51
|
Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochem J 2018; 475:1411-1425. [DOI: 10.1042/bcj20180169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Ca2+ can be released from cell compartments to the cytosol during stress conditions. We discuss here the causes of Ca2+ release under conditions of ATP concentration decline that result in the suppression of ATPases and activation of calcium ion channels. The main signaling and metabolic consequences of Ca2+ release are considered for stressed plant cells. The signaling function includes generation and spreading of calcium waves, while the metabolic function results in the activation of particular enzymes and genes. Ca2+ is involved in the activation of glutamate decarboxylase, initiating the γ-aminobutyric acid shunt and triggering the formation of alanine, processes which play a role, in particular, in pH regulation. Ca2+ activates the transcription of several genes, e.g. of plant hemoglobin (phytoglobin, Pgb) which scavenges nitric oxide and regulates redox and energy balance through the Pgb–nitric oxide cycle. This cycle involves NADH and NADPH oxidation from the cytosolic side of mitochondria, in which Ca2+- and low pH-activated external NADH and NADPH dehydrogenases participate. Ca2+ can also activate the genes of alcohol dehydrogenase and pyruvate decarboxylase stimulating hypoxic fermentation. It is concluded that calcium is a primary factor that causes the metabolic shift under conditions of oxygen deficiency.
Collapse
|
52
|
Regulation of Long Noncoding RNAs Responsive to Phytoplasma Infection in Paulownia tomentosa. Int J Genomics 2018; 2018:3174352. [PMID: 29675420 PMCID: PMC5841072 DOI: 10.1155/2018/3174352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Paulownia witches' broom caused by phytoplasma infection affects the production of Paulownia trees worldwide. Emerging evidence showed that long noncoding RNAs (lncRNA) play a protagonist role in regulating the expression of genes in plants. So far, the identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to Paulownia tomentosa that free of phytoplasma infection are yet to be characterized. Here, whole-genome identification of lncRNAs, based on strand-specific RNA sequencing, from four Paulownia tomentosa samples, was performed and identified 3689 lncRNAs. These lncRNAs showed low conservation among plant species and some of them were miRNA precursors. Further analysis revealed that the 112 identified lncRNAs were related to phytoplasma infection. We predicted the target genes of these phytoplasma-responsive lncRNAs, and our analysis showed that 51 of the predicted target genes were alternatively spliced. Moreover, we found the expression of the lncRNAs plays vital roles in regulating the genes involved in the reactive oxygen species induced hypersensitive response and effector-triggered immunity in phytoplasma-infected Paulownia. This study indicated that diverse sets of lncRNAs were responsive to Paulownia witches' broom, and the results will provide a starting point to understand the functions and regulatory mechanisms of Paulownia lncRNAs in the future.
Collapse
|
53
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
54
|
Yang DL, Shi Z, Bao Y, Yan J, Yang Z, Yu H, Li Y, Gou M, Wang S, Zou B, Xu D, Ma Z, Kim J, Hua J. Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. PLANT PHYSIOLOGY 2017; 175:424-437. [PMID: 28701352 PMCID: PMC5580750 DOI: 10.1104/pp.17.00495] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/11/2017] [Indexed: 05/21/2023]
Abstract
Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity.
Collapse
Affiliation(s)
- Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Zhenying Shi
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Ziyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyun Yu
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Yun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Gou
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Shu Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Baohong Zou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Dachao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiqi Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jitae Kim
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| | - Jian Hua
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853
| |
Collapse
|
55
|
Eisenach C, De Angeli A. Ion Transport at the Vacuole during Stomatal Movements. PLANT PHYSIOLOGY 2017; 174:520-530. [PMID: 28381500 PMCID: PMC5462060 DOI: 10.1104/pp.17.00130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 05/19/2023]
Abstract
Recent research on vacuolar ion channels, transporters, and pumps of Arabidopsis highlight their function and roles in stomatal opening and closure.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Department of Plant and Microbial Biology, University of Zurich, Zurich CH-8008, Switzerland (C.E.); and
- Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (A.D.A.)
| | - Alexis De Angeli
- Department of Plant and Microbial Biology, University of Zurich, Zurich CH-8008, Switzerland (C.E.); and
- Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (A.D.A.)
| |
Collapse
|
56
|
Wang F, Chen ZH, Liu X, Colmer TD, Zhou M, Shabala S. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3747-62. [PMID: 26889007 PMCID: PMC4896357 DOI: 10.1093/jxb/erw034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca(2+) as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca(2+) distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca(2+) changes were studied using several ACA (Ca(2+)-ATPase) and CAX (Ca(2+)/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca(2+) accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11 In addition, a significantly increased Ca(2+) concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14-22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca(2+) homeostasis and/or signalling in root cells under hypoxic conditions.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith NSW2751, Australia
| | - Xiaohui Liu
- School of Science and Health, Western Sydney University, Penrith NSW2751, Australia School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Timothy David Colmer
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
57
|
Su T, Yu S, Yu R, Zhang F, Yu Y, Zhang D, Zhao X, Wang W. Effects of Endogenous Salicylic Acid During Calcium Deficiency-Induced Tipburn in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). PLANT MOLECULAR BIOLOGY REPORTER 2015; 34:607-617. [PMID: 27182106 PMCID: PMC4848338 DOI: 10.1007/s11105-015-0949-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
By cultivating tipburn-susceptible plants in modified Hoagland's medium containing of gradient exogenous calcium (Ca2+), we have shown that Ca2+ deficiency is one of the main causes of tipburn in Chinese cabbage (Brassica rapa L. ssp. pekinensis). The effect of endogenous plant Ca2+ concentrations on tipburn was also studied in a doubled haploid (DH) population consisting of 100 individuals, but no correlation was found. We then examined the expression of 12 Ca2+ transporter genes that function in cytosolic Ca2+ homeostasis in both tipburn-susceptible and tipburn-resistant plants under normal and tipburn-inducing conditions. Expression patterns for most of these genes differed between the two types of plants. Salicylic acid (SA) accumulated in response to conditions of calcium deficiency in our study, and both total SA and SA β-glucoside (SAG) in tipburn-susceptible plants was ∼3-fold higher than it was in resistant plants following Ca2+ deficiency treatment. Also, the changes observed in SA levels correlated well with cell death patterns revealed by trypan blue staining. Therefore, we speculate that the cytoplasmic Ca2+ fluctuation-induced downstream signaling events, as well as SA signaling or other biological events, are involved in the plant defense response to tipburn in Chinese cabbage.
Collapse
Affiliation(s)
- Tongbing Su
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Shuancang Yu
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Ruifang Yu
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Fenglan Zhang
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Yangjun Yu
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Deshuang Zhang
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Xiuyun Zhao
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| | - Weihong Wang
- />Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097 China
- />Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 China
| |
Collapse
|
58
|
Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:600. [PMID: 26322054 PMCID: PMC4532166 DOI: 10.3389/fpls.2015.00600] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Luqin Xu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Amarjeet Singh
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
59
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
60
|
Abstract
SIGNIFICANCE Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs rapidly in response to attempted pathogen invasion of potential host plants. Such reduction-oxidation (redox) changes are sensed and transmitted to engage immune function, including the hypersensitive response, a programmed execution of challenged plant cells. RECENT ADVANCES Pathogen elicitors trigger changes in calcium that are sensed by calmodulin, calmodulin-like proteins, and calcium-dependent protein kinases, which activate ROS and RNS production. The ROS and RNS production is compartmentalized within the cell and occurs through multiple routes. Mitogen-activated protein kinase (MAPK) cascades are engaged upstream and downstream of ROS and nitric oxide (NO) production. NO is increasingly recognized as a key signaling molecule, regulating downstream protein function through S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol. CRITICAL ISSUES How multiple sources of ROS and RNS are coordinated is unclear. The putative protein sensors that detect and translate fluxes in ROS and RNS into differential gene expression are obscure. Protein tyrosine nitration following reaction of peroxynitrite with tyrosine residues has been proposed as another signaling mechanism or as a marker leading to protein degradation, but the reversibility remains to be established. FUTURE DIRECTIONS Research is needed to identify the full spectrum of NO-modified proteins with special emphasis on redox-activated transcription factors and their cognate target genes. A systems approach will be required to uncover the complexities integral to redox regulation of MAPK cascades, transcription factors, and defense genes through the combined effects of calcium, phosphorylation, S-nitrosylation, and protein tyrosine nitration.
Collapse
Affiliation(s)
- Debra E Frederickson Matika
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | | |
Collapse
|
61
|
Yamada N, Theerawitaya C, Cha-um S, Kirdmanee C, Takabe T. Expression and functional analysis of putative vacuolar Ca2+-transporters (CAXs and ACAs) in roots of salt tolerant and sensitive rice cultivars. PROTOPLASMA 2014; 251:1067-75. [PMID: 24482191 DOI: 10.1007/s00709-014-0615-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/16/2014] [Indexed: 05/05/2023]
Abstract
Vacuolar Ca2+-transporters could play an important role for salt tolerance in rice (Oryza sativa L.) root. Here, we compared the expression profiles of putative vacuolar cation/H+ exchanger (CAX) and calmodulin-regulated autoinhibited Ca2+-ATPase (ACA) in rice roots of salt tolerant cv. Pokkali and salt sensitive cv. IR29. In addition to five putative vacuolar CAX genes in the rice genome, a new CAX gene (OsCAX4) has been annotated. In the present study, we isolated the OsCAX4 gene and showed that its encoded protein possesses a unique transmembrane structure and is potentially involved in transporting not only Ca2+ but also Mn2+ and Cu2+. These six OsCAX genes differed in their mRNA expression pattern in roots of tolerant versus sensitive rice cultivars exposed to salt stress. For example, OsCAX4 showed abundant expression in IR29 (sensitive) upon prolonged salt stress. The mRNA expression profile of four putative vacuolar Ca2+-ATPases (OsACA4-7) was also examined. Under control conditions, the mRNA levels of OsACA4, OsACA5, and OsACA7 were relatively high and similar among IR29 and Pokkali. Upon salt stress, only OsACA4 showed first a decrease in its expression in Pokkali (tolerant), followed by a significant increase. Based on these results, a role of vacuolar Ca2+ transporter for salt tolerance in rice root was discussed.
Collapse
Affiliation(s)
- Nana Yamada
- Plant Physiology and Biochemistry Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | | | | | | | | |
Collapse
|
62
|
Michal Johnson J, Reichelt M, Vadassery J, Gershenzon J, Oelmüller R. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC PLANT BIOLOGY 2014; 14:162. [PMID: 24920452 PMCID: PMC4074868 DOI: 10.1186/1471-2229-14-162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/29/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ca2+, a versatile intracellular second messenger in various signaling pathways, initiates many responses involved in growth, defense and tolerance to biotic and abiotic stress. Endogenous and exogenous signals induce cytoplasmic Ca2+ ([Ca2+]cyt) elevation, which are responsible for the appropriate downstream responses. RESULTS Here we report on an ethyl-methane sulfonate-mediated Arabidopsis mutant that fails to induce [Ca2+]cyt elevation in response to exudate preparations from the pathogenic mibrobes Alternaria brassicae, Rhizoctonia solani, Phytophthora parasitica var. nicotianae and Agrobacterium tumefaciens. The cytoplasmic Ca2+elevation mutant1 (cycam1) is susceptible to infections by A. brassicae, its toxin preparation and sensitive to abiotic stress such as drought and salt. It accumulates high levels of reactive oxygen species and contains elevated salicylic acid, abscisic acid and bioactive jasmonic acid iso-leucine levels. Reactive oxygen species- and phytohormone-related genes are higher in A. brassicae-treated wild-type and mutant seedlings. Depending on the analysed response, the elevated levels of defense-related compounds are either caused by the cycam mutation and are promoted by the pathogen, or they are mainly due to the pathogen infection or application of pathogen-associated molecular patterns. Furthermore, cycam1 shows altered responses to abscisic acid treatments: the hormone inhibits germination and growth of the mutant. CONCLUSIONS We isolated an Arabidopsis mutant which fails to induce [Ca2+]cyt elevation in response to exudate preparations from various microbes. The higher susceptibility of the mutant to pathogen infections correlates with the higher accumulation of defense-related compounds, such as phytohormones, reactive oxygen-species, defense-related mRNA levels and secondary metabolites. Therefore, CYCAM1 couples [Ca2+]cyt elevation to biotic, abiotic and oxidative stress responses.
Collapse
Affiliation(s)
- Joy Michal Johnson
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jyothilakshmi Vadassery
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
63
|
Zhang J, Zhang X, Wang R, Li W. The plasma membrane-localised Ca(2+)-ATPase ACA8 plays a role in sucrose signalling involved in early seedling development in Arabidopsis. PLANT CELL REPORTS 2014; 33:755-66. [PMID: 24585188 DOI: 10.1007/s00299-014-1590-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 05/11/2023]
Abstract
Arabidopsis Ca (2+) -ATPase ACA8 plays a role in sucrose signalling during early seedling development by integrating developmental signals with carbon source availability. Calcium (Ca(2+)) is an essential signal transduction element in eukaryotic organisms. Changes in the levels of intracellular Ca(2+) affect multiple developmental processes in plants, including cell division, polar growth, and organogenesis. Here, we report that the plasma-membrane-localised Arabidopsis Ca(2+)-ATPase ACA8 plays a role in sucrose signalling during early seedling development. Disruption of the ACA8 gene elevated the expression of genes that encode transporters for Ca(2+) efflux. The seedlings that carried a T-DNA insertion mutation in ACA8 experienced water stress during early development. This response was unrelated to inadequate osmoregulatory responses and was most likely caused by disruption of cell membrane integrity and severe ion leakage. In addition, aca8-1 seedlings displayed a significant decline in photosynthetic performance and arrested root growth after removal of sucrose from the growth medium. The two phenomena resulted from impaired photosynthesis, reduced cell proliferation in the root meristem and the sucrose control of cell-cycle events. All of the stress-response phenotypes were rescued when expression of ACA8 was restored in aca8-1 mutant. Taken together, our results indicate that ACA8-mediated Ca(2+) signalling contributes to modulate early seedling development and coordinates root development with nutrient availability.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China,
| | | | | | | |
Collapse
|
64
|
van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB. Spread the news: systemic dissemination and local impact of Ca²⁺ signals along the phloem pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1761-87. [PMID: 24482370 DOI: 10.1093/jxb/ert425] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of General Botany, Justus-Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
65
|
Limonta M, Romanowsky S, Olivari C, Bonza MC, Luoni L, Rosenberg A, Harper JF, De Michelis MI. ACA12 is a deregulated isoform of plasma membrane Ca²⁺-ATPase of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2014; 84:387-97. [PMID: 24101142 PMCID: PMC4104672 DOI: 10.1007/s11103-013-0138-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/29/2013] [Indexed: 05/08/2023]
Abstract
Plant auto-inhibited Ca²⁺-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca²⁺-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues--highly conserved in other ACA isoforms--localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation.
Collapse
Affiliation(s)
- Margherita Limonta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Istituto di Biofisica del CNR, Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Shawn Romanowsky
- Biochemistry Department, University of Nevada, Reno, Nevada 89557
| | - Claudio Olivari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Istituto di Biofisica del CNR, Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Maria Cristina Bonza
- Dipartimento di Bioscienze, Università degli Studi di Milano, Istituto di Biofisica del CNR, Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Laura Luoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Istituto di Biofisica del CNR, Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy
| | - Alexa Rosenberg
- Biochemistry Department, University of Nevada, Reno, Nevada 89557
| | | | - Maria Ida De Michelis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Istituto di Biofisica del CNR, Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy
| |
Collapse
|
66
|
Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ, Singh P, Munro K, Smith SP, Snedden WA. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis. Biochem J 2014; 457:127-36. [PMID: 24102643 DOI: 10.1042/bj20131080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many signalling pathways in plants are regulated by the second messenger calcium (Ca(2+)). In the standard model, Ca(2+)-sensor proteins, such as CaM (calmodulin), detect Ca(2+) signals and subsequently regulate downstream targets to advance the signal transduction cascade. In addition to CaM, plants possess many CMLs (CaM-like proteins) that are predicted to function as Ca(2+) sensors, but which remain largely uncharacterized. In the present study, we examined the biochemical properties, subcellular localization and tissue-specific distribution of Arabidopsis CML43. Our data indicate that CML43 displays characteristics typical of Ca(2+) sensors, including high-affinity Ca(2+) binding, conformational changes upon Ca(2+) binding that expose hydrophobic regions and stabilization of structure in the presence of Mg(2+) or Ca(2+). In vivo localization analysis demonstrates that CML43 resides in cytosolic and nuclear compartments. Transgenic plants expressing a CML43:GUS (β-glucoronidase) promoter reporter gene revealed that CML43 promoter activity is restricted almost exclusively to root tips under normal growth conditions. GUS reporter activity in these transgenic plants was strongly increased when exposed to the defence compound SA (salicylic acid). Furthermore, immunoblot analysis revealed that the CML43 protein accumulates following treatment with SA. Collectively, our findings suggest that CML43 functions as a Ca(2+) sensor in root tips during both normal growth and plant immune response.
Collapse
Affiliation(s)
- Kyle W Bender
- *Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Gifford JL, Jamshidiha M, Mo J, Ishida H, Vogel HJ. Comparing the calcium binding abilities of two soybean calmodulins: towards understanding the divergent nature of plant calmodulins. THE PLANT CELL 2013; 25:4512-24. [PMID: 24254124 PMCID: PMC3875733 DOI: 10.1105/tpc.113.113183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 05/23/2023]
Abstract
The discovery that plants contain multiple calmodulin (CaM) isoforms of variable sequence identity to animal CaM suggested an additional level of sophistication in the intracellular role of calcium regulation in plants. Past research has focused on the ability of conserved or divergent plant CaM isoforms to activate both mammalian and plant protein targets. At present, however, not much is known about how these isoforms respond to the signal of an increased cytosolic calcium concentration. Here, using isothermal titration calorimetry and NMR spectroscopy, we investigated the calcium binding properties of a conserved (CaM1) and a divergent (CaM4) CaM isoform from soybean (Glycine max). Both isoforms bind calcium with a semisequential pathway that favors the calcium binding EF-hands of the C-terminal lobe over those of the N-terminal lobe. From the measured dissociation constants, CaM4 binds calcium with a threefold greater affinity than CaM1 (K(d,Ca,mean) of 5.0 versus 14.9 μM) but has a significantly reduced selectivity against the chemically similar magnesium cation that binds preferentially to EF-hand I of both isoforms. The implications of a potential magnesium/calcium competition on the activation of CaM1 and CaM4 are discussed in context with their ability to respond to stimulus-specific calcium signatures and their known physiological roles.
Collapse
Affiliation(s)
- Jessica L. Gifford
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary T2N 1N4, Calgary, Alberta, Canada
| | - Mostafa Jamshidiha
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary T2N 1N4, Calgary, Alberta, Canada
| | - Jeffrey Mo
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary T2N 1N4, Calgary, Alberta, Canada
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary T2N 1N4, Calgary, Alberta, Canada
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
68
|
Schönknecht G. Calcium Signals from the Vacuole. PLANTS (BASEL, SWITZERLAND) 2013; 2:589-614. [PMID: 27137394 PMCID: PMC4844392 DOI: 10.3390/plants2040589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
The vacuole is by far the largest intracellular Ca(2+) store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca(2+) release and Ca(2+) uptake is summarized, and how different vacuolar Ca(2+) channels and Ca(2+) pumps may contribute to Ca(2+) signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca(2+) transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca(2+) channels that could elicit cytosolic [Ca(2+)] transients. Typical second messengers, such as InsP₃ and cADPR, seem to trigger vacuolar Ca(2+) release, but the molecular mechanism of this Ca(2+) release still awaits elucidation. Some vacuolar Ca(2+) channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca(2+) signaling still has to be demonstrated. Ca(2+) pumps in addition to establishing long-term Ca(2+) homeostasis can shape cytosolic [Ca(2+)] transients by limiting their amplitude and duration, and may thus affect Ca(2+) signaling.
Collapse
Affiliation(s)
- Gerald Schönknecht
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
69
|
Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A, Bourque S, Nicolas-Francès V, Ma W, Berkowitz GA, Wendehenne D. There's more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. PLANT PHYSIOLOGY 2013; 163:459-70. [PMID: 23749853 PMCID: PMC3793028 DOI: 10.1104/pp.113.220624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca(2+) and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca(2+) fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca(2+) signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca(2+) and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and Ca(2+) sensors. Notably, we provide new evidence that calmodulin might be regulated at the posttranslational level by NO through S-nitrosylation. Furthermore, we report original transcriptomic data showing that NO produced in response to oligogalacturonide regulates the expression of genes related to Ca(2+) signaling. Deeper insight into the molecules involved in the interplay between Ca(2+) and NO not only permits a better characterization of the Ca(2+) signaling system but also allows us to further understand how plants respond to pathogen attack.
Collapse
|
70
|
Huda KMK, Banu MSA, Tuteja R, Tuteja N. Global calcium transducer P-type Ca²⁺-ATPases open new avenues for agriculture by regulating stress signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3099-109. [PMID: 23918957 DOI: 10.1093/jxb/ert182] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Food security is in danger under the continuous growing threat of various stresses including climate change and global warming, which ultimately leads to a reduction in crop yields. Calcium plays a very important role in many signal transduction pathways including stress signalling. Different extracellular stimuli trigger increases in cytosolic calcium, which is detrimental to plants. To cope with such stresses, plants need to develop efficient efflux mechanisms to maintain ionic homeostasis. The Ca(2+)-ATPases are members of the P-type ATPase superfamily, which perform many fundamental processes in organisms by actively transporting ions across cellular membranes. In recent years, many studies have revealed that, as well as efflux mechanisms, Ca(2+)-ATPases also play critical roles in sensing calcium fluctuations and relaying downstream signals by activating definitive targets, thus modulating corresponding metabolic pathways. As calcium-activated calmodulin (CaM) is reported to play vital roles in stress tolerance, the presence of a unique CaM-binding site in type IIB Ca(2+)-ATPases indicates their potential role in biotic as well as abiotic stress tolerance. The key roles of Ca(2+)-ATPases in transport systems and stress signalling in cellular homeostasis are addressed in this review. A complete understanding of plant defence mechanisms under stress will allow bioengineering of improved crop plants, which will be crucial for food security currently observed worldwide in the context of global climate changes. Overall, this article covers classification, evolution, structural aspects of Ca(2+)-ATPases, and their emerging roles in plant stress signalling.
Collapse
Affiliation(s)
- Kazi Md Kamrul Huda
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
71
|
Li W, Zhu H, Challa GS, Zhang Z. A non-additive interaction in a single locus causes a very short root phenotype in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1189-1200. [PMID: 23381806 DOI: 10.1007/s00122-013-2046-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Non-additive allelic interactions underlie over dominant and under dominant inheritance, which explain positive and negative heterosis. These heteroses are often observed in the aboveground traits, but rarely reported in root. We identified a very short root (VSR) phenotype in the F1 hybrid between the common wheat (Triticum aestivum L.) landrace Chinese Spring and synthetic wheat accession TA4152-71. When germinated in tap water, primary roots of the parental lines reached ~15 cm 10 days after germination, but those of the F1 hybrid were ~3 cm long. Selfing populations segregated at a 1 (long-root) to 1 (short-root) ratio, indicating that VSR is controlled by a non-additive interaction between two alleles in a single gene locus, designated as Vsr1. Genome mapping localized the Vsr1 locus in a 3.8-cM interval delimited by markers XWL954 and XWL2506 on chromosome arm 5DL. When planted in vermiculite with supplemental fertilizer, the F1 hybrid had normal root growth, virtually identical to the parental lines, but the advanced backcrossing populations segregated for VSR, indicating that the F1 VSR expression was suppressed by interactions between other genes in the parental background and the vermiculite conditions. Preliminary physiological analyses showed that the VSR suppression is independent of light status but related to potassium homeostasis. Phenotyping additional hybrids between common wheat and synthetics revealed a high VSR frequency and their segregation data suggested more Vsr loci involved. Because the VSR plants can be regularly maintained and readily phenotyped at the early developmental stage, it provides a model for studies of non-additive interactions in wheat.
Collapse
Affiliation(s)
- Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress Laboratory, Brookings, SD 57007, USA.
| | | | | | | |
Collapse
|
72
|
Kamrul Huda KM, Yadav S, Akhter Banu MS, Trivedi DK, Tuteja N. Genome-wide analysis of plant-type II Ca(2+)ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 65:32-47. [PMID: 23416494 DOI: 10.1016/j.plaphy.2013.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/18/2013] [Indexed: 05/05/2023]
Abstract
The Plant Ca(2+)ATPases are members of the P-type ATPase superfamily and play essential roles in pollen tube growth, vegetative development, inflorescence architecture, stomatal opening or closing as well as transport of Ca(2+), Mn(2+) and Zn(2+). Their role in abiotic stress adaptation by activation of different signaling pathways is emerging. In Arabidopsis, the P-type Ca(2+)ATPases can be classified in two distinct groups: type IIA (ECA) and type IIB (ACA). The availability of rice genome sequence allowed performing a genome-wide search for P-type Ca(2+)ATPases proteins, and the comparison of the identified proteins with their homologs in Arabidopsis model plant. In the present study, we identified the P-type II Ca(2+)ATPases from rice by analyzing their phylogenetic relationship, multiple alignment, cis-regulatory elements, protein domains, motifs and homology percentage. The phylogenetic analysis revealed that rice type IIA Ca(2+)ATPases clustered with Arabidopsis type IIA Ca(2+)ATPases and showed high sequence similarity within the group, whereas rice type IIB Ca(2+)ATPases presented variable sequence similarities with Arabidopsis type IIB members. The protein homology modeling, identification of putative transmembrane domains and conserved motifs of rice P-type II Ca(2+)ATPases provided information on their functions and structural architecture. The analysis of P-type II Ca(2+)ATPases promoter regions in rice showed multiple stress-induced cis-acting elements. The expression profile analysis indicated vital roles of P-type II Ca(2+)ATPases in stress signaling, plant development and abiotic stress responses. The comprehensive analysis and expression profiling provided a critical platform for functional characterization of P-type II Ca(2+)ATPase genes that could be applied in engineering crop plants with modified calcium signaling and homeostatic pathways.
Collapse
Affiliation(s)
- Kazi Md Kamrul Huda
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
73
|
Huda KMK, Banu MSA, Pathi KM, Tuteja N. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants. PLoS One 2013; 8:e57803. [PMID: 23469243 PMCID: PMC3585799 DOI: 10.1371/journal.pone.0057803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/25/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. RESULTS The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. CONCLUSIONS The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this promoter could grant wide applicability in plant biotechnology.
Collapse
Affiliation(s)
- Kazi Md. Kamrul Huda
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mst. Sufara Akhter Banu
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Krishna Mohan Pathi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
74
|
Cheval C, Aldon D, Galaud JP, Ranty B. Calcium/calmodulin-mediated regulation of plant immunity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1766-71. [PMID: 23380707 DOI: 10.1016/j.bbamcr.2013.01.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/20/2013] [Accepted: 01/21/2013] [Indexed: 01/07/2023]
Abstract
Calcium is a universal messenger involved in the modulation of diverse developmental and adaptive processes in response to various physiological stimuli. Ca(2+) signals are represented by stimulus-specific Ca(2+) signatures that are sensed and translated into proper cellular responses by diverse Ca(2+) binding proteins and their downstream targets. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca(2+) sensors that control diverse cellular functions by regulating the activity of various target proteins. Recent advances in our understanding of Ca(2+)/CaM-mediated signalling in plants have emerged from investigations into plant defence responses against various pathogens. Here, we focus on significant progress made in the identification of CaM/CML-regulated components involved in the generation of Ca(2+) signals and Ca(2+)-dependent regulation of gene expression during plant immune responses. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
75
|
Huang SS, Kirchoff BK, Liao JP. Effect of heat shock on ultrastructure and calcium distribution in Lavandula pinnata L. glandular trichomes. PROTOPLASMA 2013; 250:185-196. [PMID: 22418827 DOI: 10.1007/s00709-012-0393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The effects of heat shock (HS) on the ultrastructure and calcium distribution of Lavandula pinnata secretory trichomes are examined using transmission electron microscopy and potassium antimonate precipitation. After 48-h HS at 40°C, plastids become distorted and lack stroma and osmiophilic deposits, the cristae of the mitochondria become indistinct, the endoplasmic reticulum acquires a chain-like appearance with ribosomes prominently attached to the lamellae, and the plasma and organelle membranes become distorted. Heat shock is associated with a decrease in calcium precipitates in the trichomes, while the number of precipitates increases in the mesophyll cells. Prolonged exposure to elevated calcium levels may be toxic to the mesophyll cells, while the lack of calcium in the glands cell may deprive them of the normal protective advantages of elevated calcium levels. The inequality in calcium distribution may result not only from uptake from the transpiration stream, but also from redistribution of calcium from the trichomes to the mesophyll cells.
Collapse
Affiliation(s)
- S S Huang
- Guangdong Research Institute of Traditional Chinese Medicine, Guangzhou 510520, China.
| | | | | |
Collapse
|
76
|
Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
77
|
Manzoor H, Chiltz A, Madani S, Vatsa P, Schoefs B, Pugin A, Garcia-Brugger A. Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors. Cell Calcium 2012; 51:434-44. [PMID: 22410211 DOI: 10.1016/j.ceca.2012.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 12/26/2022]
Abstract
Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak. In addition, both elicitors induced a chloroplastic [Ca(2+)] elevation peaking later in comparison to cytosolic [Ca(2+)] elevation. In cryptogein-treated cells, pharmacological studies indicated that IP(3) should play an important role in Ca(2+) signaling contrarily to cADPR or nitric oxide, which have limited or no effect on [Ca(2+)] variations. Our data also showed that, depending on [Ca(2+)] fluxes at the plasma membrane, cryptogein triggered a mitochondrial respiration increase and affected excess energy dissipation mechanisms in chloroplasts. Altogether the results indicate that cryptogein profoundly impacted cell functions at many levels, including organelles.
Collapse
Affiliation(s)
- Hamid Manzoor
- INRA, UMR Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
78
|
Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Häweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. PLANT PHYSIOLOGY 2012; 159:798-809. [PMID: 22535420 PMCID: PMC3375942 DOI: 10.1104/pp.111.192575] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/24/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by FLAGELLIN SENSING2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FLS2-mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca(2+)-ATPase (ACA8) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are required for limiting the growth of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca(2+) ions, which is crucial for many of the well-described downstream responses (e.g. generation of reactive oxygen species and the transcriptional activation of defense-associated genes). Mutant aca8 aca10 plants show decreased flg22-induced Ca(2+) and reactive oxygen species bursts and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase-dependent flg22-induced gene expression is elevated, whereas calcium-dependent protein kinase-dependent flg22-induced gene expression is reduced. These results demonstrate that the fine regulation of Ca(2+) fluxes across the plasma membrane is critical for the coordination of the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor complex and signaling kinases via the secondary messenger Ca(2+). ACA8 also interacts with other RKs such as BRI1 and CLV1 known to regulate plant development, and both aca8 and aca10 mutants show morphological phenotypes, suggesting additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca(2+) ATPases appear to represent general regulatory components of RK-mediated signaling pathways.
Collapse
|
79
|
Haojun Z, Yaoling W, Ke Z, Jin L, Junling W. Effects of NaF on the expression of intracellular Ca2+ fluxes and apoptosis and the antagonism of taurine in murine neuron. Toxicol Mech Methods 2012; 22:305-8. [PMID: 22356551 DOI: 10.3109/15376516.2012.657259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sodium fluoride (NaF) has been shown to be cytotoxic and produces inflammatory responses in humans. However, the cellular mechanisms underlying the neurotoxicity of fluoride are unclear. The present study aims to define a possible mechanism of NaF-induced neurotoxicity with respect to apoptosis and intracellular Ca(2+) fluxes. Meanwhile, the cytoprotective role of taurine in intervention, the toxic effects of NaF on neurons, is also investigated. The primary mouse hippocampal neurons were incubated with 5.0, 10.0, 15.0, 20.0, and 40.0 mg NaF/L in vitro and Kunming mice were exposed to 0.7, 2.8, and 11.2 mg NaF/kg and 7.5 and 15.0 mg taurine/kg in vivo. Intracellular Ca(2+) fluxes and apoptosis were assayed. Compared with the control, the significant differences of intracellular Ca(2+) concentration and apoptotic peaks were found in 5.0-40.0 mg NaF/L groups in vitro (p < 0.01) and in the groups of 0.7-11.2 mg NaF/kg in vivo (p < 0.01). Instantaneously, taurine can minimize F-induced neurotoxicity significantly at doses of 7.5 and 15.0 mg/kg (p < 0.01). The present study herein suggested that NaF could increase intercellular Ca(2+) concentration leading to apoptosis. Meanwhile, taurine could minimize neurotoxicity caused by fluoride through decreasing intercellular Ca(2+) concentration and cell apoptosis.
Collapse
Affiliation(s)
- Zhang Haojun
- People's Hospital of Gansu Province, Lanzhou, China
| | | | | | | | | |
Collapse
|
80
|
Martinoia E, Meyer S, De Angeli A, Nagy R. Vacuolar transporters in their physiological context. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:183-213. [PMID: 22404463 DOI: 10.1146/annurev-arplant-042811-105608] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vacuoles in vegetative tissues allow the plant surface to expand by accumulating energetically cheap inorganic osmolytes, and thereby optimize the plant for absorption of sunlight and production of energy by photosynthesis. Some specialized cells, such as guard cells and pulvini motor cells, exhibit rapid volume changes. These changes require the rapid release and uptake of ions and water by the vacuole and are a prerequisite for plant survival. Furthermore, seed vacuoles are important storage units for the nutrients required for early plant development. All of these fundamental processes rely on numerous vacuolar transporters. During the past 15 years, the transporters implicated in most aspects of vacuolar function have been identified and characterized. Vacuolar transporters appear to be integrated into a regulatory network that controls plant metabolism. However, little is known about the mode of action of these fundamental processes, and deciphering the underlying mechanisms remains a challenge for the future.
Collapse
Affiliation(s)
- Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
81
|
Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG. Evolution of plant p-type ATPases. FRONTIERS IN PLANT SCIENCE 2012; 3:31. [PMID: 22629273 PMCID: PMC3355532 DOI: 10.3389/fpls.2012.00031] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/28/2012] [Indexed: 05/18/2023]
Abstract
Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na(+) and H(+) pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na(+) pumps (P2C and P2D ATPases) as well as a primitive H(+)-ATPase. Both Na(+) and H(+) pumps also co-exist in the moss P. patens, which has a P2D Na(+)-ATPase. In contrast to the primitive H(+)-ATPases in chlorophytes and P. patens, the H(+)-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H(+) pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.
Collapse
Affiliation(s)
- Christian N. S. Pedersen
- Center for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Bioinformatics Research Centre (BiRC), Faculty of Science and Technology, Aarhus UniversityAarhus, Denmark
| | - Kristian B. Axelsen
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, Center for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, University of CopenhagenFrederiksberg C, Denmark
- Swiss-Prot Group, Swiss Institute of BioinformaticsGeneva, Switzerland
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Michael G. Palmgren
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, Center for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, University of CopenhagenFrederiksberg C, Denmark
- *Correspondence: Michael G. Palmgren, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. e-mail:
| |
Collapse
|
82
|
Spalding EP, Harper JF. The ins and outs of cellular Ca(2+) transport. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:715-20. [PMID: 21865080 PMCID: PMC3230696 DOI: 10.1016/j.pbi.2011.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 05/19/2023]
Abstract
The cytoplasmic Ca(2+) signals that participate in nearly all aspects of plant growth and development encode information as binary switches or information-rich signatures. They are the result of influx (thermodynamically passive) and efflux (thermodynamically active) activities mediated by membrane transport proteins. On the influx side, confirming the molecular identities of Ca(2+)-permeable channels is still a major research topic. Cyclic nucleotide-gated channels and glutamate receptor-like channels are candidates well supported by evidence. On the efflux side, CAX antiporters and P-type ATPase pumps are the principal molecular entities. Both of these active transporters load Ca(2+) into specific compartments and have the potential to reduce the magnitude and duration of a Ca(2+) transient. Recent studies indicate calmodulin-activated Ca(2+) pumps in endomembrane systems can dampen the magnitude and duration of a Ca(2+) transient that could otherwise grow into a Ca(2+) cell death signature. An important challenge following molecular characterization of the influx and efflux pathways is to understand how they are coordinately regulated to produce a Ca(2+) switch or encode specific information into a Ca(2+) signature.
Collapse
Affiliation(s)
- Edgar P. Spalding
- Edgar P. Spalding, University of Wisconsin-Madison, Department of Botany, 430 Lincoln Drive, Madison, WI 53706, phone: +1-608-265-5294, fax +1-608-262-7509
| | - Jeffrey F. Harper
- Jeffrey F. Harper, University of Nevada, Reno, Biochemistry Department MS-330, 220 Howard Building, Reno, NV 89557, USA, phone: +1-775-784-1349, fax: +1-775-784-1286
| |
Collapse
|
83
|
Gilliham M, Athman A, Tyerman SD, Conn SJ. Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity--another role for TPC1? PLANT SIGNALING & BEHAVIOR 2011; 6:1656-61. [PMID: 22067997 PMCID: PMC3329329 DOI: 10.4161/psb.6.11.17797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacuoles of different leaf cell-types vary in their capacity to store specific mineral elements. In Arabidopsis thaliana potassium (K) accumulates preferentially in epidermal and bundle sheath cells whereas calcium (Ca) and magnesium (Mg) are stored at high concentrations only in mesophyll cells. Accumulation of these elements in a particular vacuole can be reciprocal, i.e. as [K]vac increases [Ca]vac decreases. Mesophyll-specific Ca-storage involves CAX1 (a Ca2+/H+ antiporter) and Mg-storage involves MRS2-1/MGT2 and MRS2-5/MGT3 (both Mg2+-transporters), all of which are preferentially expressed in the mesophyll and encode tonoplast-localised proteins. However, what controls leaf-cell [K]vac is less well understood. TPC1 encodes the two-pore Ca2+ channel protein responsible for the tonoplast-localised SV cation conductance, and is highly expressed in cell-types that not preferentially accumulate Ca. Here, we evaluate evidence that TPC1 has a role in maintaining differential K and Ca storage across the leaf, and propose a function for TPC1 in releasing Ca2+ from epidermal and bundle sheath cell vacuoles to maintain low [Ca]vac. Mesophyll-specific Ca storage is essential to maintain apoplastic free Ca concentration at a level that does not perturb a range of physiological parameters including leaf gas exchange, cell wall extensibility and growth. When plants are grown under serpentine conditions (high Mg/Ca ratio), MGT2/MRS2-1 and MGT3/MRS2-5 are required to sequester additional Mg2+ in vacuoles to replace Ca2+ as an osmoticum to maintain growth. An updated model of Ca2+ and Mg2+ transport in leaves is presented as a reference for future interrogation of nutritional flows and elemental storage in plant leaves.
Collapse
Affiliation(s)
- Matthew Gilliham
- School of Agriculture, Food, and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia.
| | | | | | | |
Collapse
|
84
|
Ma W. Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:342-6. [PMID: 21889039 DOI: 10.1016/j.plantsci.2011.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 05/02/2023]
Abstract
The increase of cytosolic Ca(2+) is a vital event in plant pathogen signaling cascades. Molecular components linking pathogen signal perception to cytosolic Ca(2+) increase have not been well characterized. Plant cyclic nucleotide gated channels (CNGCs) play important roles in the pathogen signaling cascade, in terms of facilitating Ca(2+) uptake into the cytosol in response to pathogen and pathogen associated molecular pattern (PAMP) signals. Perception of pathogens leads to cyclic nucleotide production and the activation of CNGCs. The Ca(2+) signal is transduced through Ca(2+) sensors (Calmodulin (CaM) and CaM-like proteins (CMLs)), which regulates the production of nitric oxide (NO). In addition, roles of Ca(2+)/CaM interacting proteins such as CaM binding Protein (CBP) and CaM-binding transcription activators (CAMTAs)) have been recently identified in the plant defense signaling cascade as well. Furthermore, Ca(2+)-dependent protein kinases (CDPKs) have been found to function as components in terms of transcriptional activation in response to a pathogen (PAMP) signal. Although evidence shows that Ca(2+) is an essential signaling component upstream from many vital signaling molecules (such as NO), some work also indicates that these downstream signaling components can also regulate Ca(2+) homeostasis. NO can induce cytosolic Ca(2+) increase (through activation of plasma membrane- and intracellular membrane-localized Ca(2+) channels) during pathogen signaling cascades. Thus, much work is needed to further elucidate the complexity of the plant pathogen signaling network in the future.
Collapse
Affiliation(s)
- Wei Ma
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
85
|
Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE. Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. PLANT PHYSIOLOGY 2011; 156:1797-807. [PMID: 21693672 PMCID: PMC3149931 DOI: 10.1104/pp.111.181008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 05/20/2023]
Abstract
Wounding initiates a strong and largely jasmonate-dependent remodelling of the transcriptome in the leaf blades of Arabidopsis (Arabidopsis thaliana). How much control do jasmonates exert on wound-induced protein repatterning in leaves? Replicated shotgun proteomic analyses of 2.5-mm-wide leaf strips adjacent to wounds revealed 106 differentially regulated proteins. Many of these gene products have not emerged as being wound regulated in transcriptomic studies. From experiments using the jasmonic acid (JA)-deficient allene oxide synthase mutant we estimated that approximately 95% of wound-stimulated changes in protein levels were deregulated in the absence of JA. The levels of two tonoplast proteins already implicated in defense response regulation, TWO-PORE CHANNEL1 and the calcium-V-ATPase ACA4 increased on wounding, but their transcripts were not wound inducible. The data suggest new roles for jasmonate in controlling the levels of calcium-regulated pumps and transporters, proteins involved in targeted proteolysis, a putative bacterial virulence factor target, a light-dependent catalyst, and a key redox-controlled enzyme in glutathione synthesis. Extending the latter observation we found that wounding increased the proportion of oxidized glutathione in leaves, but only in plants able to synthesize JA. The oxidizing conditions generated through JA signaling near wounds help to define the cellular environment in which proteome remodelling occurs.
Collapse
|
86
|
Perochon A, Aldon D, Galaud JP, Ranty B. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 2011; 93:2048-53. [PMID: 21798306 DOI: 10.1016/j.biochi.2011.07.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/09/2011] [Indexed: 01/01/2023]
Abstract
Calmodulin (CaM) is a primary calcium sensor in all eukaryotes. It binds calcium and regulates the activity of a wide range of effector proteins in response to calcium signals. The list of CaM targets includes plant-specific proteins whose functions are progressively being elucidated. Plants also possess numerous calmodulin-like proteins (CMLs) that appear to have evolved unique functions. Functional studies of CaM and CMLs in plants highlight the importance of this protein family in the regulation of plant development and stress responses by converting calcium signals into transcriptional responses, protein phosphorylation or metabolic changes. This review summarizes some of the significant progress made by biochemical and genetic studies in identifying the properties and physiological functions of plant CaMs and CMLs. We discuss emerging paradigms in the field and highlight the areas that need further investigation.
Collapse
Affiliation(s)
- Alexandre Perochon
- UMR 5546 CNRS/Universite Paul Sabatier Toulouse III, Pole de biotechnologie vegetale, Auzeville, Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
87
|
Yukihiro M, Hiramatsu T, Kawano T. Lethal impacts of cigarette smoke in cultured tobacco cells. Tob Induc Dis 2011; 9:8. [PMID: 21762527 PMCID: PMC3161840 DOI: 10.1186/1617-9625-9-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 07/16/2011] [Indexed: 01/17/2023] Open
Abstract
Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO) scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.
Collapse
Affiliation(s)
- Masaru Yukihiro
- Laboratory of Chemical Biology and Bioengineering, Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan.
| | | | | |
Collapse
|
88
|
Li X, Qian J, Wang C, Zheng K, Ye L, Fu Y, Han N, Bian H, Pan J, Wang J, Zhu M. Regulating cytoplasmic calcium homeostasis can reduce aluminum toxicity in yeast. PLoS One 2011; 6:e21148. [PMID: 21698264 PMCID: PMC3115986 DOI: 10.1371/journal.pone.0021148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/20/2011] [Indexed: 12/11/2022] Open
Abstract
Our previous study suggested that increased cytoplasmic calcium (Ca) signals may mediate aluminum (Al) toxicity in yeast (Saccharomyces cerevisiae). In this report, we found that a yeast mutant, pmc1, lacking the vacuolar calcium ion (Ca2+) pump Ca2+-ATPase (Pmc1p), was more sensitive to Al treatment than the wild-type strain. Overexpression of either PMC1 or an anti-apoptotic factor, such as Bcl-2, Ced-9 or PpBI-1, decreased cytoplasmic Ca2+ levels and rescued yeast from Al sensitivity in both the wild-type and pmc1 mutant. Moreover, pretreatment with the Ca2+ chelator BAPTA-AM sustained cytoplasmic Ca2+ at low levels in the presence of Al, effectively making the cells more tolerant to Al exposure. Quantitative RT-PCR revealed that the expression of calmodulin (CaM) and phospholipase C (PLC), which are in the Ca2+ signaling pathway, was down-regulated under Al stress. This effect was largely counteracted when cells overexpressed anti-apoptotic Ced-9 or were pretreated with BAPTA-AM. Taken together, our results suggest that the negative regulation of Al-induced cytoplasmic Ca signaling is a novel mechanism underlying internal resistance to Al toxicity.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Qian
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chaoqun Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ke Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (MZ); (HB)
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Junhui Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Muyuan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (MZ); (HB)
| |
Collapse
|
89
|
Reddy ASN, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. THE PLANT CELL 2011; 23:2010-32. [PMID: 21642548 PMCID: PMC3159525 DOI: 10.1105/tpc.111.084988] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 05/18/2023]
Abstract
Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca(2+) level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca(2+) and Ca(2+)/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca(2+)- and Ca(2+)/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca(2+)-regulated transcriptional networks.
Collapse
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
90
|
Ma W, Berkowitz GA. Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. THE NEW PHYTOLOGIST 2011; 190:566-72. [PMID: 21166809 DOI: 10.1111/j.1469-8137.2010.03577.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ca(2+) elevation in the cytosol is an essential early event during pathogen response signaling cascades. However, the specific ion channels involved in Ca(2+) influx into plant cells, and how Ca(2+) signals are initiated and regulate downstream events during pathogen defense responses, are at present unclear. Plant cyclic nucleotide gated ion channels (CNGCs) provide a pathway for Ca(2+) conductance across the plasma membrane (PM) and facilitate cytosolic Ca(2+) elevation in response to pathogen signals. Recent studies indicate that the recognition of pathogens results in cyclic nucleotide production and the activation of CNGCs, which leads to downstream generation of pivotal signaling molecules (such as nitric oxide (NO)). Calmodulins (CaMs) and CaM-like proteins (CMLs) are also involved in this signaling, functioning as Ca(2+) sensors and mediating the synthesis of NO during the plant pathogen response signaling cascade. In this article, these and other pivotal signaling components downstream from the Ca(2+) signal, such as Ca(2+)-dependent protein kinases (CDPKs) and CaM-binding transcription activators (CAMTAs), are discussed in terms of their involvement in the pathogen response signal transduction cascade.
Collapse
Affiliation(s)
- Wei Ma
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
91
|
Peiter E. The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 2011; 50:120-8. [PMID: 21376393 DOI: 10.1016/j.ceca.2011.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/04/2011] [Accepted: 02/05/2011] [Indexed: 12/20/2022]
Abstract
This review portrays the plant vacuole as both a source and a target of Ca(2+) signals. In plants, the vacuole represents a Ca(2+) store of enormous size and capacity. Total and free Ca(2+) concentrations in the vacuole vary with plant species, cell type, and environment, which is likely to have an impact on vacuolar function and the release of vacuolar Ca(2+). It is known that cytosolic Ca(2+) signals are often generated by release of the ion from internal stores, but in very few cases has a role of the vacuole been directly demonstrated. Biochemical and electrophysical studies have provided evidence for the operation of ligand- and voltage-gated Ca(2+)-permeable channels in the vacuolar membrane. The underlying molecular mechanisms are largely unknown with one exception: the slow vacuolar channel, encoded by TPC1, is the only vacuolar Ca(2+)-permeable channel cloned to date. However, due to its complex regulation and its low selectivity amongst cations, the role of this channel in Ca(2+) signalling is still debated. Many transport proteins at the vacuolar membrane are also targets of Ca(2+) signals, both by direct binding of Ca(2+) and by Ca(2+)-dependent phosphorylation. This enables the operation of feedback mechanisms and integrates vacuolar transport systems in the wider signalling network of the plant cell.
Collapse
Affiliation(s)
- Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin-Luther-University of Halle-Wittenberg, 06099 Halle (Saale), Germany.
| |
Collapse
|
92
|
Pittman JK. Vacuolar Ca(2+) uptake. Cell Calcium 2011; 50:139-46. [PMID: 21310481 DOI: 10.1016/j.ceca.2011.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022]
Abstract
Calcium transporters that mediate the removal of Ca(2+) from the cytosol and into internal stores provide a critical role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. The vacuole is a major calcium store in many organisms, particularly plants and fungi. Two main pathways facilitate the accumulation of Ca(2+) into vacuoles, Ca(2+)-ATPases and Ca(2+)/H(+) exchangers. Here I review the biochemical and regulatory features of these transporters that have been characterised in yeast and plants. These Ca(2+) transport mechanisms are compared with those being identified from other vacuolated organisms including algae and protozoa. Studies suggest that Ca(2+) uptake into vacuoles and other related acidic Ca(2+) stores occurs by conserved mechanisms which developed early in evolution.
Collapse
Affiliation(s)
- Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
93
|
Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AAR, Burton R, Kaiser BN, Tyerman SD, Leigh RA. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. THE PLANT CELL 2011; 23:240-57. [PMID: 21258004 PMCID: PMC3051233 DOI: 10.1105/tpc.109.072769] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 11/15/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.
Collapse
Affiliation(s)
- Simon J Conn
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|