue. Thus, the response to wounding can be mimicked by the provision of free α-linolenic acid. Our results draw attention to the key importance of lipase activity in initiation of JA and JA-Ile biosynthesis and our lack of knowledge of the cognate lipase(s), lipase substrate identity and mechanism(s) of activation in wounded and unwounded tissue.
Collapse
Affiliation(s)
- John T Christeller
- Institute of Plant Science and Resources, Okayama University, Chuo 2-10-1, Kurashiki, Okayama 710-0046, Japan.
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Chuo 2-10-1, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
60
|
Schuck S, Kallenbach M, Baldwin IT, Bonaventure G. The Nicotiana attenuata GLA1 lipase controls the accumulation of Phytophthora parasitica-induced oxylipins and defensive secondary metabolites. PLANT, CELL & ENVIRONMENT 2014; 37:1703-15. [PMID: 24450863 PMCID: PMC4190502 DOI: 10.1111/pce.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 05/24/2023]
Abstract
Nicotiana attenuata plants silenced in the expression of GLYCEROLIPASE A1 (ir-gla1 plants) are compromised in the herbivore- and wound-induced accumulation of jasmonic acid (JA). However, these plants accumulate wild-type (WT) levels of JA and divinyl-ethers during Phytophthora parasitica infection. By profiling oxylipin-enriched fractions with targeted and untargeted liquid chromatography-tandem time-of-flight mass spectrometry approaches, we demonstrate that the accumulation of 9-hydroxy-10E,12Z-octadecadienoic acid (9-OH-18:2) and additional C18 and C19 oxylipins is reduced by ca. 20-fold in P. parasitica-infected ir-gla1 leaves compared with WT. This reduced accumulation of oxylipins was accompanied by a reduced accumulation of unsaturated free fatty acids and specific lysolipid species. Untargeted metabolic profiling of total leaf extracts showed that 87 metabolites accumulated differentially in leaves of P. parasitica-infected ir-gla1 plants with glycerolipids, hydroxylated-diterpene glycosides and phenylpropanoid derivatives accounting together for ca. 20% of these 87 metabolites. Thus, P. parasitica-induced oxylipins may participate in the regulation of metabolic changes during infection. Together, the results demonstrate that GLA1 plays a distinct role in the production of oxylipins during biotic stress responses, supplying substrates for 9-OH-18:2 and additional C18 and C19 oxylipin formation during P. parasitica infection, whereas supplying substrates for the biogenesis of JA during herbivory and mechanical wounding.
Collapse
Affiliation(s)
- Stefan Schuck
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Mario Kallenbach
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Gustavo Bonaventure
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| |
Collapse
|
61
|
Ruduś I, Terai H, Shimizu T, Kojima H, Hattori K, Nishimori Y, Tsukagoshi H, Kamiya Y, Seo M, Nakamura K, Kępczyński J, Ishiguro S. Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana. PLANT CELL REPORTS 2014; 33:849-860. [PMID: 24430866 DOI: 10.1007/s00299-013-1561-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.
Collapse
Affiliation(s)
- Izabela Ruduś
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Jasmonic acid regulates spikelet development in rice. Nat Commun 2014; 5:3476. [DOI: 10.1038/ncomms4476] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
|
63
|
sPLA2 and PLA1: Secretory Phospholipase A2 and Phospholipase A1 in Plants. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
64
|
|
65
|
Bonaventure G. Lipases and the biosynthesis of free oxylipins in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28429. [PMID: 24603593 PMCID: PMC4091546 DOI: 10.4161/psb.28429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 05/23/2023]
Abstract
The production of free oxylipins in plants is exquisitely controlled by cellular mechanisms that respond to environmental factors such as mechanical damage, insect herbivory and pathogen infection. One of the main targets of these cellular mechanisms are glycerolipases class A (GLA); acyl-hydrolyzing enzymes that upon their biochemical activation release unsaturated fatty acids or acylated oxylipins from glycerolipids. Recent studies performed in the wild tobacco species Nicotiana attenuata have started to reveal the complexity and specificity of GLA-regulated free oxylipin production. I present a model in which individual GLA lipases associate with individual lipoxygenases (LOX) in chloroplast membranes and envelope to define the initial committed steps of distinct oxylipin biosynthesis pathways. The unravelling of the mechanisms that activate GLAs and LOXs at the biochemical level and that control the interaction between these enzymes and their association with membranes will prove to be fundamental to understand how plants control free oxylipin biogenesis.
Collapse
|
66
|
Methyl jasmonate-induced cell death in grapevine requires both lipoxygenase activity and functional octadecanoid biosynthetic pathway. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0220-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC. Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens. Int J Mol Sci 2013; 14:17781-811. [PMID: 23999587 PMCID: PMC3794753 DOI: 10.3390/ijms140917781] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022] Open
Abstract
Plants cannot avoid being attacked by an almost infinite number of microorganisms and insects. Consequently, they arm themselves with molecular weapons against their attackers. Plant defense responses are the result of a complex signaling network, in which the hormones jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) are the usual suspects under the magnifying glass when researchers investigate host-pest interactions. However, Green Leaf Volatiles (GLVs), C6 molecules, which are very quickly produced and/or emitted upon herbivory or pathogen infection by almost every green plant, also play an important role in plant defenses. GLVs are semiochemicals used by insects to find their food or their conspecifics. They have also been reported to be fundamental in indirect defenses and to have a direct effect on pests, but these are not the only roles of GLVs. These volatiles, being probably one of the fastest weapons exploited, are also able to directly elicit or prime plant defense responses. Moreover, GLVs, via crosstalk with phytohormones, mostly JA, can influence the outcome of the plant’s defense response against pathogens. For all these reasons GLVs should be considered as co-protagonists in the play between plants and their attackers.
Collapse
Affiliation(s)
| | | | | | | | - Robert C. Schuurink
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-20-5257-933; Fax: +31-20-5257-934
| |
Collapse
|
68
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-1058. [PMID: 23558912 DOI: 10.1093/aob/mct06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
69
|
Lyons R, Manners JM, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative overview. PLANT CELL REPORTS 2013; 32:815-27. [PMID: 23455708 DOI: 10.1007/s00299-013-1400-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/21/2023]
Abstract
The plant hormone jasmonate (JA) fulfils essential roles in plant defense and development. While most of our current understanding of the JA pathway comes from the dicotyledonous model plant Arabidopsis thaliana, new studies in monocotyledonous plants are providing additional insights into this important hormone signaling pathway. In this review, we present a comparative overview of the JA biosynthetic and signaling pathways in monocots. We highlight recent studies that have revealed molecular mechanisms (mostly conserved but also diverged) underlying JA signaling and biosynthesis in the economically important plants: maize and rice. A better understanding of the JA pathway in monocots should lead to significant improvements in pest and pathogen resistance in cereal crops, which provide the bulk of the world's food and feed supply.
Collapse
Affiliation(s)
- Rebecca Lyons
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct (QBP), Brisbane, QLD 4067, Australia
| | | | | |
Collapse
|
70
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1536] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
71
|
Stotz HU, Mueller S, Zoeller M, Mueller MJ, Berger S. TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:963-75. [PMID: 23349138 PMCID: PMC3580818 DOI: 10.1093/jxb/ers389] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Jasmonates and phytoprostanes are oxylipins that regulate stress responses and diverse physiological and developmental processes. 12-Oxo-phytodienoic acid (OPDA) and phytoprostanes are structurally related electrophilic cyclopentenones, which activate similar gene expression profiles that are for the most part different from the action of the cyclopentanone jasmonic acid (JA) and its biologically active amino acid conjugates. Whereas JA-isoleucine signals through binding to COI1, the bZIP transcription factors TGA2, TGA5, and TGA6 are involved in regulation of gene expression in response to phytoprostanes. Here root growth inhibition and target gene expression were compared after treatment with JA, OPDA, or phytoprostanes in mutants of the COI1/MYC2 pathway and in different TGA factor mutants. Inhibition of root growth by phytoprostanes was dependent on COI1 but independent of jasmonate biosynthesis. In contrast, phytoprostane-responsive gene expression was strongly dependent on TGA2, TGA5, and TGA6, but not dependent on COI1, MYC2, TGA1, and TGA4. Different mutant and overexpressing lines were used to determine individual contributions of TGA factors to cyclopentenone-responsive gene expression. Whereas OPDA-induced expression of the cytochrome P450 gene CYP81D11 was primarily regulated by TGA2 and TGA5, the glutathione S-transferase gene GST25 and the OPDA reductase gene OPR1 were regulated by TGA5 and TGA6, but less so by TGA2. These results support the model that phytoprostanes and OPDA regulate differently (i) growth responses, which are COI1 dependent but jasmonate independent; and (ii) lipid stress responses, which are strongly dependent on TGA2, TGA5, and TGA6. Identification of molecular components in cyclopentenone signalling provides an insight into novel oxylipin signal transduction pathways.
Collapse
Affiliation(s)
- Henrik U Stotz
- Julius-von-Sachs-Institute für Biowissenschaften, Pharmazeutische Biologie, Universität Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
72
|
Savchenko T, Pearse IS, Ignatia L, Karban R, Dehesh K. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:653-62. [PMID: 23134585 DOI: 10.1111/tpj.12064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/28/2012] [Accepted: 10/30/2012] [Indexed: 05/23/2023]
Abstract
Insect herbivores have developed a myriad of strategies to manipulate the defense responses of their host plants. Here we provide evidence that chewing insects differentially alter the oxylipin profiles produced by the two main and competing branches of the plant defensive response pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, which are responsible for wound-inducible production of jasmonates (JAs), and green leafy volatiles (GLVs) respectively. Specifically, we used three Arabidopsis genotypes that were damaged by mechanical wounding or by insects of various feeding guilds (piercing aphids, generalist chewing caterpillars and specialist chewing caterpillars). We established that emission of GLVs is stimulated by wounding incurred mechanically or by aphids, but release of these volatiles is constitutively impaired by both generalist and specialist chewing insects. Simultaneously, however, these chewing herbivores stimulated JA production, demonstrating targeted insect suppression of the HPL branch of the oxylipin pathway. Use of lines engineered to express HPL constitutively, in conjunction with quantitative RT-PCR-based expression analyses, established a combination of transcriptional and post-transcriptional reprogramming of the HPL pathway genes as the mechanistic basis of insect-mediated suppression of the corresponding metabolites. Feeding studies suggested a potential evolutionary advantage of suppressing GLV production, as caterpillars preferably consumed leaf tissue from plants that had not been primed by these volatile cues.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
73
|
León J. Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem 2013; 69:299-313. [PMID: 23821155 DOI: 10.1007/978-94-007-6889-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Jasmonates are a family of oxylipins derived from linolenic acid that control plant responses to biotic and abiotic stress factors and also regulate plant growth and development. Jasmonic acid (JA) is synthesized through the octadecanoid pathway that involves the translocation of lipid intermediates from the chloroplast membranes to the cytoplasm and later on into peroxisomes. The peroxisomal steps of the pathway involve the reduction of cis-(+)-12-oxophytodienoic acid (12-OPDA) and dinor-OPDA, which are the final products of the choroplastic phase of the biosynthetic pathway acting on 18:3 and 16:3 fatty acids, respectively. Further shortening of the carbon side-chain by successive rounds of β-oxidation reactions are required to complete JA biosynthesis. After peroxisomal reactions are completed, (+)-7-iso-JA is synthesized and then transported to the cytoplasm where is conjugated to the amino acid isoleucine to form the bioactive form of the hormone (+)-7-iso-JA-Ile (JA-Ile). Further regulatory activity of JA-Ile triggering gene activation in the jasmonate-dependent signaling cascades is exerted through a process mediated by the perception via the E3 ubiquitin ligase COI1 and further ligand-activated interaction with the family of JAZ repressor proteins. Upon interaction, JAZ are ubiquitinated and degraded by the proteasome, thus releasing transcription factors such as MYC2 from repression and allowing the activation of JA-responsive genes.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, Valencia, Spain,
| |
Collapse
|
74
|
Chauvin A, Caldelari D, Wolfender JL, Farmer EE. Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. THE NEW PHYTOLOGIST 2013; 197:566-575. [PMID: 23171345 DOI: 10.1111/nph.12029] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/02/2012] [Indexed: 05/22/2023]
Abstract
Damage-inducible defenses in plants are controlled in part by jasmonates, fatty acid-derived regulators that start to accumulate within 30 s of wounding a leaf. Using liquid chromatography-tandem mass spectrometry, we sought to identify the 13-lipoxygenases (13-LOXs) that initiate wound-induced jasmonate synthesis within a 190-s timeframe in Arabidopsis thaliana in 19 single, double, triple and quadruple mutant combinations derived from the four 13-LOX genes in this plant. All four 13-LOXs were found to contribute to jasmonate synthesis in wounded leaves: among them LOX6 showed a unique behavior. The relative contribution of LOX6 to jasmonate synthesis increased with distance from a leaf tip wound, and LOX6 was the only 13-LOX necessary for the initiation of early jasmonate synthesis in leaves distal to the wounded leaf. Herbivory assays that compared Spodoptera littoralis feeding on the lox2-1 lox3B lox4A lox6A quadruple mutant and the lox2-1 lox3B lox4A triple mutant revealed a role for LOX6 in defense of the shoot apical meristem. Consistent with this, we found that LOX6 promoter activity was strong in the apical region of rosettes. The LOX6 promoter was active in and near developing xylem cells and in expression domains we term subtrichomal mounds.
Collapse
Affiliation(s)
- Adeline Chauvin
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Daniela Caldelari
- Swiss Institute of Bioinformatics, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| |
Collapse
|
75
|
Hettenhausen C, Yang DH, Baldwin IT, Wu J. Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis in Nicotiana attenuata. PLANT SIGNALING & BEHAVIOR 2013; 8:e22784. [PMID: 23221744 PMCID: PMC3745584 DOI: 10.4161/psb.22784] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) modulate plant development and growth and are important regulators of biotic and abiotic stress responses. Recently it was found that simultaneously silencing Nicotiana attenuata NaCDPK4 and NaCDPK5 (IRcdpk4/5 plants) results in accumulation of exceptionally high JA levels after wounding or simulated herbivory treatments, which in turn induced high levels of defense metabolites that slowed the growth of Manduca sexta, a specialist insect herbivore. To investigate the mechanism by which NaCDPK4 and NaCDPK5 regulate JA accumulation, we analyzed the transcript levels of all important enzymes involved in JA biosynthesis, but these genes showed no differences between wild-type and IRcdpk4/5 plants. Moreover, the dynamics of JA were similar between these plants, excluding the possibility of decreased degradation rates in IRcdpk4/5 plants. To gain insight into the mechanism by which NaCDPK4 and NaCDPK5 regulate JA biosynthesis, free fatty acids, including C18:3, and (9S,13S)-12-oxo-phytodienoic acid (OPDA), two important precursors of JA were quantified at different times before and after wounding and simulated herbivore feeding treatments. We show that after these treatments, IRcdpk4/5 plants have decreased levels of C18:3, but have enhanced OPDA and JA levels, suggesting that NaCDPK4 and NaCDPK5 have a role in the early steps of JA biosynthesis. The possible role of NaCDPK4 and NaCDPK5 regulating AOS and AOC enzymatic activity is discussed.
Collapse
Affiliation(s)
| | | | - Ian T. Baldwin
- Department of Molecular Ecology; Max Planck Institute for Chemical Ecology; Jena, Germany
| | | |
Collapse
|
76
|
Scholz J, Brodhun F, Hornung E, Herrfurth C, Stumpe M, Beike AK, Faltin B, Frank W, Reski R, Feussner I. Biosynthesis of allene oxides in Physcomitrella patens. BMC PLANT BIOLOGY 2012; 12:228. [PMID: 23194461 PMCID: PMC3552686 DOI: 10.1186/1471-2229-12-228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/26/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The moss Physcomitrella patens contains C18- as well as C20-polyunsaturated fatty acids that can be metabolized by different enzymes to form oxylipins such as the cyclopentenone cis(+)-12-oxo phytodienoic acid. Mutants defective in the biosynthesis of cyclopentenones showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis. The initial step in this biosynthetic route is the conversion of a fatty acid hydroperoxide to an allene oxide. This reaction is catalyzed by allene oxide synthase (AOS) belonging as hydroperoxide lyase (HPL) to the cytochrome P450 family Cyp74. In this study we characterized two AOS from P. patens, PpAOS1 and PpAOS2. RESULTS Our results show that PpAOS1 is highly active with both C18 and C20-hydroperoxy-fatty acid substrates, whereas PpAOS2 is fully active only with C20-substrates, exhibiting trace activity (~1000-fold lower kcat/KM) with C18 substrates. Analysis of products of PpAOS1 and PpHPL further demonstrated that both enzymes have an inherent side activity mirroring the close inter-connection of AOS and HPL catalysis. By employing site directed mutagenesis we provide evidence that single amino acid residues in the active site are also determining the catalytic activity of a 9-/13-AOS - a finding that previously has only been reported for substrate specific 13-AOS. However, PpHPL cannot be converted into an AOS by exchanging the same determinant. Localization studies using YFP-labeled AOS showed that PpAOS2 is localized in the plastid while PpAOS1 may be found in the cytosol. Analysis of the wound-induced cis(+)-12-oxo phytodienoic acid accumulation in PpAOS1 and PpAOS2 single knock-out mutants showed that disruption of PpAOS1, in contrast to PpAOS2, results in a significantly decreased cis(+)-12-oxo phytodienoic acid formation. However, the knock-out mutants of neither PpAOS1 nor PpAOS2 showed reduced fertility, aberrant sporophyte morphology or interrupted sporogenesis. CONCLUSIONS Our study highlights five findings regarding the oxylipin metabolism in P. patens: (i) Both AOS isoforms are capable of metabolizing C18- and C20-derived substrates with different specificities suggesting that both enzymes might have different functions. (ii) Site directed mutagenesis demonstrated that the catalytic trajectories of 9-/13-PpAOS1 and PpHPL are closely inter-connected and PpAOS1 can be inter-converted by a single amino acid exchange into a HPL. (iii) In contrast to PpAOS1, PpAOS2 is localized in the plastid where oxylipin metabolism takes place. (iv) PpAOS1 is essential for wound-induced accumulation of cis(+)-12-oxo phytodienoic acid while PpAOS2 appears not to be involved in the process. (v) Knock-out mutants of neither AOS showed a deviating morphological phenotype suggesting that there are overlapping functions with other Cyp74 enzymes.
Collapse
Affiliation(s)
- Julia Scholz
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Florian Brodhun
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ellen Hornung
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Michael Stumpe
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Anna K Beike
- University of Freiburg, Faculty of Biology, Deptartment of Plant Biotechnology, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Bernd Faltin
- University of Freiburg, Faculty of Biology, Deptartment of Plant Biotechnology, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Wolfgang Frank
- Ludwig-Maximilians-University Munich, Faculty of Biology, Department Biology I, Plant Molecular Cell Biology, LMU Biocenter, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ralf Reski
- University of Freiburg, Faculty of Biology, Deptartment of Plant Biotechnology, Schaenzlestrasse 1, 79104, Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, 79104, Freiburg, Germany
- FRIAS – Freiburg Institute for Advanced Studies, 79104, Freiburg, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| |
Collapse
|
77
|
Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. PLANTA 2012; 236:1351-66. [PMID: 23011567 DOI: 10.1007/s00425-012-1705-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/27/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates are lipid-derived compounds that act as signals in plant stress responses and developmental processes. Enzymes participating in biosynthesis of jasmonic acid (JA) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants have helped to define the pathway for synthesis of jasmonoyl-L-isoleucine (JA-Ile), the bioactive form of JA, and to identify the F-box protein COI1 as central regulatory unit. Details on the molecular mechanism of JA signaling were recently unraveled by the discovery of JAZ proteins that together with the adaptor protein NINJA and the general co-repressor TOPLESS form a transcriptional repressor complex. The current model of JA perception and signaling implies the SCF(COI1) complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ proteins for degradation by the 26S proteasome pathway, thereby allowing MYC2 and other transcription factors to activate gene expression. Chemical strategies, as integral part of jasmonate research, have helped the establishment of structure-activity relationships and the discovery of (+)-7-iso-JA-L-Ile as the major bioactive form of the hormone. The transient nature of its accumulation highlights the need to understand catabolism and inactivation of JA-Ile and recent studies indicate that oxidation of JA-Ile by cytochrome P450 monooxygenase is the major mechanism for turning JA signaling off. Plants contain numerous JA metabolites, which may have pronounced and differential bioactivity. A major challenge in the field of plant lipid signaling is to identify the cognate receptors and modes of action of these bioactive jasmonates/oxylipins.
Collapse
Affiliation(s)
- Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| |
Collapse
|
78
|
Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S. New aspects of Phloem-mediated long-distance lipid signaling in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:53. [PMID: 22639651 PMCID: PMC3355628 DOI: 10.3389/fpls.2012.00053] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/29/2012] [Indexed: 05/08/2023]
Abstract
Plants are sessile and cannot move to appropriate hiding places or feeding grounds to escape adverse conditions. As a consequence, they evolved mechanisms to detect changes in their environment, communicate these to different organs, and adjust development accordingly. These adaptations include two long-distance transport systems which are essential in plants: the xylem and the phloem. The phloem serves as a major trafficking pathway for assimilates, viruses, RNA, plant hormones, metabolites, and proteins with functions ranging from synthesis to metabolism to signaling. The study of signaling compounds within the phloem is essential for our understanding of plant communication of environmental cues. Determining the nature of signals and the mechanisms by which they are communicated through the phloem will lead to a more complete understanding of plant development and plant responses to stress. In our analysis of Arabidopsis phloem exudates, we had identified several lipid-binding proteins as well as fatty acids and lipids. The latter are not typically expected in the aqueous environment of sieve elements. Hence, lipid transport in the phloem has been given little attention until now. Long-distance transport of hydrophobic compounds in an aqueous system is not without precedence in biological systems: a variety of lipids is found in human blood and is often bound to proteins. Some lipid-protein complexes are transported to other tissues for storage, use, modification, or degradation; others serve as messengers and modulate transcription factor activity. By simple analogy it raises the possibility that lipids and the respective lipid-binding proteins in the phloem serve similar functions in plants and play an important role in stress and developmental signaling. Here, we introduce the lipid-binding proteins and the lipids we found in the phloem and discuss the possibility that they may play an important role in developmental and stress signaling.
Collapse
Affiliation(s)
- Urs Florian Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Banita Tamot
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Brandon Scott Guelette
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
79
|
Dave A, Graham IA. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA). FRONTIERS IN PLANT SCIENCE 2012; 3:42. [PMID: 22645585 PMCID: PMC3355751 DOI: 10.3389/fpls.2012.00042] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/19/2012] [Indexed: 05/18/2023]
Abstract
Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA.
Collapse
Affiliation(s)
- Anuja Dave
- Department of Biology, Centre for Novel Agricultural Products, University of YorkYork, UK
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural Products, University of YorkYork, UK
| |
Collapse
|
80
|
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet 2012; 8:e1002506. [PMID: 22346763 PMCID: PMC3276552 DOI: 10.1371/journal.pgen.1002506] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Collapse
Affiliation(s)
- Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christine M. Ellis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara E. Ploense
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Aurore Chételat
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ina Haupt
- Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Brian J. Kennerley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward E. Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
81
|
Alkan N, Fluhr R, Prusky D. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:85-96. [PMID: 22150075 DOI: 10.1094/mpmi-01-11-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The postharvest pathogens Colletotrichum coccodes remains quiescent after infection of unripe fruit. However, during fruit ripening, the pathogen assumes a necrotrophic life style, rapidly colonizing the tissue. C. coccodes secretes ammonium during germination and colonization of host tissue that induces host programmed cell death. We further examined the role of ammonia in the infection process by analyzing transcriptome expression from infected and ammonia-treated fruit tissue compared with healthy tissue. The analysis revealed 82 and 237 common upregulated and downregulated genes, respectively. Quantitative reverse-transcriptase polymerase chain reaction analysis of select transcripts in normal and transgenic NADPH oxidase antisense plants revealed that their expression was NADPH oxidase dependent. Common-upregulated genes showed overrepresentation of salicylic acid (SA)-dependent genes as well as genes related to biotic stress. The downregulated genes showed overrepresentation of jasmonic acid (JA)-dependent genes. Indeed, direct application of SA to the fruit enhanced C. coccodes necrotrophic colonization, whereas the application of JA delayed colonization. Importantly, green fruit and red fruit displayed similar gene expression patterns although only red fruit is susceptible to colonization. Thus, it is likely that the resistance of green fruit to C. coccodes colonization is due to additional factors.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Bet Dagan, Israel
| | | | | |
Collapse
|
82
|
Abstract
Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA(1)), and phospholipase A2 (PLA(2)), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
| | | | | |
Collapse
|
83
|
Seo YS, Kim EY, Kim WT. The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5683-98. [PMID: 21856645 PMCID: PMC3223057 DOI: 10.1093/jxb/err250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 05/21/2023]
Abstract
Lipid-derived molecules produced by acylhydrolases play important roles in the regulation of diverse cellular functions in plants. In Arabidopsis, the DAD1-like phospholipase A1 family consists of 12 members, all of which possess a lipase 3 domain. In this study, the biochemical and cellular functions of AtDLAH, an Arabidopsis thaliana DAD1-like acylhydrolase, were examined. Bacterially expressed AtDLAH contained phospholipase A1 activity for catalysing the hydrolysis of phospholipids at the sn-1 position. However, AtDLAH displayed an even stronger preference for 1-lysophosphatidylcholine, 1-monodiacylglycerol, and phosphatidic acid, suggesting that AtDLAH is a sn-1-specific acylhydrolase. The AtDLAH gene was highly expressed in young seedlings, and its encoded protein was exclusively localized to the mitochondria. AtDLAH-overexpressing transgenic seeds (35S:AtDLAH) were markedly tolerant to accelerated-ageing treatment and thus had higher germination percentages than wild-type seeds. In contrast, the atdlah loss-of-function knockout mutant seeds were hypersusceptible to accelerated-ageing conditions. The 35S:AtDLAH seeds, as opposed to the atdlah seeds, exhibited a dark red staining pattern following tetrazolium treatment under both normal and accelerated-ageing conditions, suggesting that AtDLAH expression is positively correlated with seed viability. The enhanced viability of 35S:AtDLAH seeds was accompanied by more densely populated epidermal cells, lower levels of accumulated lipid hydroperoxides, and higher levels of polar lipids as compared with wild-type and atdlah mutant seeds. These results suggest that AtDLAH, a mitochondrial-localized sn-1-specific acylhydrolase, plays an important role in Arabidopsis seed viability.
Collapse
Affiliation(s)
| | | | - Woo Taek Kim
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
84
|
Bonaventure G, Schuck S, Baldwin IT. Revealing complexity and specificity in the activation of lipase-mediated oxylipin biosynthesis: a specific role of the Nicotiana attenuata GLA1 lipase in the activation of jasmonic acid biosynthesis in leaves and roots. PLANT, CELL & ENVIRONMENT 2011; 34:1507-20. [PMID: 21554327 DOI: 10.1111/j.1365-3040.2011.02348.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The activation of enzymatic oxylipin biosynthesis upon wounding, herbivory and pathogen attack depends on the biochemical activation of lipases that make polyunsaturated fatty acids (PUFAs) available to lipoxygenases (LOXs). The identity and number of the lipases involved in this process remain controversial and they probably differ among plant species. Analysis of transgenic Nicotiana attenuata plants (ir-gla1) stably reduced in the expression of the NaGLA1 gene showed that this plastidial glycerolipase is a major supplier of trienoic fatty acids for jasmonic acid (JA) biosynthesis in leaves and roots after wounding and simulated herbivory, but not during infection with the oomycete Phytophthora parasitica (var. nicotianae). NaGLA1 was not essential for the developmental control of JA biosynthesis in flowers and for the biosynthesis of C(6) volatiles by the hydroperoxide lyase (HPL) pathway; however, it affected the metabolism of divinyl ethers (DVEs) early during infection with P. parasitica (var. nicotianae) and the accumulation of NaDES1 and NaLOX1 mRNAs. Profiling of lysolipids by LC-MS/MS was consistent with a rapid activation of NaGLA1 and indicated that this lipase utilizes different lipid classes as substrates. The results revealed the complexity and specificity of the regulation of lipase-mediated oxylipin biosynthesis, highlighting the existence of pathway- and stimulus-specific lipases.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
85
|
Cho K, Han Y, Woo JC, Baudisch B, Klösgen RB, Oh S, Han J, Han O. Cellular localization of dual positional specific maize lipoxygenase-1 in transgenic rice and calcium-mediated membrane association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:242-248. [PMID: 21763534 DOI: 10.1016/j.plantsci.2011.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 05/31/2023]
Abstract
The dual positional maize lipoxygenase-1 was introduced into rice and T2 transgenic plants were produced. Cellular location of maize lipoxygenase-1 in transgenic rice and effects of calcium ion on membrane association in vitro were analyzed. Localization study by confocal microscopic analysis indicated that the maize lipoxygenase-1 was localized in cytoplasm. Sucrose-density fractionation experiment and in vitro protein transport to chloroplast showed that the maize lipoxygenase-1 can be associated with chloroplast. Secondary structure alignment revealed putative calcium binding sites in the PLAT domain of maize lipoxygenase-1 and the association of the maize lipoxygenase-1 with membranes was mediated by calcium ion in vitro. Our results provide evidences for calcium-mediated translocation of dual positional LOX without chloroplast targeting sequence from cytoplasm to chloroplast in plants for the first time.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:81-93. [PMID: 21418358 DOI: 10.1111/j.1365-313x.2011.04578.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant secondary metabolites are known to facilitate interactions with a variety of beneficial and detrimental organisms, yet the contribution of specific metabolites to interactions with fungal pathogens is poorly understood. Here we show that, with respect to aliphatic glucosinolate-derived isothiocyanates, toxicity against the pathogenic ascomycete Sclerotinia sclerotiorum depends on side chain structure. Genes associated with the formation of the secondary metabolites camalexin and glucosinolate were induced in Arabidopsis thaliana leaves challenged with the necrotrophic pathogen S. sclerotiorum. Unlike S. sclerotiorum, the closely related ascomycete Botrytis cinerea was not identified to induce genes associated with aliphatic glucosinolate biosynthesis in pathogen-challenged leaves. Mutant plant lines deficient in camalexin, indole, or aliphatic glucosinolate biosynthesis were hypersusceptible to S. sclerotiorum, among them the myb28 mutant, which has a regulatory defect resulting in decreased production of long-chained aliphatic glucosinolates. The antimicrobial activity of aliphatic glucosinolate-derived isothiocyanates was dependent on side chain elongation and modification, with 8-methylsulfinyloctyl isothiocyanate being most toxic to S. sclerotiorum. This information is important for microbial associations with cruciferous host plants and for metabolic engineering of pathogen defenses in cruciferous plants that produce short-chained aliphatic glucosinolates.
Collapse
Affiliation(s)
- Henrik U Stotz
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1520-34. [PMID: 21546453 PMCID: PMC3135923 DOI: 10.1104/pp.111.173567] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/28/2011] [Indexed: 05/18/2023]
Abstract
How plants perceive herbivory is not yet well understood. We investigated early responses of the model plant Arabidopsis (Arabidopsis thaliana) to attack from the generalist grasshopper herbivore, Schistocerca gregaria (Caelifera). When compared with wounding alone, S. gregaria attack and the application of grasshopper oral secretions (GS) to puncture wounds elicited a rapid accumulation of various oxylipins, including 13-hydroperoxy octadecatrienoic acid, 12-oxo-phytodienoic acid (OPDA), jasmonic acid, and jasmonic acid-isoleucine. Additionally, GS increased cytosolic calcium levels, mitogen-activated protein kinase (MPK3 and MPK6) activity, and ethylene emission but not the accumulation of hydrogen peroxide. Although GS contain caeliferin A16:0, a putative elicitor of caeliferan herbivores, treatment with pure, synthetic caeliferin A16:0 did not induce any of the observed responses. With mutant plants, we demonstrate that the observed changes in oxylipin levels are independent of MPK3 and MPK6 activity but that MPK6 is important for the GS-induced ethylene release. Biochemical and pharmacological analyses revealed that the lipase activity of GS plays a central role in the GS-induced accumulation of oxylipins, especially OPDA, which could be fully mimicked by treating puncture wounds only with a lipase from Rhizopus arrhizus. GS elicitation increased the levels of OPDA-responsive transcripts. Because the oral secretions of most insects used to study herbivory-induced responses in Arabidopsis rapidly elicit similar accumulations of OPDA, we suggest that lipids containing OPDA (arabidopsides) play an important role in the activation of herbivory-induced responses.
Collapse
|
88
|
VanDoorn A, Bonaventure G, Schmidt DD, Baldwin IT. Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum: COI1 and JAR4 play overlapping yet distinct roles. THE NEW PHYTOLOGIST 2011; 190:640-652. [PMID: 21284648 DOI: 10.1111/j.1469-8137.2010.03622.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• Jasmonates are ubiquitous messengers in land plants essential for the activation of defense responses. However, their signaling properties, accumulation and metabolism vary substantially among species. Solanum nigrum is a wild Solanaceous species developed as a model to study defense responses. • Solanum nigrum plants transformed to silence the expression of key genes in jasmonate production (SnLOX3), conjugation (SnJAR4) and perception (SnCOI1) were generated to analyze the function of these genes in jasmonate accumulation and metabolism (studied by a combination of LC-MS/MS and (13) C-isotope labeling methods) and in signaling [studied by the systemic elicitation of leucine aminopeptidase (LAP) activity]. • In contrast with the early single jasmonic acid (JA) burst induced by wounding in wild-type (WT) plants, elicitation with insect oral secretions induced a later, second burst that was essential for the induction of systemic LAP activity, as demonstrated by ablation experiments. This induction was dependent on SnLOX3 and SnCOI1, but not on SnJAR4. In addition, the local accumulation of JA-glucose and JA-isoleucine was dependent on SnCOI1, whereas the accumulation of hydroxylated jasmonates was dependent on both SnCOI1 and SnJAR4. • The results demonstrate that SnLOX3, SnCOI1 and SnJAR4 have overlapping yet distinct roles in jasmonate signaling, differentially controlling jasmonate metabolism and the production of a systemic signal.
Collapse
Affiliation(s)
- Arjen VanDoorn
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
89
|
Dave A, Hernández ML, He Z, Andriotis VM, Vaistij FE, Larson TR, Graham IA. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. THE PLANT CELL 2011; 23:583-99. [PMID: 21335376 PMCID: PMC3077774 DOI: 10.1105/tpc.110.081489] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis.
Collapse
|
90
|
Ellinger D, Kubigsteltig II. Involvement of DAD1-like lipases in response to salt and osmotic stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2010; 5:1269-71. [PMID: 20855949 PMCID: PMC3115365 DOI: 10.4161/psb.5.10.13012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 05/21/2023]
Abstract
Acyl hydrolases remodel biological membranes and release signaling molecules in response to a variety of biotic and abiotic stresses. After wounding or pathogen treatment lipases are necessary to release fatty acids as substrate for jasmonate biosynthesis. In osmotic stressed tissue they maintain integrity and functionality of membranes and during senescence lipases destroy and recycle membranes. Recently the role of several acyl hydrolases including DEFECTIVE IN ANTHER DEHISCENCE (DAD1) and DAD1-like lipase, e.g. DONGLE (DGL) and the phospholipase A (PLA) PLA-Iγ1 in jasmonate biosynthesis after wounding were investigated and functional redundancy within this family has been stated. Here we report necessity of diverse DAD1-like lipases in response to salt and sorbitol treatment. The lipase PLA-Iγ1 and PLA-Iβ2, which were both impaired in wound response, were also affected in response to osmotic stress in seed germination assays. Based on our observations and interpretations of transcription analyses generated by AtGenExpress project we speculate about more general roles of the DAD1-like lipase in diverse biological processes.
Collapse
Affiliation(s)
- Dorothea Ellinger
- Department of Plant Physiology, Ruhr-Universität of Bochum/Germany, Germany.
| | | |
Collapse
|
91
|
Grienenberger E, Geoffroy P, Mutterer J, Legrand M, Heitz T. The interplay of lipid acyl hydrolases in inducible plant defense. PLANT SIGNALING & BEHAVIOR 2010; 5:1181-1186. [PMID: 20861688 PMCID: PMC3115345 DOI: 10.4161/psb.5.10.12800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 05/29/2023]
Abstract
Lipid acyl hydrolases (LAH) have received recently increased attention in the context of plant defense. Multiple structurally unrelated gene families have been annotated in Arabidopsis as encoding potential lipid deacylating enzymes with numerous members being transcriptionally activated upon biotic stress. Confirming in silico predictions, experimental data have illustrated the wide subcellular distribution of LAHs indicating they likely interact with distinct membrane systems to initiate specific cellular responses. While recombinant LAHs are active in vitro on a small set of polar lipids, precise knowledge of in vivo substrates and hydrolysis products is generally lacking. Functional analysis of a few LAHs has revealed their roles in initiating oxylipin biosynthesis, cell death execution, signalling or direct antimicrobial activity. The picture emerging is that pathogenic challenge triggers a complex network of lipid hydrolysis events across the cellular compartments resulting in changes in membrane structures and release of signal precursors involved in the building-up of an adequate immune response.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de Biologie Moléculaire des plantes (IBMP), UPR 2357 du CNRS, Université de Strasbourg, France
| | | | | | | | | |
Collapse
|