51
|
Marondedze C. The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proc Biol Sci 2020; 287:20201397. [PMID: 32962543 PMCID: PMC7542812 DOI: 10.1098/rspb.2020.1397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional regulation has far-reaching implications on the fate of RNAs. It is gaining increasing momentum as a critical component in adjusting global cellular transcript levels during development and in response to environmental stresses. In this process, RNA-binding proteins (RBPs) are indispensable chaperones that naturally bind RNA via one or multiple globular RNA-binding domains (RBDs) changing the function or fate of the bound RNAs. Despite the technical challenges faced in plants in large-scale studies, several hundreds of these RBPs have been discovered and elucidated globally over the past few years. Recent discoveries have more than doubled the number of proteins implicated in RNA interaction, including identification of RBPs lacking classical RBDs. This review will discuss these new emerging classes of RBPs, focusing on the current state of the RBP repertoire in Arabidopsis thaliana, including the diverse functional roles derived from quantitative studies implicating RBPs in abiotic stress responses. Notably, this review highlights that 836 RBPs are enriched as Arabidopsis RBPs while 1865 can be classified as candidate RBPs. The review will also outline outstanding areas within this field that require addressing to advance our understanding and potential biotechnological applications of RBPs.
Collapse
Affiliation(s)
- C. Marondedze
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
52
|
Méteignier L, Ghandour R, Meierhoff K, Zimmerman A, Chicher J, Baumberger N, Alioua A, Meurer J, Zoschke R, Hammani K. The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons. THE NEW PHYTOLOGIST 2020; 227:1376-1391. [PMID: 32343843 PMCID: PMC7496394 DOI: 10.1111/nph.16625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 05/28/2023]
Abstract
The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Louis‐Valentin Méteignier
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Karin Meierhoff
- Institute of Developmental and Molecular Biology of PlantsHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRSUniversité de Strasbourg15 rue René Descartes67084StrasbourgFrance
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Jörg Meurer
- Plant SciencesFaculty of BiologyLudwig‐Maximilians‐University MunichGroßhaderner Street 2‐482152Planegg‐MartinsriedGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| |
Collapse
|
53
|
Yu Q, Tungsuchat-Huang T, Verma K, Radler MR, Maliga P. Independent translation of ORFs in dicistronic operons, synthetic building blocks for polycistronic chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2318-2329. [PMID: 32497322 DOI: 10.1111/tpj.14864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We designed a dicistronic plastid marker system that relies on the plastid's ability to translate polycistronic mRNAs. The identification of transplastomic clones is based on selection for antibiotic resistance encoded in the first open reading frame (ORF) and accumulation of the reporter gene product in tobacco chloroplasts encoded in the second ORF. The antibiotic resistance gene may encode spectinomycin or kanamycin resistance based on the expression of aadA or neo genes, respectively. The reporter gene used in the study is the green fluorescent protein (GFP). The mRNA level depends on the 5'-untranslated region of the first ORF. The protein output depends on the strengths of the ribosome binding, and is proportional with the level of translatable mRNA. Because the dicistronic mRNA is not processed, we could show that protein output from the second ORF is independent from the first ORF. High-level GFP accumulation from the second ORF facilitates identification of transplastomic events under ultraviolet light. Expression of multiple proteins from an unprocessed mRNA is an experimental design that enables predictable protein output from polycistronic mRNAs, expanding the toolkit of plant synthetic biology.
Collapse
Affiliation(s)
- Qiguo Yu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Kanak Verma
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Megan R Radler
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
54
|
The Chloroplast RNA Binding Protein CP31A Has a Preference for mRNAs Encoding the Subunits of the Chloroplast NAD(P)H Dehydrogenase Complex and Is Required for Their Accumulation. Int J Mol Sci 2020; 21:ijms21165633. [PMID: 32781615 PMCID: PMC7460601 DOI: 10.3390/ijms21165633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 01/15/2023] Open
Abstract
Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into one post-transcriptional operon.
Collapse
|
55
|
Griffin JHC, Prado K, Sutton P, Toledo-Ortiz G. Coordinating light responses between the nucleus and the chloroplast, a role for plant cryptochromes and phytochromes. PHYSIOLOGIA PLANTARUM 2020; 169:515-528. [PMID: 32519399 DOI: 10.1111/ppl.13148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
To promote photomorphogenesis, including plastid development and metabolism, the phytochrome (phy) and the cryptochrome (cry) photoreceptors orchestrate genome-wide changes in gene expression in response to Red (R)- and Blue (B)-light cues. While phys and crys have a clear role in modulating photosynthesis, their role in the coordination of the nuclear genome and the plastome, essential for functional chloroplasts, remains underexplored. Using publicly available genome datasets for WT and phyABCDE or cry1cry2 Arabidopsis seedlings, grown, respectively, under R- or B-light, we bioinformatically analyzed the influence of light inputs and photoreceptors in the control of nuclear genes with a function in the chloroplast, and evaluated the role of phyB in the modulation of plastome-encoded genes. We show gene co-induction by R-phys and B-crys for genes with a chloroplastic function, and also apparent photoreceptor-driven preferential responses. Evidence from phyB in Arabidopsis together with published evidence from CRY2 in tomato also supports the participation of both photoreceptor families in the global modulation of the plastome genes. To begin addressing how these light-sensors orchestrate changes in an organellar genome, we evaluated their effect over genes with potential functions in plastid gene-expression regulation based on their TAIR annotation. Results indicate that both crys and phys modulate 'plastome-regulatory genes' with enrichment in the contribution of crys to all processes and of phys to post-transcription and transcription. Furthermore, we identified a new role for HY5 as a relevant light-signaling component in photoreceptor-based anterograde signaling leading to plastome gene regulation.
Collapse
Affiliation(s)
| | - Karine Prado
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Phoebe Sutton
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | |
Collapse
|
56
|
Li X, Wang HB, Jin HL. Light Signaling-Dependent Regulation of PSII Biogenesis and Functional Maintenance. PLANT PHYSIOLOGY 2020; 183:1855-1868. [PMID: 32439719 PMCID: PMC7401124 DOI: 10.1104/pp.20.00200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 05/16/2023]
Abstract
Light is a key environmental cue regulating photomorphogenesis and photosynthesis in plants. However, the molecular mechanisms underlying the interaction between light signaling pathways and photosystem function are unknown. Here, we show that various monochromatic wavelengths of light cooperate to regulate PSII function in Arabidopsis (Arabidopsis thaliana). The photoreceptors cryptochromes and phytochromes modulate the expression of HIGH CHLOROPHYLL FLUORESCENCE173 (HCF173), which is required for PSII biogenesis by regulating PSII core protein D1 synthesis mediated by the transcription factor ELONGATED HYPOCOTYL5 (HY5). HY5 directly binds to the ACGT-containing element ACE motif and G-box cis-element present in the HCF173 promoter and regulates its activity. PSII activity was decreased significantly in hy5 mutants under various monochromatic wavelengths of light. Interestingly, we demonstrate that HY5 also directly regulates the expression of the genes associated with PSII assembly and repair, including ALBINO3, HCF136, HYPERSENSITIVE TO HIGH LIGHT1, etc., which is required for the functional maintenance of PSII under photodamaging conditions. Moreover, deficiency of HY5 broadly decreases the accumulation of other photosystem proteins besides PSII proteins. Thus, our study reveals an important role of light signaling in both biogenesis and functional regulation of the photosystem and provides insight into the link between light signaling and photosynthesis in land plants.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| |
Collapse
|
57
|
Lee K, Kang H. Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses. Int J Mol Sci 2020; 21:ijms21124548. [PMID: 32604726 PMCID: PMC7352785 DOI: 10.3390/ijms21124548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Kwanuk Lee
- Plant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
- Correspondence: (K.L.); (H.K.); Tel.: +49-157-8852-8990 (K.L.); +82-62-530-2181 (H.K.); Fax: +82-62-530-2079 (H.K.)
| | - Hunseung Kang
- Department of Applied Biology and AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (K.L.); (H.K.); Tel.: +49-157-8852-8990 (K.L.); +82-62-530-2181 (H.K.); Fax: +82-62-530-2079 (H.K.)
| |
Collapse
|
58
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
59
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
60
|
Watkins KP, Williams-Carrier R, Chotewutmontri P, Friso G, Teubner M, Belcher S, Ruwe H, Schmitz-Linneweber C, van Wijk KJ, Barkan A. Exploring the proteome associated with the mRNA encoding the D1 reaction center protein of Photosystem II in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:369-382. [PMID: 31793101 DOI: 10.1111/tpj.14629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 05/13/2023]
Abstract
Synthesis of the D1 reaction center protein of Photosystem II is dynamically regulated in response to environmental and developmental cues. In chloroplasts, much of this regulation occurs at the post-transcriptional level, but the proteins responsible are largely unknown. To discover proteins that impact psbA expression, we identified proteins that associate with maize psbA mRNA by: (i) formaldehyde cross-linking of leaf tissue followed by antisense oligonucleotide affinity capture of psbA mRNA; and (ii) co-immunoprecipitation with HCF173, a psbA translational activator that is known to bind psbA mRNA. The S1 domain protein SRRP1 and two RNA Recognition Motif (RRM) domain proteins, CP33C and CP33B, were enriched with both approaches. Orthologous proteins were also among the enriched protein set in a previous study in Arabidopsis that employed a designer RNA-binding protein as a psbA RNA affinity tag. We show here that CP33B is bound to psbA mRNA in vivo, as was shown previously for CP33C and SRRP1. Immunoblot, pulse labeling, and ribosome profiling analyses of mutants lacking CP33B and/or CP33C detected some decreases in D1 protein levels under some conditions, but no change in psbA RNA abundance or translation. However, analogous experiments showed that SRRP1 represses psbA ribosome association in the dark, represses ycf1 ribosome association, and promotes accumulation of ndhC mRNA. As SRRP1 is known to harbor RNA chaperone activity, we postulate that SRRP1 mediates these effects by modulating RNA structures. The uncharacterized proteins that emerged from our analyses provide a resource for the discovery of proteins that impact the expression of psbA and other chloroplast genes.
Collapse
Affiliation(s)
- Kenneth P Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | | | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | | | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
61
|
Gawroński P, Pałac A, Scharff LB. Secondary Structure of Chloroplast mRNAs In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2020; 9:E323. [PMID: 32143324 PMCID: PMC7154907 DOI: 10.3390/plants9030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023]
Abstract
mRNA secondary structure can influence gene expression, e.g., by influencing translation initiation. The probing of in vivo mRNA secondary structures is therefore necessary to understand what determines the efficiency and regulation of gene expression. Here, in vivo mRNA secondary structure was analyzed using dimethyl sulfate (DMS)-MaPseq and compared to in vitro-folded RNA. We used an approach to analyze specific, full-length transcripts. To test this approach, we chose low, medium, and high abundant mRNAs. We included both monocistronic and multicistronic transcripts. Because of the slightly alkaline pH of the chloroplast stroma, we could probe all four nucleotides with DMS. The structural information gained was evaluated using the known structure of the plastid 16S rRNA. This demonstrated that the results obtained for adenosines and cytidines were more reliable than for guanosines and uridines. The majority of mRNAs analyzed were less structured in vivo than in vitro. The in vivo secondary structure of the translation initiation region of most tested genes appears to be optimized for high translation efficiency.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Pałac
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
62
|
Zhang Q, Shen L, Ren D, Hu J, Zhu L, Gao Z, Zhang G, Guo L, Zeng D, Qian Q. Characterization of the CRM Gene Family and Elucidating the Function of OsCFM2 in Rice. Biomolecules 2020; 10:biom10020327. [PMID: 32085638 PMCID: PMC7072668 DOI: 10.3390/biom10020327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
The chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins regulate the expression of chloroplast or mitochondrial genes that influence plant growth and development. Although 14 CRM domain proteins have previously been identified in rice, there are few studies of these gene expression patterns in various tissues and under abiotic stress. In our study, we found that 14 CRM domain-containing proteins have a conservative motif1. Under salt stress, the expression levels of 14 CRM genes were downregulated. However, under drought and cold stress, the expression level of some CRM genes was increased. The analysis of gene expression patterns showed that 14 CRM genes were expressed in all tissues but especially highly expressed in leaves. In addition, we analyzed the functions of OsCFM2 and found that this protein influences chloroplast development by regulating the splicing of a group I and five group II introns. Our study provides information for the function analysis of CRM domain-containing proteins in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qian Qian
- Correspondence: ; Tel.: +86-571-6337-0483
| |
Collapse
|
63
|
Co-Translational Protein Folding and Sorting in Chloroplasts. PLANTS 2020; 9:plants9020214. [PMID: 32045984 PMCID: PMC7076657 DOI: 10.3390/plants9020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/22/2023]
Abstract
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes.
Collapse
|
64
|
Abstract
Microalgae are unicellular organisms that act as the crucial primary producers all over the world, typically found in marine and freshwater environments. Most of them can live photo-autotrophically, reproduce rapidly, and accumulate biomass in a short period efficiently. To adapt to the uninterrupted change of the environment, they evolve and differentiate continuously. As a result, some of them evolve special abilities such as toleration of extreme environment, generation of sophisticated structure to adapt to the environment, and avoid predators. Microalgae are believed to be promising bioreactors because of their high lipid and pigment contents. Genetic engineering technologies have given revolutions in the microalgal industry, which decoded the secrets of microalgal genes, express recombinant genes in microalgal genomes, and largely soar the accumulation of interested components in transgenic microalgae. However, owing to several obstructions, the industry of transgenic microalgae is still immature. Here, we provide an overview to emphasize the advantage and imperfection of the existing transgenic microalgal bioreactors.
Collapse
Affiliation(s)
- Zhi-Cong Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
65
|
Jensen PE, Scharff LB. Engineering of plastids to optimize the production of high-value metabolites and proteins. Curr Opin Biotechnol 2019; 59:8-15. [DOI: 10.1016/j.copbio.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/08/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
66
|
Ding S, Liu XY, Wang HC, Wang Y, Tang JJ, Yang YZ, Tan BC. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152992. [PMID: 31234031 DOI: 10.1016/j.jplph.2019.152992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The recently identified PPR-E+/NVWA/DYW2 RNA editing complex provides insights into the mechanism of RNA editing in higher plant organelles. However, whether the complex works together with the previously identified editing factors RIPs/MORFs is unclear. In this paper, we identified a maize Smk6 gene, which encodes a mitochondrion-targeted PPR-E+protein with E1 and E2 domains at the C terminus. Loss of Smk6 function affects the C-to-U editing at nad1-740, nad4L-110, nad7-739, and mttB-138,139 sites, impairs mitochondrial activity and blocks embryogenesis and endosperm development. Genetic and molecular analysis indicated that SMK6 is the maize ortholog of the Arabidopsis SLO2, which is a component of the PPR-E+/NVWA/DYW2 editing complex. However, yeast two-hybrid analyses did not detect any interaction between SMK6 and any of the mitochondrion-targeted RIPs/MORFs, suggesting that RIPs/MORFs may not be a component of PPR-E+/NVWA/DYW2 RNA editing complex. Further analyses are required to provide evidence that RIP/MORFs and SMK6 do not physically interact in vivo.
Collapse
Affiliation(s)
- Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong-Chun Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiao-Jiao Tang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
67
|
Daras G, Rigas S, Alatzas A, Samiotaki M, Chatzopoulos D, Tsitsekian D, Papadaki V, Templalexis D, Banilas G, Athanasiadou AM, Kostourou V, Panayotou G, Hatzopoulos P. LEFKOTHEA Regulates Nuclear and Chloroplast mRNA Splicing in Plants. Dev Cell 2019; 50:767-779.e7. [PMID: 31447263 DOI: 10.1016/j.devcel.2019.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/27/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Eukaryotic organisms accomplish the removal of introns to produce mature mRNAs through splicing. Nuclear and organelle splicing mechanisms are distinctively executed by spliceosome and group II intron complex, respectively. Here, we show that LEFKOTHEA, a nuclear encoded RNA-binding protein, participates in chloroplast group II intron and nuclear pre-mRNA splicing. Transiently optimized LEFKOTHEA nuclear activity is fundamental for plant growth, whereas the loss of function abruptly arrests embryogenesis. Nucleocytoplasmic partitioning and chloroplast allocation are efficiently balanced via functional motifs in LEFKOTHEA polypeptide. In the context of nuclear-chloroplast coevolution, our results provide a strong paradigm of the convergence of RNA maturation mechanisms in the nucleus and chloroplasts to coordinately regulate gene expression and effectively control plant growth.
Collapse
Affiliation(s)
- Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Anastasios Alatzas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Papadaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | - Georgios Banilas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | |
Collapse
|
68
|
Dorrell RG, Nisbet RER, Barbrook AC, Rowden SJL, Howe CJ. Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid. Protist 2019; 170:358-373. [PMID: 31415953 DOI: 10.1016/j.protis.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.
Collapse
Affiliation(s)
| | - R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
69
|
A Mitochondrial Transcription Termination Factor, ZmSmk3, Is Required for nad1 Intron4 and nad4 Intron1 Splicing and Kernel Development in Maize. G3-GENES GENOMES GENETICS 2019; 9:2677-2686. [PMID: 31196888 PMCID: PMC6686911 DOI: 10.1534/g3.119.400265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression systems of the mitochondrial genes are derived from their bacterial ancestors, but have evolved many new features in their eukaryotic hosts. Mitochondrial RNA splicing is a complex process regulated by families of nucleus-encoded RNA-binding proteins, few of which have been characterized in maize (Zea mays L.). Here, we identified the Zea mays small kernel 3 (Zmsmk3) candidate gene, which encodes a mitochondrial transcription termination factor (mTERF) containing two mTERF motifs, which is conserved in monocotyledon; and the target introns were also quite conserved during evolution between monocotyledons and dicotyledons. The mutations of Zmsmk3 led to arrested embryo and endosperm development, resulting in small kernels. A transcriptome of 12 days after pollination endosperm analysis revealed that the starch biosynthetic pathway and the zein gene family were down-regulated in the Zmsmk3 mutant kernels. ZmSMK3 is localized in mitochondria. The reduced expression of ZmSmk3 in the mutant resulted in the splicing deficiency of mitochondrial nad4 intron1 and nad1 intron4, causing a reduction in complex I assembly and activity, impairing mitochondria structure and activating the alternative respiratory pathway. So, the results suggest that ZmSMK3 is required for the splicing of nad4 intron 1 and nad1 intron 4, complex I assembly and kernel development in maize.
Collapse
|
70
|
Rojas M, Ruwe H, Miranda RG, Zoschke R, Hase N, Schmitz-Linneweber C, Barkan A. Unexpected functional versatility of the pentatricopeptide repeat proteins PGR3, PPR5 and PPR10. Nucleic Acids Res 2019; 46:10448-10459. [PMID: 30125002 PMCID: PMC6212717 DOI: 10.1093/nar/gky737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of helical repeat proteins that bind RNA in mitochondria and chloroplasts. Sites of PPR action have been inferred primarily from genetic data, which have led to the view that most PPR proteins act at a very small number of sites in vivo. Here, we report new functions for three chloroplast PPR proteins that had already been studied in depth. Maize PPR5, previously shown to promote trnG splicing, is also required for rpl16 splicing. Maize PPR10, previously shown to bind the atpI-atpH and psaJ-rpl33 intercistronic regions, also stabilizes a 3′-end downstream from psaI. Arabidopsis PGR3, shown previously to bind upstream of petL, also binds the rpl14-rps8 intercistronic region where it stabilizes a 3′-end and stimulates rps8 translation. These functions of PGR3 are conserved in maize. The discovery of new functions for three proteins that were already among the best characterized members of the PPR family implies that functional repertoires of PPR proteins are more complex than have been appreciated. The diversity of sequences bound by PPR10 and PGR3 in vivo highlights challenges of predicting binding sites of native PPR proteins based on the amino acid code for nucleotide recognition by PPR motifs.
Collapse
Affiliation(s)
- Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Hannes Ruwe
- Department of Life Sciences, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Reimo Zoschke
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Nora Hase
- Department of Life Sciences, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
71
|
Williams-Carrier R, Brewster C, Belcher SE, Rojas M, Chotewutmontri P, Ljungdahl S, Barkan A. The Arabidopsis pentatricopeptide repeat protein LPE1 and its maize ortholog are required for translation of the chloroplast psbJ RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:56-66. [PMID: 30844105 DOI: 10.1111/tpj.14308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/21/2023]
Abstract
The expression of chloroplast genes relies on a host of nucleus-encoded proteins. Identification of such proteins and elucidation of their functions are ongoing challenges. We used ribosome profiling to revisit the function of the pentatricopeptide repeat protein LPE1, reported to stimulate translation of the chloroplast psbA mRNA in Arabidopsis. Mutation of the maize LPE1 ortholog causes a photosystem II (PSII) deficiency and a defect in translation of the chloroplast psbJ open reading frame (ORF) but has no effect on psbA expression. To reflect this function, we named the maize LPE1 ortholog Translation of psbJ 1 (TPJ1). Arabidopsis lpe1 mutants likewise exhibit a loss of psbJ translation, and have, in addition, a decrease in psbN translation. We detected a small decrease in ribosome occupancy on the psbA mRNA in Arabidopsis lpe1 mutants, but ribosome profiling analyses of other PSII mutants (hcf107 and hcf173) in conjunction with in vitro RNA binding data strongly suggest that this is a secondary effect of their PSII deficiency. We conclude that maize TPJ1 promotes PSII synthesis by activating translation of the psbJ ORF, that this function is conserved in Arabidopsis LPE1, and that an additional role for LPE1 in psbN translation contributes to the PSII deficiency in lpe1 mutants.
Collapse
Affiliation(s)
| | - Carolyn Brewster
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Susan E Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | - Sonja Ljungdahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
72
|
Hillebrand A, Matz JM, Almendinger M, Müller K, Matuschewski K, Schmitz-Linneweber C. Identification of clustered organellar short (cos) RNAs and of a conserved family of organellar RNA-binding proteins, the heptatricopeptide repeat proteins, in the malaria parasite. Nucleic Acids Res 2019; 46:10417-10431. [PMID: 30102371 PMCID: PMC6212722 DOI: 10.1093/nar/gky710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Gene expression in mitochondria of Plasmodium falciparum is essential for parasite survival. The molecular mechanisms of Plasmodium organellar gene expression remain poorly understood. This includes the enigmatic assembly of the mitochondrial ribosome from highly fragmented rRNAs. Here, we present the identification of clustered organellar short RNA fragments (cosRNAs) that are possible footprints of RNA-binding proteins (RBPs) in Plasmodium organelles. In plants, RBPs of the pentatricopeptide repeat (PPR) class produce footprints as a consequence of their function in processing organellar RNAs. Intriguingly, many of the Plasmodium cosRNAs overlap with 5'-ends of rRNA fragments. We hypothesize that these are footprints of RBPs involved in assembling the rRNA fragments into a functioning ribosome. A bioinformatics search of the Plasmodium nuclear genome identified a hitherto unrecognized organellar helical-hairpin-repeat protein family that we term heptatricopeptide repeat (HPR) proteins. We demonstrate that selected HPR proteins are targeted to mitochondria in P. berghei and that one of them, PbHPR1, associates with RNA, but not DNA in vitro. A phylogenetic search identified HPR proteins in a wide variety of eukaryotes. We hypothesize that HPR proteins are required for processing and stabilizing RNAs in Apicomplexa and other taxa.
Collapse
Affiliation(s)
- Arne Hillebrand
- Humboldt University Berlin, Molecular Genetics, Berlin, Germany
| | - Joachim M Matz
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | | - Katja Müller
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | - Kai Matuschewski
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | |
Collapse
|
73
|
Viola S, Cavaiuolo M, Drapier D, Eberhard S, Vallon O, Wollman FA, Choquet Y. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1033-1047. [PMID: 30809889 DOI: 10.1111/tpj.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In Chlamydomonas reinhardtii, chloroplast gene expression is tightly regulated post-transcriptionally by gene-specific trans-acting protein factors. Here, we report the molecular identification of an OctotricoPeptide Repeat (OPR) protein, MDA1, which governs the maturation and accumulation of the atpA transcript, encoding subunit α of the chloroplast ATP synthase. As does TDA1, another OPR protein required for the translation of the atpA mRNA, MDA1 targets the atpA 5'-untranslated region (UTR). Unexpectedly, it binds within a region of approximately 100 nt in the middle of the atpA 5'-UTR, at variance with the stabilization factors characterized so far, which bind to the 5'-end of their target mRNA to protect it from 5' → 3' exonucleases. It binds the same region as TDA1, with which it forms a high-molecular-weight complex that also comprises the atpA mRNA. This complex dissociates upon translation, promoting degradation of the atpA mRNA. We suggest that atpA transcripts, once translated, enter the degradation pathway because they cannot reassemble with MDA1 and TDA1, which preferentially bind to de novo transcribed mRNAs.
Collapse
Affiliation(s)
- Stefania Viola
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Marina Cavaiuolo
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Dominique Drapier
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Stephan Eberhard
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Olivier Vallon
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Yves Choquet
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
74
|
Jiang J, Chai X, Manavski N, Williams-Carrier R, He B, Brachmann A, Ji D, Ouyang M, Liu Y, Barkan A, Meurer J, Zhang L, Chi W. An RNA Chaperone-Like Protein Plays Critical Roles in Chloroplast mRNA Stability and Translation in Arabidopsis and Maize. THE PLANT CELL 2019; 31:1308-1327. [PMID: 30962391 PMCID: PMC6588297 DOI: 10.1105/tpc.18.00946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 04/07/2019] [Indexed: 05/18/2023]
Abstract
A key characteristic of chloroplast gene expression is the predominance of posttranscriptional control via numerous nucleus-encoded RNA binding factors. Here, we explored the essential roles of the S1-domain-containing protein photosynthetic electron transfer B (petB)/ petD Stabilizing Factor (BSF) in the stabilization and translation of chloroplast mRNAs. BSF binds to the intergenic region of petB-petD, thereby stabilizing 3' processed petB transcripts and stimulating petD translation. BSF also binds to the 5' untranslated region of petA and activates its translation. BSF displayed nucleic-acid-melting activity in vitro, and its absence induces structural changes to target RNAs in vivo, suggesting that BSF functions as an RNA chaperone to remodel RNA structure. BSF physically interacts with the pentatricopeptide repeat protein Chloroplast RNA Processing 1 (AtCRP1) and the ribosomal release factor-like protein Peptide chain Release Factor 3 (PrfB3), whose established RNA ligands overlap with those of BSF. In addition, PrfB3 stimulated the RNA binding ability of BSF in vitro. We propose that BSF and PrfB3 cooperatively reduce the formation of secondary RNA structures within target mRNAs and facilitate AtCRP1 binding. The translation activation function of BSF for petD is conserved in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays), but that for petA operates specifically in Arabidopsis. Our study sheds light on the mechanisms by which RNA binding proteins cooperatively regulate mRNA stability and translation in chloroplasts.
Collapse
Affiliation(s)
- Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology, 82152 Planegg-Martinsried, Germany
| | | | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yini Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology, 82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
75
|
Bioinformatic Analysis of Chloroplast Gene Expression and RNA Posttranscriptional Maturations Using RNA Sequencing. Methods Mol Biol 2019; 1829:279-294. [PMID: 29987729 DOI: 10.1007/978-1-4939-8654-5_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Sequencing of total RNA enables the study of the whole plant transcriptome resulting from the simultaneous expression of the three genomes of plant cells (located in the nucleus, mitochondrion and chloroplast). While commonly used for the quantification of the nuclear gene expression, this method remains complex and challenging when applied to organellar genomes and/or when used to quantify posttranscriptional RNA maturations. Here we propose a complete bioinformatical and statistical pipeline to fully characterize the differences in the chloroplast transcriptome between two conditions. Experimental design as well as bioinformatics and statistical analyses are described in order to quantify both gene expression and RNA posttranscriptional maturations, i.e., RNA splicing, editing, and processing, and identify statistically significant differences.
Collapse
|
76
|
Boehm CR, Bock R. Recent Advances and Current Challenges in Synthetic Biology of the Plastid Genetic System and Metabolism. PLANT PHYSIOLOGY 2019; 179:794-802. [PMID: 30181342 PMCID: PMC6393795 DOI: 10.1104/pp.18.00767] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/27/2018] [Indexed: 05/05/2023]
Abstract
Building on recombinant DNA technology, leaps in synthesis, assembly, and analysis of DNA have revolutionized genetics and molecular biology over the past two decades (Kosuri and Church, 2014). These technological advances have accelerated the emergence of synthetic biology as a new discipline (Cameron et al., 2014). Synthetic biology is characterized by efforts targeted at the modification of existing and the design of novel biological systems based on principles adopted from information technology and engineering (Andrianantoandro et al., 2006; Khalil and Collins, 2010). As in more traditional engineering disciplines such as mechanical, electrical and civil engineering, synthetic biologists utilize abstraction, decoupling and standardization to make the design of biological systems more efficient and scalable. To facilitate the management of complexity, synthetic biology relies on an abstraction hierarchy composed of multiple levels (Endy, 2005): DNA as genetic material, "parts" as elements of DNA encoding basic biological functions (e.g. promoter, ribosome-binding site, terminator sequence), "devices" as any combination of parts implementing a human-defined function, and "systems" as any combination of devices fulfilling a predefined purpose. Parts are designated to perform predictable and modular functions in the context of higher-level devices or systems, which are successively refined through a cycle of designing, building, and testing.
Collapse
Affiliation(s)
- Christian R Boehm
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
77
|
Murata MM, Omar AA, Mou Z, Chase CD, Grosser JW, Graham JH. Novel Plastid-Nuclear Genome Combinations Enhance Resistance to Citrus Canker in Cybrid Grapefruit. FRONTIERS IN PLANT SCIENCE 2019; 9:1858. [PMID: 30666259 PMCID: PMC6330342 DOI: 10.3389/fpls.2018.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/30/2018] [Indexed: 05/23/2023]
Abstract
Host disease resistance is the most desirable strategy for control of citrus canker, a disease caused by a gram-negative bacterium Xanthomonas citri subsp. citri. However, no resistant commercial citrus cultivar has been identified. Cybridization, a somatic hybridization approach that combines the organelle and nuclear genomes from different species, was used to create cybrids between citrus canker resistant 'Meiwa' kumquat (Fortunella crassifolia Swingle snym. Citrus japonica Thunb.) and susceptible grapefruit (Citrus paradisi Macfad) cultivars. From these fusions, cybrids with grapefruit nucleus, kumquat mitochondria and kumquat chloroplasts and cybrids with grapefruit nucleus, kumquat mitochondria and grapefruit chloroplasts were generated. These cybrids showed a range of citrus canker response, but all cybrids with kumquat chloroplasts had a significantly lower number of lesions and lower Xanthomonas citri subsp. citri populations than the grapefruit controls. Cybrids with grapefruit chloroplasts had a significantly higher number of lesions than those with kumquat chloroplasts. To understand the role of chloroplasts in the cybrid disease defense, quantitative PCR was performed on both cybrid types and their parents to examine changes in gene expression during Xanthomonas citri subsp. citri infection. The results revealed chloroplast influences on nuclear gene expression, since isonuclear cybrids and 'Marsh' grapefruit had different gene expression profiles. In addition, only genotypes with kumquat chloroplasts showed an early up-regulation of reactive oxygen species genes upon Xanthomonas citri subsp. citri infection. These cybrids have the potential to enhance citrus canker resistance in commercial grapefruit orchards. They also serve as models for understanding the contribution of chloroplasts to plant disease response and raise the question of whether other alien chloroplast genotypes would condition similar results.
Collapse
Affiliation(s)
- Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
78
|
Schmid LM, Ohler L, Möhlmann T, Brachmann A, Muiño JM, Leister D, Meurer J, Manavski N. PUMPKIN, the Sole Plastid UMP Kinase, Associates with Group II Introns and Alters Their Metabolism. PLANT PHYSIOLOGY 2019; 179:248-264. [PMID: 30409856 PMCID: PMC6324238 DOI: 10.1104/pp.18.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 05/07/2023]
Abstract
The chloroplast hosts photosynthesis and a variety of metabolic pathways that are essential for plant viability and acclimation processes. In this study, we show that the sole plastid UMP kinase (PUMPKIN) in Arabidopsis (Arabidopsis thaliana) associates specifically with the introns of the plastid transcripts trnG-UCC, trnV-UAC, petB, petD, and ndhA in vivo, as revealed by RNA immunoprecipitation coupled with deep sequencing (RIP-Seq); and that PUMPKIN can bind RNA efficiently in vitro. Analyses of target transcripts showed that PUMPKIN affects their metabolism. Null alleles and knockdowns of pumpkin were viable but clearly affected in growth, plastid translation, and photosynthetic performance. In pumpkin mutants, the levels of many plastid transcripts were reduced, while the amounts of others were increased, as revealed by RNA-Seq analysis. PUMPKIN is a homomultimeric, plastid-localized protein that forms in vivo RNA-containing megadalton-sized complexes and catalyzes the ATP-dependent conversion of UMP to UDP in vitro with properties characteristic of known essential eubacterial UMP kinases. A moonlighting function of PUMPKIN combining RNA and pyrimidine metabolism is discussed.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa Ohler
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jose M Muiño
- Humboldt University, Faculty of Life Science, Philipp Street 13, 10115 Berlin, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
79
|
Zhang L, Zhou W, Che L, Rochaix JD, Lu C, Li W, Peng L. PPR Protein BFA2 Is Essential for the Accumulation of the atpH/F Transcript in Chloroplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:446. [PMID: 31031784 PMCID: PMC6474325 DOI: 10.3389/fpls.2019.00446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 05/04/2023]
Abstract
As a fascinating and complicated nanomotor, chloroplast ATP synthase comprises nine subunits encoded by both the nuclear and plastid genomes. Because of its uneven subunit stoichiometry, biogenesis of ATP synthase and expression of plastid-encoded ATP synthase genes requires assistance by nucleus-encoded factors involved in transcriptional, post-transcriptional, and translational steps. In this study, we report a P-class pentatricopeptide repeat (PPR) protein BFA2 (Biogenesis Factor required for ATP synthase 2) that is essential for accumulation of the dicistronic atpH/F transcript in Arabidopsis chloroplasts. A loss-of-function mutation in BFA2 results in a specific reduction of more than 3/4 of chloroplast ATP synthase, which is likely due to the absence of dicistronic atpH/F transcript. BFA2 protein contains 22 putative PPR motifs and exclusively localizes in the chloroplast. Bioinformatics and Electrophoretic Mobility Shift Assays (EMSA) analysis showed that BFA2 binds to the consensus sequence of the atpF-atpA intergenic region in a sequence-specific manner. However, translation initiation of the atpA was not affected in the bfa2 mutant. Thus, we propose that the chloroplast PPR protein BFA2 mainly acts as barrier to prevent the atpH/F transcript degradation by exoribonucleases by binding to the consensus sequence of the atpF-atpA intergenic region.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wen Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Liping Che
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenjing Li
- College of Life Sciences, Langfang Normal University, Langfang, China
- *Correspondence: Wenjing Li, Lianwei Peng,
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Wenjing Li, Lianwei Peng,
| |
Collapse
|
80
|
Bobik K, Fernandez JC, Hardin SR, Ernest B, Ganusova EE, Staton ME, Burch-Smith TM. The essential chloroplast ribosomal protein uL15c interacts with the chloroplast RNA helicase ISE2 and affects intercellular trafficking through plasmodesmata. THE NEW PHYTOLOGIST 2019; 221:850-865. [PMID: 30192000 DOI: 10.1111/nph.15427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
Chloroplasts retain part of their ancestral genomes and the machinery for expression of those genomes. The nucleus-encoded chloroplast RNA helicase INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is required for chloroplast ribosomal RNA processing and chloro-ribosome assembly. To further elucidate ISE2's role in chloroplast translation, two independent approaches were used to identify its potential protein partners. Both a yeast two-hybrid screen and a pull-down assay identified plastid ribosomal protein L15, uL15c (formerly RPL15), as interacting with ISE2. The interaction was confirmed in vivo by co-immunoprecipitation. Interestingly, we found that rpl15 null mutants do not complete embryogenesis, indicating that RPL15 is an essential gene for autotrophic growth of Arabidopsis thaliana. Arabidopsis and Nicotiana benthamiana plants with reduced expression of RPL15 developed chlorotic leaves, had reduced photosynthetic capacity and exhibited defective chloroplast development. Processing of chloroplast ribosomal RNAs and assembly of ribosomal subunits were disrupted by reduced expression of RPL15. Chloroplast translation was also decreased, reducing accumulation of chloroplast-encoded proteins, in such plants compared to wild-type plants. Notably, knockdown of RPL15 expression increased intercellular trafficking, a phenotype also observed in plants with reduced ISE2 expression. This finding provides further evidence for chloroplast function in modulating intercellular trafficking via plasmodesmata.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sara R Hardin
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elena E Ganusova
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
81
|
Halpert M, Liveanu V, Glaser F, Schuster G. The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities. PLANT MOLECULAR BIOLOGY 2019; 99:17-29. [PMID: 30511330 DOI: 10.1007/s11103-018-0799-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/22/2018] [Indexed: 05/17/2023]
Abstract
Arabidopsis chloroplast RNase J displaces both exo- and endo-ribonucleolytic activities and contains a unique GT-1 DNA binding domain. Control of chloroplast gene expression is predominantly at the post-transcriptional level via the coordinated action of nuclear encoded ribonucleases and RNA-binding proteins. The 5' end maturation of mRNAs ascribed to the combined action of 5'→3' exoribonuclease and gene-specific RNA-binding proteins of the pentatricopeptide repeat family and others that impede the progression of this nuclease. The exo- and endoribonuclease RNase J, the only prokaryotic 5'→3' ribonuclease that is commonly present in bacteria, Archaea, as well as in the chloroplasts of higher plants and green algae, has been implicated in this process. Interestingly, in addition to the metalo-β-lactamase and β-CASP domains, RNase J of plants contains a conserved GT-1 domain that was previously characterized in transcription factors that function in light and stress responding genes. Here, we show that the Arabidopsis RNase J (AtRNase J), when analyzed in vitro with synthetic RNAs, displays both 5'→3' exonucleolytic activity, as well as robust endonucleolytic activity as compared to its bacterial homolog RNase J1 of Bacillus subtilis. AtRNase J degraded single-stranded RNA and DNA molecules but displays limited activity on double stranded RNA. The addition of three guanosines at the 5' end of the substrate significantly inhibited the degradation activity, indicating that the sequence and structure of the RNA substrate modulate the ribonucleolytic activity. Mutation of three amino acid in the catalytic reaction center significantly inhibited both the endonucleolytic and exonucleolytic degradation activities, while deletion of the carboxyl GT-1 domain that is unique to the plant RNAse J proteins, had a little or no significant effect. The robust endonucleolytic activity of AtRNase J suggests its involvement in the processing and degradation of RNA in the chloroplast.
Collapse
Affiliation(s)
- Michal Halpert
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Varda Liveanu
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Fabian Glaser
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
82
|
Wang QM, Cui J, Dai H, Zhou Y, Li N, Zhang Z. Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Gene 2018; 677:280-288. [PMID: 30077010 DOI: 10.1016/j.gene.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
Clivia miniata var. variegata (Cmvv) typically possesses yellow- and green-striped leaves. The striped plant not only has a high ornamental value but also be suitable for photosynthesis and chloroplast development research. Our previous study had revealed that yellow stripes (YSs) of Cmvv leaves contain chlorophyll-less ineffective chloroplasts. However, mechanism of Cmvv variegation is yet to be investigated. In the study, transcriptomes of both the YSs and green stripes (GSs) from single Cmvv leaves were compared using high-throughput sequencing. A total of 688 differential expression genes (DEGs) were identified based on biological replications. The qRT-PCR results indicated that transcriptome profiles accurately reflected global transcriptome differences between YSs and GSs. Subcellular localization analysis suggested that 56 DEG proteins were targeted to chloroplasts, and might be involved in anterograde signaling and leaf patterning. Moreover, the DEGs were mostly enriched in photosynthesis and plant-pathogen interaction KEGG pathways. Meanwhile, there should be coordination interaction between the two pathways. Seven of the eight DEGs involved in photosynthesis KEGG pathway were chloroplast-encoded genes and distributed among different cistrons of chloroplast DNA (cpDNA) large single copy regions (LSC) which are more prone to mutation. It was proposed that the YSs were caused by mutation(s) in cpDNA LSC. Thus, when the primary zygote of Cmvv was chimeric in LSC, leaf might be yellow- and green-striped. The study would give new insights into plant variegation and offers candidate genes to guide future research attempting to breed variegated plants.
Collapse
Affiliation(s)
- Qin-Mei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jianguo Cui
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Na Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
83
|
Kwon YM, Kim KW, Choi TY, Kim SY, Kim JYH. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World J Microbiol Biotechnol 2018; 34:183. [PMID: 30478596 DOI: 10.1007/s11274-018-2567-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Kyung Woo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Tae-Young Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Sun Young Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea.
| |
Collapse
|
84
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
85
|
Zhang Y, Cui YL, Zhang XL, Yu QB, Wang X, Yuan XB, Qin XM, He XF, Huang C, Yang ZN. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development. Sci Rep 2018; 8:11929. [PMID: 30093718 PMCID: PMC6085346 DOI: 10.1038/s41598-018-30166-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
The expression of plastid genes is regulated by two types of DNA-dependent RNA polymerases, plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase (NEP). The plastid rpoA polycistron encodes a series of essential chloroplast ribosome subunits and a core subunit of PEP. Despite the functional importance, little is known about the regulation of rpoA polycistron. In this work, we show that mTERF6 directly associates with a 3′-end sequence of rpoA polycistron in vitro and in vivo, and that absence of mTERF6 promotes read-through transcription at this site, indicating that mTERF6 acts as a factor required for termination of plastid genes’ transcription in vivo. In addition, the transcriptions of some essential ribosome subunits encoded by rpoA polycistron and PEP-dependent plastid genes are reduced in the mterf6 knockout mutant. RpoA, a PEP core subunit, accumulates to about 50% that of the wild type in the mutant, where early chloroplast development is impaired. Overall, our functional analyses of mTERF6 provide evidence that it is more likely a factor required for transcription termination of rpoA polycistron, which is essential for chloroplast gene expression and chloroplast development.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yong-Lan Cui
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Lei Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xi Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin-Bo Yuan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Mei Qin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Fang He
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
86
|
Trösch R, Barahimipour R, Gao Y, Badillo-Corona JA, Gotsmann VL, Zimmer D, Mühlhaus T, Zoschke R, Willmund F. Commonalities and differences of chloroplast translation in a green alga and land plants. NATURE PLANTS 2018; 4:564-575. [PMID: 30061751 DOI: 10.1038/s41477-018-0211-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Chloroplast gene expression is a fascinating and highly regulated process, which was mainly studied on specific genes in a few model organisms including the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii) and the embryophyte (land) plants tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). However, a direct plastid genome-wide interspecies comparison of chloroplast gene expression that includes translation was missing. We adapted a targeted chloroplast ribosome profiling approach to quantitatively compare RNA abundance and translation output between Chlamydomonas, tobacco and Arabidopsis. The re-analysis of established chloroplast mutants confirmed the capability of the approach by detecting known as well as previously undetected translation defects (including the potential photosystem II assembly-dependent regulation of PsbH). Systematic comparison of the algal and land plant wild-type gene expression showed that, for most genes, the steady-state translation output is highly conserved among the three species, while the levels of transcript accumulation are more distinct. Whereas in Chlamydomonas transcript accumulation and translation output are closely balanced, this correlation is less obvious in embryophytes, indicating more pronounced translational regulation. Altogether, this suggests that green algae and land plants evolved different strategies to achieve conserved levels of protein synthesis.
Collapse
Affiliation(s)
- Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
| | - David Zimmer
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
87
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
88
|
Perez Boerema A, Aibara S, Paul B, Tobiasson V, Kimanius D, Forsberg BO, Wallden K, Lindahl E, Amunts A. Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor. NATURE PLANTS 2018; 4:212-217. [PMID: 29610536 DOI: 10.1038/s41477-018-0129-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Oxygenic photosynthesis produces oxygen and builds a variety of organic compounds, changing the chemistry of the air, the sea and fuelling the food chain on our planet. The photochemical reactions underpinning this process in plants take place in the chloroplast. Chloroplasts evolved ~1.2 billion years ago from an engulfed primordial diazotrophic cyanobacterium, and chlororibosomes are responsible for synthesis of the core proteins driving photochemical reactions. Chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential co-factors, implying the presence of chloroplast-specific regulatory mechanisms and structural adaptation of the chlororibosome1,2. Despite recent structural information3-6, some of these aspects remained elusive. To provide new insights into the structural specialities and evolution, we report a comprehensive analysis of the 2.9-3.1 Å resolution electron cryo-microscopy structure of the spinach chlororibosome in complex with its recycling factor and hibernation-promoting factor. The model reveals a prominent channel extending from the exit tunnel to the chlororibosome exterior, structural re-arrangements that lead to increased surface area for translocon binding, and experimental evidence for parallel and convergent evolution of chloro- and mitoribosomes.
Collapse
Affiliation(s)
- Annemarie Perez Boerema
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Bijoya Paul
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Dari Kimanius
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Björn O Forsberg
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Karin Wallden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - A Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
89
|
Zoschke R, Bock R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. THE PLANT CELL 2018; 30:745-770. [PMID: 29610211 PMCID: PMC5969280 DOI: 10.1105/tpc.18.00016] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
90
|
Liponska A, Jamalli A, Kuras R, Suay L, Garbe E, Wollman FA, Laalami S, Putzer H. Tracking the elusive 5' exonuclease activity of Chlamydomonas reinhardtii RNase J. PLANT MOLECULAR BIOLOGY 2018; 96:641-653. [PMID: 29600502 DOI: 10.1007/s11103-018-0720-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5' end maturation is thought to be achieved by the combined action of a 5' exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5' exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5' exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5' exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.
Collapse
Affiliation(s)
- Anna Liponska
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Ailar Jamalli
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Richard Kuras
- CNRS UMR7141 (Associated with Université Pierre et Marie Curie), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Loreto Suay
- CNRS UMR7141 (Associated with Université Pierre et Marie Curie), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Enrico Garbe
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Francis-André Wollman
- CNRS UMR7141 (Associated with Université Pierre et Marie Curie), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Soumaya Laalami
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Harald Putzer
- CNRS UMR8261 - Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
91
|
Legen J, Ruf S, Kroop X, Wang G, Barkan A, Bock R, Schmitz-Linneweber C. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:8-21. [PMID: 29418028 DOI: 10.1111/tpj.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 05/08/2023]
Abstract
The chloroplast is a prime target for genetic engineering in plants, offering various advantages over nuclear transformation. For example, chloroplasts allow the expression of polycistronic transcripts and thus to engineer complex metabolic pathways. Each cistron within such a longer transcript needs its own expression elements. Within the 5'-UTR, such expression elements are needed for stabilizing mRNAs and for translation of the downstream reading frame. One of the few effective expression elements used so far in transplastomic approaches is the intercistronic expression element (IEE). The IEE is derived from the psbT-psbH intergenic region and includes a target sequence of the RNA binding protein HCF107. We here show that excessive expression of the IEE can lead to specific defects of endogenous chloroplast mRNA stabilization, likely via depletion of HCF107. Key players in chloroplast transcript stabilization and translation are pentatricopeptide repeat (PPR) proteins, which are structurally related to HCF107. PPR proteins that stabilize mRNAs leave behind short RNA footprints that are indicators of their activity. We identified such sRNAs in tobacco, and demonstrate that they are sufficient to stabilize and stimulate translation of mRNAs from synthetic dicistronic transgenes in chloroplasts. Thus, minimal sequence elements are generally adequate to support key steps in chloroplast gene expression, i.e. RNA stability and translation. Furthermore, our analysis expands the repertoire of available expression elements to facilitate the assembly and expression of multi-gene ensembles in the chloroplast.
Collapse
Affiliation(s)
- Julia Legen
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Gongwei Wang
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
92
|
Gawroński P, Jensen PE, Karpiński S, Leister D, Scharff LB. Pausing of Chloroplast Ribosomes Is Induced by Multiple Features and Is Linked to the Assembly of Photosynthetic Complexes. PLANT PHYSIOLOGY 2018; 176:2557-2569. [PMID: 29298822 PMCID: PMC5841727 DOI: 10.1104/pp.17.01564] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/02/2018] [Indexed: 05/11/2023]
Abstract
Many mRNAs contain pause sites that briefly interrupt the progress of translation. Specific features that induce ribosome pausing have been described; however, their individual contributions to pause-site formation, and the overall biological significance of ribosome pausing, remain largely unclear. We have taken advantage of the compact genome of chloroplasts to carry out a plastid genome-wide survey of pause sites, as a basis for studying the impact of pausing on posttranslational processes. Based on ribosomal profiling of Arabidopsis (Arabidopsis thaliana) chloroplast mRNAs, we demonstrate that a combination of factors-mRNA secondary structure, internal Shine-Dalgarno sequences, and positively charged amino acids in the nascent peptide chain-explains 95% of the major pause sites on plastid mRNAs, whereas codon usage has little impact. The distribution of the pause sites is nonrandom and conforms to distinct patterns in the vicinity of sequences coding for transmembrane domains, which depend on their orientation within the membrane as well as being next to sequences coding for cofactor binding sites. We found strong indications that the mechanisms causing ribosomal pausing and at least some of the ribosomes pause sites are conserved between distantly related plant species. In addition, the positions of features that cause pausing are well conserved in photoautotrophic plants, but less so in their nonphotosynthetic, parasitic relatives, implying that the synthesis and assembly of photosynthetic multiprotein complexes requires localized ribosome pausing.
Collapse
Affiliation(s)
- Piotr Gawroński
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Dario Leister
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Lars B Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
93
|
Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology (Reading) 2018; 164:113-121. [DOI: 10.1099/mic.0.000599] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuliya M. Dyo
- Molecular Research of Microalgae Laboratory, M. A. Ajtkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biotechnology, Kazakh National Research Technology University, Almaty, Kazakhstan
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
94
|
Maize Dek37 Encodes a P-type PPR Protein That Affects cis-Splicing of Mitochondrial nad2 Intron 1 and Seed Development. Genetics 2018; 208:1069-1082. [PMID: 29301905 DOI: 10.1534/genetics.117.300602] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial group II introns require the participation of numerous nucleus-encoded general and specific factors to achieve efficient splicing in vivo Pentatricopeptide repeat (PPR) proteins have been implicated in assisting group II intron splicing. Here, we identified and characterized a new maize seed mutant, defective kernel 37 (dek37), which has significantly delayed endosperm and embryo development. Dek37 encodes a classic P-type PPR protein that targets mitochondria. The dek37 mutation causes no detectable DEK37 protein in mutant seeds. Mitochondrial transcripts analysis indicated that dek37 mutation decreases splicing efficiency of mitochondrial nad2 intron 1, leading to reduced assembly and NADH dehydrogenase activity of complex I. Transmission Electron Microscopy (TEM) revealed severe morphological defects of mitochondria in dek37 Transcriptome analysis of dek37 endosperm indicated enhanced expression in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function. These results indicated that Dek37 is involved in cis-splicing of mitochondrial nad2 intron 1 and is required for complex I assembly, mitochondrial function, and seed development in maize.
Collapse
|
95
|
Abstract
Since its first use in plants in 2007, high-throughput RNA sequencing (RNA-Seq) has generated a vast amount of data for both model and nonmodel species. Organellar transcriptomes, however, are virtually always overlooked at the data analysis step. We therefore developed ChloroSeq, a bioinformatic pipeline aimed at facilitating the systematic analysis of chloroplast RNA metabolism, and we provide here a step-by-step user's manual. Following the alignment of quality-controlled data to the genome of interest, ChloroSeq measures genome expression level along with splicing and RNA editing efficiencies. When used in combination with the Tuxedo suite (TopHat and Cufflinks), ChloroSeq allows the simultaneous analysis of organellar and nuclear transcriptomes, opening the way to a better understanding of nucleus-organelle cross talk. We also describe the use of R commands to produce publication-quality figures based on ChloroSeq outputs. The effectiveness of the pipeline is illustrated through analysis of an RNA-Seq dataset covering the transition from growth to maturation to senescence of Arabidopsis thaliana leaves.
Collapse
|
96
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
97
|
Scharff LB, Ehrnthaler M, Janowski M, Childs LH, Hasse C, Gremmels J, Ruf S, Zoschke R, Bock R. Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco. THE PLANT CELL 2017; 29:3085-3101. [PMID: 29133466 PMCID: PMC5757275 DOI: 10.1105/tpc.17.00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 05/23/2023]
Abstract
In prokaryotic systems, the translation initiation of many, though not all, mRNAs depends on interaction between a sequence element upstream of the start codon (the Shine-Dalgarno sequence [SD]) and a complementary sequence in the 3' end of the 16S rRNA (anti-Shine-Dalgarno sequence [aSD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations in the aSD coupled with genome-wide analysis of translation by ribosome profiling, we provide a global picture of SD-dependent translation in plastids. We observed a pronounced correlation between weakened predicted SD-aSD interactions and reduced translation efficiency. However, multiple lines of evidence suggest that the strength of the SD-aSD interaction is not the only determinant of the translational output of many plastid mRNAs. Finally, the translation efficiency of mRNAs with strong secondary structures around the start codon is more dependent on the SD-aSD interaction than weakly structured mRNAs. Thus, our data reveal the importance of the aSD in plastid translation initiation, uncover chloroplast genes whose translation is influenced by SD-aSD interactions, and provide insights into determinants of translation efficiency in plastids.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Miriam Ehrnthaler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Marcin Janowski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Liam H Childs
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Jürgen Gremmels
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
98
|
Cavaiuolo M, Kuras R, Wollman F, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res 2017; 45:10783-10799. [PMID: 28985404 PMCID: PMC5737564 DOI: 10.1093/nar/gkx668] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNAs. Their absence in M-factor mutants reflects the protection of transcript 5' end by the cognate factor. Enzymatic removal of 5'-triphosphates allowed identifying those cosRNA that mark a transcription start site. We detected another class of sRNAs derived from low abundance transcripts, antisense to mRNAs. The formation of antisense sRNAs required the presence of the complementary mRNA and was stimulated when translation was inhibited by chloramphenicol or lincomycin. We propose that they derive from degradation of double-stranded RNAs generated by pairing of antisense and sense transcripts, a process normally hindered by the traveling of the ribosomes. In addition, chloramphenicol treatment, by freezing ribosomes on the mRNA, caused the accumulation of 32-34 nt ribosome-protected fragments. Using this 'in vivo ribosome footprinting', we identified the function and molecular target of two candidate trans-acting factors.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis‐André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
99
|
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Nucleic Acids Res 2017; 45:6119-6134. [PMID: 28334831 PMCID: PMC5449624 DOI: 10.1093/nar/gkx162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- These authors contributed equally to the paper as first authors
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- To whom correspondence should be addressed. Tel: +33 130 833 070; Fax: +33 130 833 319;
| |
Collapse
|
100
|
Chen TC, Liu YC, Wang X, Wu CH, Huang CH, Chang CC. Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. BOTANICAL STUDIES 2017; 58:38. [PMID: 28916985 PMCID: PMC5602750 DOI: 10.1186/s40529-017-0193-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND RNA editing is a process of post-transcriptional level of gene regulation by nucleotide modification. Previously, the chloroplast DNA of Taiwan endemic moth orchid, P. aphrodite subsp. formosana was determined, and 44 RNA editing sites were identified from 24 plastid protein-coding transcripts of leaf tissue via RT-PCR and then conventional Sanger sequencing. However, the RNA editing status of whole-plastid transcripts in leaf and other distinct tissue types in moth orchids has not been addressed. To sensitively and extensively examine the plastid RNA editing status of moth orchid, RNA-Seq was used to investigate the editing status of whole-plastid transcripts from leaf and floral tissues by mapping the sequence reads to the corresponding cpDNA template. With the threshold of at least 5% C-to-U or U-to-C conversion events observed in sequence reads considered as RNA editing sites. RESULTS In total, 137 edits with 126 C-to-U and 11 U-to-C conversions, including 93 newly discovered edits, were identified in plastid transcripts, representing an average of 0.09% of the nucleotides examined in moth orchid. Overall, 110 and 106 edits were present in leaf and floral tissues, respectively, with 79 edits in common. As well, 79 edits were involved in protein-coding transcripts, and the 58 nucleotide conversions caused the non-synonymous substitution. At least 32 edits showed significant (≧20%) differential editing between leaf and floral tissues. Finally, RNA editing in trnM is required for the formation of a standard clover-leaf structure. CONCLUSIONS We identified 137 edits in plastid transcripts of moth orchid, the highest number reported so far in monocots. The consequence of RNA editing in protein-coding transcripts mainly cause the amino acid change and tend to increase the hydrophobicity as well as conservation among plant phylogeny. RNA editing occurred in non-protein-coding transcripts such as tRNA, introns and untranslated regulatory regions could affect the formation and stability of secondary structure, which might play an important role in the regulation of gene expression. Furthermore, some unidentified tissue-specific factors might be required for regulating RNA editing in moth orchid.
Collapse
Affiliation(s)
- Ting-Chieh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Chang Liu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Chi-Hsuan Wu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Chih-Hao Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Ching-Chun Chang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|