51
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
52
|
Hall H, Ellis B. Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem. BMC PLANT BIOLOGY 2013; 13:14. [PMID: 23350960 PMCID: PMC3635874 DOI: 10.1186/1471-2229-13-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. RESULTS By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. CONCLUSIONS The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.
Collapse
Affiliation(s)
- Hardy Hall
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Currently: Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
53
|
Mohler KE, Simmons TJ, Fry SC. Mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) re-models hemicelluloses in Equisetum shoots but not in barley shoots or Equisetum callus. THE NEW PHYTOLOGIST 2013; 197:111-122. [PMID: 23078260 DOI: 10.1111/j.1469-8137.2012.04371.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 05/09/2023]
Abstract
Among land-plant hemicelluloses, xyloglucan is ubiquitous, whereas mixed-linkage (1→3),(1→4)-β-D-glucan (MLG) is confined to the Poales (e.g. cereals) and Equisetales (horsetails). The enzyme MLG:xyloglucan endotransglucosylase (MXE) grafts MLG to xyloglucan. In Equisetum, MXE often exceeds extractable xyloglucan endotransglucosylase (XET) activity; curiously, cereals lack extractable MXE. We investigated whether barley possesses inextractable MXE. Grafting of endogenous MLG or xyloglucan onto exogenous [(3)H]xyloglucan oligosaccharides in vivo indicated MXE and XET action, respectively. Extractable MXE and XET activities were assayed in vitro. MXE and XET actions were both detectable in living Equisetum fluviatile shoots, the MXE : XET ratio increasing with age. However, only XET action was observed in barley coleoptiles, leaves and roots (which all contained MLG) and in E. fluviatile intercalary meristems and callus (which lacked MLG). In E. fluviatile, extractable MXE activity was high in mature shoots, but extremely low in callus and young shoots; in E. arvense strobili, it was undetectable. Barley possesses neither extractable nor inextractable MXE, despite containing both of its substrates and high XET activity. As the Poales are xyloglucan-poor, the role of their abundant endotransglucosylases remains enigmatic. The distribution of MXE action and activity within Equisetum suggests a strengthening role in ageing tissues.
Collapse
Affiliation(s)
- Kyle E Mohler
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| |
Collapse
|
54
|
Kaewthai N, Gendre D, Eklöf JM, Ibatullin FM, Ezcurra I, Bhalerao RP, Brumer H. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. PLANT PHYSIOLOGY 2013; 161:440-54. [PMID: 23104861 PMCID: PMC3532273 DOI: 10.1104/pp.112.207308] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/25/2012] [Indexed: 05/05/2023]
Abstract
The molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A. Enzyme kinetic analysis of recombinant AtXTH31 confirmed this prediction and indicated that this enzyme had similar catalytic properties to the nasturtium (Tropaeolum majus) xyloglucanase1 responsible for storage xyloglucan hydrolysis during germination. Global analysis of Genevestigator data indicated that AtXTH31 and the paralogous AtXTH32 were abundantly expressed in expanding tissues. Microscopy analysis, utilizing the resorufin β-glycoside of the xyloglucan oligosaccharide XXXG as an in situ probe, indicated significant xyloglucan endohydrolase activity in specific regions of both roots and hypocotyls, in good correlation with transcriptomic data. Moreover, this hydrolytic activity was essentially completely eliminated in AtXTH31/AtXTH32 double knockout lines. However, single and double knockout lines, as well as individual overexpressing lines, of AtXTH31 and AtXTH32 did not demonstrate significant growth or developmental phenotypes. These results suggest that although xyloglucan polysaccharide hydrolysis occurs in parallel with primary wall expansion, morphological effects are subtle or may be compensated by other mechanisms. We hypothesize that there is likely to be an interplay between these xyloglucan endohydrolases and recently discovered apoplastic exo-glycosidases in the hydrolytic modification of matrix xyloglucans.
Collapse
Affiliation(s)
| | | | - Jens M. Eklöf
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Farid M. Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Ines Ezcurra
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Rishikesh P. Bhalerao
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| |
Collapse
|
55
|
Albornos L, Martín I, Pérez P, Marcos R, Dopico B, Labrador E. Promoter activities of genes encoding β-galactosidases from Arabidopsis a1 subfamily. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:223-32. [PMID: 23000815 DOI: 10.1016/j.plaphy.2012.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/27/2012] [Indexed: 05/01/2023]
Abstract
Promoter regions of each of the six AtBGAL gene of the subfamily a1 of Arabidopsis thaliana were used to drive the expression of the β-glucuronidase gene. The pattern of promoters (pAtBGAL) activity was followed by histological staining during plant development. pAtBGAL1, pAtBGAL3 and pAtBGAL4 showed a similar activity pattern, being stronger in cells and organs in expansion, and the staining decreasing when cell expansion decreased with age. That indicates a consistent involvement of the encoded β-galactosidases in cells undergoing cell wall extension or remodelling in cotyledons, leaves and flower buds. These promoters were also active in the calyptra cells and in pollen grains. pAtBGAL2 activity showed a clear relationship with hypocotyl elongation in both light and dark conditions and, like pAtBGAL1, pAtBGAL3 and pAtBGAL4, it was detected during the expansion of cotyledons, rosette leaves and cauline leaves. Its activity was also intense in the early stages of flower and fruit development. pAtBGAL5 was the only one among those from the subfamily a1 that was active in the trichomes that appear throughout the plant, indicating a high specificity of the AtBGAL5 protein and its involvement in the cell wall changes that accompany the formation of the trichome. The activity of pAtBGAL5 was also high in radicles and roots, except in the meristematic area of these organs, and during seed formation. Finally, the activity of pAtBGAL12 was mainly detected in meristematic zones of the plant: the leaf primordium, emerging secondary roots and developing seeds, which indicates an involvement in the differentiation process.
Collapse
Affiliation(s)
- Lucía Albornos
- Dpto. de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
56
|
Neumetzler L, Humphrey T, Lumba S, Snyder S, Yeats TH, Usadel B, Vasilevski A, Patel J, Rose JKC, Persson S, Bonetta D. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS One 2012; 7:e42914. [PMID: 22916179 PMCID: PMC3419242 DOI: 10.1371/journal.pone.0042914] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/15/2012] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.
Collapse
Affiliation(s)
- Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Tania Humphrey
- Vineland Research and Innovation Centre, Vineland Station, Ontario, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Snyder
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Trevor H. Yeats
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Björn Usadel
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | | | - Jignasha Patel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Dario Bonetta
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
57
|
Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ. Arabidopsis GT34 family contains five xyloglucan α-1,6-xylosyltransferases. THE NEW PHYTOLOGIST 2012; 195:585-595. [PMID: 22670626 DOI: 10.1111/j.1469-8137.2012.04196.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome includes seven family 34 glycosyltransferase (GT34) encoding genes. XXT1 and XXT2 have previously been shown to encode XyG α-1,6-xylosyltransferases, while knockout mutants of a third, XXT5, exhibit decreased XyG content, suggesting a similar activity. Here, we extend the study to the rest of the Arabidopsis GT34 genes in terms of biochemical activity and their roles in XyG biosynthesis. The enzyme activity of XXTs was investigated using recombinant protein expressed in E. coli. XyG analysis of single and double T-DNA insertion knockouts, together with overexpression of GT34s in selected mutant lines, provided detailed function of each gene. We reveal the activity of the third member of the GT34 gene family (XXT4) that exhibits xylosyltransferase activity. Double mutants for either xxt2 or xxt5 had a large impact on XyG content, structure and size distribution. Overexpression of the remaining member, XXT3, was able to restore XyG epitopes in xxt2, xxt5 and xxt2 xxt5 double knockouts, suggesting that it also encodes a protein with XXT activity. Our work demonstrates that five of the seven Arabidopsis GT34 genes encode XXT enzymes.
Collapse
Affiliation(s)
- Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - David Brocklehurst
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | - Clare Steele-King
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | - David A Ashford
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | - Leonardo D Gomez
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | | |
Collapse
|
58
|
Franková L, Fry SC. Trans-α-xylosidase and trans-β-galactosidase activities, widespread in plants, modify and stabilize xyloglucan structures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:45-60. [PMID: 22360414 DOI: 10.1111/j.1365-313x.2012.04966.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell-wall components are hydrolysed by numerous plant glycosidase and glycanase activities. We investigated whether plant enzymes also modify xyloglucan structures by transglycosidase activities. Diverse angiosperm extracts exhibited transglycosidase activities that progressively transferred single sugar residues between xyloglucan heptasaccharide (XXXG or its reduced form, XXXGol) molecules, at 16 μM and above, creating octa- to decasaccharides plus smaller products. We measured remarkably high transglycosylation:hydrolysis ratios under optimized conditions. To identify the transferred monosaccharide(s), we devised a dual-labelling strategy in which a neutral radiolabelled oligosaccharide (donor substrate) reacted with an amino-labelled non-radioactive oligosaccharide (acceptor substrate), generating radioactive cationic products. For example, 37 μM [Xyl-³H]XXXG plus 1 mM XXLG-NH₂ generated ³H-labelled cations, demonstrating xylosyl transfer, which exceeded xylosyl hydrolysis 1.6- to 7.3-fold, implying the presence of enzymes that favour transglycosylation. The transferred xylose residues remained α-linked but were relatively resistant to hydrolysis by plant enzymes. Driselase digestion of the products released a trisaccharide (α-[³H]xylosyl-isoprimeverose), indicating that a new xyloglucan repeat unit had been formed. In similar assays, [Gal-³H]XXLG and [Gal-³H]XLLG (but not [Fuc-³H]XXFG) yielded radioactive cations. Thus plants exhibit trans-α-xylosidase and trans-β-galactosidase (but not trans-α-fucosidase) activities that graft sugar residues from one xyloglucan oligosaccharide to another. Reconstructing xyloglucan oligosaccharides in this way may alter oligosaccharin activities or increase their longevity in vivo. Trans-α-xylosidase activity also transferred xylose residues from xyloglucan oligosaccharides to long-chain hemicelluloses (xyloglucan, water-soluble cellulose acetate, mixed-linkage β-glucan, glucomannan and arabinoxylan). With xyloglucan as acceptor substrate, such an activity potentially affects the polysaccharide's suitability as a substrate for xyloglucan endotransglucosylase action and thereby modulates cell expansion. We conclude that certain proteins annotated as glycosidases can function as transglycosidases.
Collapse
Affiliation(s)
- Lenka Franková
- Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
59
|
Franková L, Fry SC. Trans-α-xylosidase, a widespread enzyme activity in plants, introduces (1→4)-α-d-xylobiose side-chains into xyloglucan structures. PHYTOCHEMISTRY 2012; 78:29-43. [PMID: 22425285 DOI: 10.1016/j.phytochem.2012.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Angiosperms possess a retaining trans-α-xylosidase activity that catalyses the inter-molecular transfer of xylose residues between xyloglucan structures. To identify the linkage of the newly transferred α-xylose residue, we used [Xyl-(3)H]XXXG (xyloglucan heptasaccharide) as donor substrate and reductively-aminated xyloglucan oligosaccharides (XGO-NH(2)) as acceptor. Asparagus officinalis enzyme extracts generated cationic radioactive products ([(3)H]Xyl·XGO-NH(2)) that were Driselase-digestible to a neutral trisaccharide containing an α-[(3)H]xylose residue. After borohydride reduction, the trimer exhibited high molybdate-affinity, indicating xylobiosyl-(1→6)-glucitol rather than a di-xylosylated glucitol. Thus the trans-α-xylosidase had grafted an additional α-[(3)H]xylose residue onto the xylose of an isoprimeverose unit. The trisaccharide was rapidly acetolysed to an α-[(3)H]xylobiose, confirming the presence of an acetolysis-labile (1→6)-bond. The α-[(3)H]xylobiitol formed by reduction of this α-[(3)H]xylobiose had low molybdate-affinity, indicating a (1→2) or (1→4) linkage. In NaOH, the α-[(3)H]xylobiose underwent alkaline peeling at the moderate rate characteristic of a (1→4)-disaccharide. Finally, we synthesised eight non-radioactive xylobioses [α and β; (1↔1), (1→2), (1→3) and (1→4)] and found that the [(3)H]xylobiose co-chromatographed only with (1→4)-α-xylobiose. We conclude that Asparagus trans-α-xylosidase activity generates a novel xyloglucan building block, α-d-Xylp-(1→4)-α-d-Xylp-(1→6)-d-Glc (abbreviation: 'V'). Modifying xyloglucan structures in this way may alter oligosaccharin activities, or change their suitability as acceptor substrates for xyloglucan endotransglucosylase (XET) activity.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
60
|
Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, Zarra I. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. PLANT PHYSIOLOGY 2012; 158:1146-57. [PMID: 22267505 PMCID: PMC3291251 DOI: 10.1104/pp.111.192195] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. In Arabidopsis (Arabidopsis thaliana), a significant proportion of xyloglucan side chains contain β-galactose linked to α-xylose at O2. In this work, we identified AtBGAL10 (At5g63810) as the gene responsible for the majority of β-galactosidase activity against xyloglucan. Xyloglucan from bgal10 insertional mutants was found to contain a large proportion of unusual subunits, such as GLG and GLLG. These subunits were not detected in a bgal10 xyl1 double mutant, deficient in both β-galactosidase and α-xylosidase. Xyloglucan from bgal10 xyl1 plants was enriched instead in XXLG/XLXG and XLLG subunits. In both cases, changes in xyloglucan composition were larger in the endoglucanase-accessible fraction. These results suggest that glycosidases acting on nonreducing ends digest large amounts of xyloglucan in wild-type plants, while plants deficient in any of these activities accumulate partly digested subunits. In both bgal10 and bgal10 xyl1, siliques and sepals were shorter, a phenotype that could be explained by an excess of nonreducing ends leading to a reinforced xyloglucan network. Additionally, AtBGAL10 expression was examined with a promoter-reporter construct. Expression was high in many cell types undergoing wall extension or remodeling, such as young stems, abscission zones, or developing vasculature, showing good correlation with α-xylosidase expression.
Collapse
|
61
|
Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, Miedes E, Fernández PV, Jordá L, Hernández-Blanco C, Sánchez-Vallet A, Bednarek P, Schulze-Lefert P, Somerville S, Estevez JM, Persson S, Molina A. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. MOLECULAR PLANT 2012; 5:98-114. [PMID: 21980142 DOI: 10.1093/mp/ssr082] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.
Collapse
Affiliation(s)
- Magdalena Delgado-Cerezo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, E-28223-Pozuelo de Alarcón (Madrid), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Günl M, Neumetzler L, Kraemer F, de Souza A, Schultink A, Pena M, York WS, Pauly M. AXY8 encodes an α-fucosidase, underscoring the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. THE PLANT CELL 2011; 23:4025-40. [PMID: 22080600 PMCID: PMC3246338 DOI: 10.1105/tpc.111.089193] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/10/2011] [Accepted: 10/25/2011] [Indexed: 05/18/2023]
Abstract
An Arabidopsis thaliana mutant with an altered structure of its hemicellulose xyloglucan (XyG; axy-8) identified by a forward genetic screen facilitating oligosaccharide mass profiling was characterized. axy8 exhibits increased XyG fucosylation and the occurrence of XyG fragments not present in the wild-type plant. AXY8 was identified to encode an α-fucosidase acting on XyG that was previously designated FUC95A. Green fluorescent protein fusion localization studies and analysis of nascent XyG in microsomal preparations demonstrated that this glycosylhydrolase acts mainly on XyG in the apoplast. Detailed structural analysis of XyG in axy8 gave unique insights into the role of the fucosidase in XyG metabolism in vivo. The genetic evidence indicates that the activity of glycosylhydrolases in the apoplast plays a major role in generating the heterogeneity of XyG side chains in the wall. Furthermore, without the dominant apoplastic glycosylhydrolases, the XyG structure in the wall is mainly composed of XXXG and XXFG subunits.
Collapse
Affiliation(s)
- Markus Günl
- University of California, Berkeley, California, 94720
| | - Lutz Neumetzler
- Max-Planck-Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | | | | | - Maria Pena
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Markus Pauly
- University of California, Berkeley, California, 94720
| |
Collapse
|
63
|
Franková L, Fry SC. Phylogenetic variation in glycosidases and glycanases acting on plant cell wall polysaccharides, and the detection of transglycosidase and trans-β-xylanase activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:662-81. [PMID: 21554451 DOI: 10.1111/j.1365-313x.2011.04625.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wall polysaccharide chemistry varies phylogenetically, suggesting a need for variation in wall enzymes. Although plants possess the genes for numerous putative enzymes acting on wall carbohydrates, the activities of the encoded proteins often remain conjectural. To explore phylogenetic differences in demonstrable enzyme activities, we extracted proteins from 57 rapidly growing plant organs with three extractants, and assayed their ability to act on six oligosaccharides 'modelling' selected cell-wall polysaccharides. Based on reaction products, we successfully distinguished exo- and endo-hydrolases and found high taxonomic variation in all hydrolases screened: β-D-xylosidase, endo-(1→4)-β-D-xylanase, β-D-mannosidase, endo-(1→4)-β-D-mannanase, α-D-xylosidase, β-D-galactosidase, α-L-arabinosidase and α-L-fucosidase. The results, as GHATAbase, a searchable compendium in Excel format, also provide a compilation for selecting rich sources of enzymes acting on wall carbohydrates. Four of the hydrolases were accompanied, sometimes exceeded, by transglycosylase activities, generating products larger than the substrate. For example, during β-xylosidase assays on (1→4)-β-D-xylohexaose (Xyl₆), Marchantia, Selaginella and Equisetum extracts gave negligible free xylose but approximately equimolar Xyl₅ and Xyl₇, indicating trans-β-xylosidase activity, also found in onion, cereals, legumes and rape. The yield of Xyl₉ often exceeded that of Xyl₇₋₈, indicating that β-xylanase was accompanied by an endotransglycosylase activity, here called trans-β-xylanase, catalysing the reaction 2Xyl₆ → Xyl₃ + Xyl₉. Similar evidence also revealed trans-α-xylosidase, trans-α-arabinosidase and trans-α-arabinanase activities acting on xyloglucan oligosaccharides and (1→5)-α-L-arabino-oligosaccharides. In conclusion, diverse plants differ dramatically in extractable enzymes acting on wall carbohydrate, reflecting differences in wall polysaccharide composition. Besides glycosidase and glycanase activities, five new transglycosylase activities were detected. We propose that such activities function in the assembly and re-structuring of the wall matrix.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH93JH, UK
| | | |
Collapse
|
64
|
Günl M, Pauly M. AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. PLANTA 2011; 233:707-19. [PMID: 21170548 PMCID: PMC3064893 DOI: 10.1007/s00425-010-1330-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/29/2010] [Indexed: 05/19/2023]
Abstract
Xyloglucan is the most abundant hemicellulose in the walls of dicots such as Arabidopsis. It is part of the load-bearing structure of a plant cell and its metabolism is thought to play a major role in cell elongation. However, the molecular mechanism by which xyloglucan carries out this and other functions in planta is not well understood. We performed a forward genetic screen utilizing xyloglucan oligosaccharide mass profiling on chemically mutagenized Arabidopsis seedlings to identify mutants with altered xyloglucan structures termed axy-mutants. One of the identified mutants, axy3.1, contains xyloglucan with a higher proportion of non-fucosylated xyloglucan subunits. Mapping revealed that axy3.1 contains a point mutation in XYLOSIDASE1 (XYL1) known to encode for an apoplastic glycoside hydrolase releasing xylosyl residues from xyloglucan oligosaccharides at the non-reducing end. The data support the hypothesis that AXY3/XYL1 is an essential component of the apoplastic xyloglucan degradation machinery and as a result of the lack of function in the various axy3-alleles leads not only to an altered xyloglucan structure but also a xyloglucan that is less tightly associated with other wall components. However, the plant can cope with the excess xyloglucan relatively well as the mutant does not display any visible growth or morphological phenotypes with the notable exception of shorter siliques and reduced fitness. Taken together, these results demonstrate that plant apoplastic hydrolases have a larger impact on wall polymer structure and function than previously thought.
Collapse
Affiliation(s)
- Markus Günl
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA USA
| |
Collapse
|
65
|
Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, Teeri TT, Stålbrand H, Mellerowicz EJ. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. PLANT PHYSIOLOGY 2011; 155:399-413. [PMID: 21057113 PMCID: PMC3075792 DOI: 10.1104/pp.110.166934] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/03/2010] [Indexed: 05/18/2023]
Abstract
Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.
Collapse
|